Base station placement on boundary of a convex polygon™

Sasanka Roy ™ I Debabrata Bardhan®, Sandip Das*-*

Aara Consultancy Services, Pune 411 013, India
Y87 Logic fndia Pre Led. Kolkata 700 0%, fndia
“ndian Statistical Instinwe, Kollata 700 108 fadia

Abstract

Let P be a polvgonal region which is forbidden for placing a base station in the context of mobile communication. Our objective is to place
one base station at any point on the boundary of P and assign a range such that every point in the region is covered by that base station and the
range assigned to that base station for covering the region is minimum among all such possible choices of base stations. Here we consider the
forbidden region P as convex and base station can be placed on the boundary of the region. We present optimum linear time algorithm for that
problem. In addition, we propose a linear time algorithm for placing a pair of base stations on a specified side of the boundary such that the range
assigned to those base stations in order to cover the region is minimum among all such possible choices of a pair of base stations on that side.

Keyvwards: Algorithm: Wireless network: Farthest paint Vomnoi disgmm: Computational geometry

1. Introduction

Sometimes fixing the location of the base station becomes
difficult if the region is a huge water body, or a dense forest
or some other prohibited zone. However, we need o provide
mobile communicaton service mside that region. In order o
minimize the power requirement (or effectively the range) of
the base stations, we have Lo place the base stations in some
approprate locations on the boundary of that region. For the
sake of simplicity, we consider that the given region 18 convex.
Here the objective is o locate the position of base station(s)
with some additional constraints such that every point inside
that polygon 15 covered by these base station(s). In other words,
every point inside that polygon is within the range of at least
onge base station and the maximum among the ranges of these
base stations is minimized. We will consider the following two
problems in the context of placing base stations on the boundary
of a polygonal region.

Problem P 1: Locate a point 2 on the boundary of the polygon
F such that the maximum among the distances from 2 to all
the points mside the polygon P is minmmized.

Problem P2: Identify two points 7 and & on a given edge ¢
of the polygzon P and a real number r such that every point x
inside the polygon P is covered by at least one of the circles
centered at 7 or & of radius # and the valoe of r is minimum for
such chotees of 7 and 4.

In Section 2, we address the problem P oand propose alinear
time algorithm for computing the location 2 on the boundary of
the polygon P. In Section 3, a linear tme algorithm for problem
P2 s proposed.

2. Problem P1

Euclidean 1-center problem is a well-known problem which
has a long history. Here the problem s w0 find the smallest
circle that encloses a given set of p pomts. In the standard
l-center problem, there s no mestnetion on placement of the
center of that cirele. Shamos and Hoey [13], and Preparata
[12] initially proposed different n logn) time algonthms
which are a considerable improvement over f}{ﬂz} solution
proposed in [7]. Lee [10] proposed the farthest point Voronoi
diagram structure and vsing that structure, the 1-center problem
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can be solved in Qn logn) time. Finally Megiddo [11] found
an optimal {n) tme algorithm for solving this problem using
prune-and-search technigue.

While much has been done on such unconstrained version
of the classical problem, littke has been done in constrained
version. Some mteresting resulls were provided by Megiddo
[11