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SUMMARY. Let {Xn(t)\ be a sequence of stochastic processes with continuous paths. 

In this note, the asymptotic distribution o? a suitably chosen root of Xn(t) 
=- 0 is investigated. 

This leads to asymptotic distribution of M -estimates. 

1. Introduction 

Let Fn be the empirical distribution function (d.f.) corresponding to a 

sample of size n from a d.f. F. Let t0 be a solution of Ap (t) 
= 0 where 

Af(0 = J f(x, t)dF(x). 

An Ji-estimate Tn (of t0) corresponding to the kernel function r/r is a solution 

of the equation 

AFn(i) 
= 0. ... (1.1) 

Under certain conditions on the function F, the asymptotic distribution of 

Tn can be obtained (See Boos and Serfling (1980) and Serfling (1980) Chapter 
7). Instead of equation (1.1) one may have a more general form of equation 

Xn(t) 
= 0 ... (1.2) 

and a solution 9 of (1.2) as a estimate of a unknown parameter 0. We call 

this estimate 6 a generalized If-estimate (of d). The estimate r of Nguyen, 

Rogers and Walker (1984) is of this type. Basu, Ghosh and Joshi (1988) 

(henceforth abbreviated as BGJ) obtained the asymptotic distribution of t 

above. In doing so, BGJ implicitly developed a technique which has wider 

applicabilities. In this note we consider the equation (1.2) where {Xn(t)} is 

a stochastic process with continuous sample path and show how one can study 

the asymptotic distribution of ? by explicitly writing down the techniques 
of BGJ and developing them further. 

A related problem of asymptotic behaviour of One-Step If-estimates 

can also be tackled using the above mentioned techniques. 
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2. Preliminaries and notations 

Let {Xn(t)} be a sequence of stochastic processes having continuous sample 

paths with t e (a, b) and let 6 be the parameter to be estimated, 6 e(a b). 
Let (7(?oo, oo) be the space of continuous function on (?oo, oo) ; let C(?oo, oo ) 
be endowed with the topology of uniform convergence on compacta (u.c.c). 
For details regarding weak convergence, tightness etc. in C(?oo, oo) see Sen 

(1981). 

For/eC(?oo,oo), let 

fy= {?:/(*) = <>} 
and define functions Tx and T2 as 

T?(f) = sup {t :f(t) = 0} if Sf ^ <f> and Sf is bounded above 

= c otherwise (c is a constant) 

T2(t) = 
inf{t :f(t) = 

0} if Sf ^ $ and Sf is bounded below 

= c otherwise 

Define a stochastic process Wn(.) on 0(?oo, oo), a process obtained by 

rescaling n?Xn(.) (for some ? > 0) at 0, by 

TFW(?) = 
n'XJ?+nr* h) if | ? | < log * 

= 
n'Xn(0+nr* log n) if ? > log ft 

= 
n?Xn(6-n-? log ft) if A < -log ft. ... (2.1) 

Equation (1,2) may have multiple solutions ; we use an estimate 6e of 

d to overcome this difficulty. 

Let 

8n 
= ft-* (log n)y and y 

= 
1/2 

(The arguments in the proof of Theorem 2.1 can be modified so as to work 

with any y > 0). 

Let ?c be such that 

P(\6c-0\ < dn)-> 1 as ft-> oo. ... (2.2) 

With en 
= 

^n^? 
(log ft)* let 

h = \Pc-en9 ?c+en] Q {t : Xn(t) = 0}. 

Now we define our estimate 6 of 0 ; 

0 = a point in In closest to #c i?ln^<j> 
= ?c otherwise. 
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Condition (2.2) for 9C may be too demanding ; at the end of Section 3 (see 
Lemma 3.1) we indicate how to obtain 9C satisfying (2.2) when a consistent 

estimate of d is available. 

3. Main results 

Proof of Theorems 3.1, 3.2 and 3.3 was essentially contained in the treat 

ment of the special case considered in BGJ, though without mentioning the 

results explicitly ; for the sake of completeness, below we give sketches of 

the proofs as well. 

Theorem 3.1. Let W(.) be a stochastic process on C(?oo, oo) such that 

(i) Wn(.)^W(.); 

(ii) W(h) 
=s 0 has a unique solution, say, a r.v. Y ; 

(iii) Tx and T2 are continuous w.p. 1 [W(.)] and P(Y 
= 

c) 
= 0. 

Then n?(Q-d)~* Y. 

Remark 1. In what follows we take ? 
= 

1/2 ; all the statements of 

the results can be modified by replacing y/ri by n? and can be proved 

analogously. 

Proof. Let 

A*l ={\Ti (Wn(.))\ < (log^/3, i = 
1,2}, 

Aq = 
{Tx (Wn(.)) ̂ c}Q {T2(Wn(.)) * c}, 

A = 
{\9c-6\ <<U 

and Dn = 
hi ?(? 
l-i 

It is easy to see that 

P(4<g)-? 1 as n-> oo for i = 1, 2, 3 

and hence 

P(Dn)-+ 1 as ?&-> oo, ... (3.1) 

Note that on Dn, Wn (h) 
= 0 for at least one h between ?(log n)1/z and 

(log n)llz and hence by (2.1) 

Xn(t) 
= 0 for at least one t between 

d-(\ogn)W and 0+(log n)1* ... (3.2) 
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Now note that there exists a nQ such that for all n > ft0 

{\6c-0\ < ft-1/2 (logft)1'*} 
=> 

{d-n~1/2 log ft < ?c-en ^ fl-ftr1'2 (log ft)1'* 

and 

0+n-v* (log ft)i/3 < $e+en < 0+ft-1'2 log ft} 
... (3.3) 

In view of (2.1) definition of ?, (3.1) and (3.3) we have for all n > nQ 

on Dn, 

Wn(V? 0-9)) = 0 and the set {h : Wn(h) = 0} is bounded. 

Thus for all ft > ft0 on Dn9 

nwn{.))<v?(o-0)<w.(.?. ... (3.4) 

Note that continuity of ?Z7!?!Ta (w.p.l [W(.)]) follows from continuity of 

Tx and T2 ; using continuity of T1?T2 along with (i) and. (ii) we have 

T^W^-T^W^-Zo. ... (3.5) 

Proof of the theorem is now completed by using (3.1), (3.4). (3.5) and the 
w 

fact T2(Wn(.)) ~> Y. 

It may be noted that the rescaling technique used above is due to Prakasa 

Rao (1968, 1986). 

Note that the conditions of Theorem 3.1 are in terms of Wn(.) ; Theorem 

3.2 below gives conditions on Xn(.) which ensure condition (i) above. 

Theorem 3.2. Let for some e > 0, as a stochastic process on C[d?2e, 

d+2e\ 

V?(Xn(.)-X(.))^G(.) 

where 0(.) is a stochastic process on C[d?2e9 0+2e] and X(.)e C[d?2e, 6+2e] 

is such that 

(i) X(t) is non-random 

(ii) X(d)~o 

(iii) right and left derivatives of X{t) at 0, X{6+) and X(6?) respec 

tively, exist. 

Then hypothesis (i) of Theorem 3.1 holds with 

Wih) = h X{6-)+0{d) if h < 0 

= hX(d+)+0(6) ?/A>0. 
A 2-19 
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Proof. Let 

Yn(.) 
= n (Xn(.)-X(.)) 

and WXn(.) be the process obtained by rescaling Yn(.) at d (see (2.1). Note 

that, using tightness of Yn(.), given h,ij>0 and e > 0 we can get w0 such 

P( I WXn(h)~ WXn(0) \>e)<VVn>n0 

i.e. Tfln(?)-PFln(0)^0. 

Now note that 

^iJO) = Fn(0)->G(0) 

Thus WXn(h)% 0(d) for every fixed h. 

Convergence of finite dimensional distributions of WXn(.) (as a process in 

C[?j, j]) can now easily be established ; its tightness follows easily by using 

tightness of Yn(.). Thus writing 

Gx(.) 
= 

6?(0)w.p.l 

we have, as a process in C(?oo, oo). 

WXn(.)^Ox(.). 
... (3.7) 

Now note that 

WXn(h) = 
Wn(h)-XXn(h) 

where Wn(h) is as in (2.1) and 

Xln(h) = n1'*X(d+n~v*h) if |A| < log n 

= rc1/2 X(0+rr-1/2 log?*) if A > log n 

= 
n1^X(d-n-1^ log?) if A > -log w. 

Let 

Z1(i) = *I(9+) ifA>0 

= ??(0-) ifA<0. 

It is easy to see that for a fixed j > 0 

sup | Xln(A)?XX(A) | -> 0 as w-> oo 

and weak convergence of Wn(.) as claimed in the theorem follows. 

Corollary 3.1. Let the hypothesis of Theorem 3.2 hold and further let 0(d) 

be a normal r.v. with mean zero and variance <r2(d) > 0 and let X(d+) and X(d?) 
be both nonzero and of the same sign. Then the hypothesis of Theorem 3.1 hold 

and hence its conclusion with 

P(F < i) = <D(i|X(0-)|/<r(0)) for t < 0 

= ?(t\X(d+)\l<r(d))for i>0 
where O is standard normal d f. 
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Proof. First we show that (ii) of Theorem 3.1 holds. 

Let X(6+) > 0 (and hence X(6-) > 0) If (at a w) 0(6) > 0 then 

0(d) 
X(9-) 

Using similar argumen 

X(0-) 

Wn(h) 
= 0 has a unique solution namely h = -?i_i_ hence T (at such a w) is 

equal to ? ^ ' . Using similar arguments, we have 

0(d) Y = - ^JU- if 0(6) X(d~) > 0 
X(0-) 

K 

G{d) if O(6)X(6+)^0 
x(d+) 

Thus (ii) of Theorem 3.1 holds and also P(Y < t) is as claimed. 

Now note that a sample path (at a w) of W(h) is a line cutting X?axis at 

Y(o>). Let / e G(?oo9 oo) be such a line and let {fn} be a sequence in C(?oo, oo) 

converging to/ (in the topology of u.c.c.) ; it is easy to see that 

Ti(fn)-+ Ti(f) as ft-> oo for * = 1,2 

Thus (iii) of Theorem 3.1 holds. 

Given a consistent estimate 6X of 6 and set up of Theorem 3.2, the following 
lemma shows how to get 6C satisfying (2.2). 

Lemma 3.1. Let the hypothesis of Theorem 3.2 hold and further let X(t) 

be monotone in a neighbourhood of 6 and X(d+) and X(6?) be both nonzero. 

Then, given a consistent estimate u? of 6 we can get a estimate 6C satisfying (2.2). 

Proof. Let ?c be defined as below 

6C 
= solution of Xn(t) 

= 0 nearest to 6X if Xn(t) 
= 0 for at least one t 

= 
ut otherwise. 

Fix a e > 0 such that (3.1) holds and assume that X(t) is non-increasing 

in [0? de, 0+3 e] so that X(6+) and X(6? ) are both negative. 

UsingTTn(.)A W(.) it is easy to see that for given r?1 > 0 and r?2 > 0 

3 K > 0 and n0 such that for all n > n0 

P 
{ inf Wn(h) < -w sup Wn(h) >^\< 1 -V2 ... (3.8) 

Define B%n for i = 1, 2, 3 and 4 as below 

Bln 
= 

{Xn(?) changes sign at least once in 

[?-ft-1/a log n9 d+n-w log n% 

B*n - {*-? < ^1 < ?+?}, 
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BSn = 
{ inf Xn(t) > o) and 1 

[6?3e, 6?n-V2 (log)1'3] 
J 

P4n={ sup Xn(t)<0} 
^[9-fn-i/2 (log n)V2, 8+3?} 

4 
Note that on Q jB<n we have 

<-i 

\9c-d\<n-1^(\ogn)^. 

Hence it is enough to show that for i = 1, 2, 3 and 4 

P(jB,?)->1. ... (3.9) 

Note that (3.9) can be proved for ? = 1 by using (3.8) and also for i = 2 by 

using the consistency of 6V 

Now note that 

inf ^n(Xn(.)-X(.))^ inf G(.) 
[0-3c, 0] [0-3e, 0] 

henee 

P{ 
M V*(*?(.)-*(.)) > -(log n)V* } 

-? 1 
* 

[6- 3e, 0-n-*/?(log n)1/2] 
> 

and using the decreasing nature of X(.), we have 

P ( Inf V^ *?(*) > \/nX (d-n-v* (log n)1'2) \-? 1 
l[?-3?, ?-n-i/^logn)1/2] 

i 

?(log Ti)1/3. 

Now (3.9) follows easily for i = 3 and using similar arguments also for i = 4. 

Similar arguments applied to y^(X(.) ?Xn(.)) give us (3.9) in the case 

when X(.) is non-decreasing there by completing the proof of the lemma. 

4. Application to m-estimatbs 

One can apply the results of Section 3 to obtain the asymptotic distri 

bution of itf-estimates. In this regard refer to Boos and Serfling (1980) and 

notations used there. The following theorem is in the spirit of their Theorem 

3.2 and can be proved easily using the results of Section 3. 

Theorem 4.1. Let (i)?(v) below hold. 

(i) \jr(x, t) and ?F(t) are continuous functions of t for t in a neighbourhood 
of t0 (here ?F(t) = J f(x, t) dF(x) and ?F(tQ) = 0) 
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(ii) J \Jr2(x, t) dF(x) < oo for all t in a neighbourhood of t0. 

(iii) A/?(?), as a function of t, is monotone in a neighbourhood of t0 and 

?'F(tQ+) and \'F(tQ~) are nonzero. 
w 

(iv) For same e > 0, as a stochastic process on G[t0?e, tQ+e]9 Yn(t)?> G(t) 

where 

rn(t) = i ? mxt, t)-xP(t)), 
Vn <=i 

(?) A (TJ = 0 and Tn$> t0. n 
Then 

w 

x'n(Tn-t0)-* Y (4.1) 

where 

P(Y<y) = <% |\'F(t0-) | /<r(f0, F)) for y < 0 

= <% I A*(*b+) I M^o. ^)) for y > 0 

and 

o-2(i0, J) = 
J ̂  (a?, g^(z)-A|(g. 

Remark 2. Conditions needed for Theorem 3.2 of Boos and Serfling 

(1980) and those needed for Theorem 4.1 above are not comparable. 

Remark 3. If, instead of (v) of Theorem 4.1, we are given a consistent 

estimate of t0 then using Lemma 3.1 one can get a Tn such that 
P(Xp (Tn) 

= 0)-> 1 and (4.1) holds for Tn. 

Remark 4. Let Fn denote the continuous version of empirical d.f. and let 

for 0 <p < 1, ?jp and {?p denote, respectively solutions of F(x) 
? 

p and 

Fn(x) 
= p. If F is continuous in a neighbourhood of ?p and ^'(^4-) and 

Ff(Hp?) are nonzero then using Theorem 4.1 we get asymptotic distribution 

of ?y. 
5. One-step ^-estimates 

In the set up of if-estimation, given a y;n- consistent estimate of t0 one 

can define a one-step M -estimate of t0 and obtain its asymptotic distribution 

(see Serfling, 1980, Chapter 7), Bickel (1975) and Welsh (1988)). One-step 

procedure can also be developed for the equation (1.2). 

Let the conditions of Theorem 3.2 hold and further let X(t) be continuously 

differentiable at 6 with X(6) ^ 0. 

Let ?1 be such that 

V*<*i-*) 
= 

0,(1). ... (6.2) 
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Define a one-step estimate 02 of d by 

O = 
XW(01)+(01-*1)?(*1). 

Note that p 

V?(xJx)-X(6x))+x/?(62^d)?(d)->o. ... (5.3) 

Using (3.7) we have for every K > 0, 

w 

s^p WXn(h)-> sup Ox(h) = 0(d) 

and w 
inf TFln(A)-> inf Gx(.) = 0(d). 

l-K, E] [-K, K] 

Hence using (5.2) we have 

vmxjj-xtf^Gid). 
Now using (5.3) we get w 

V?(62-6)->0(d)l(-X(d)). 
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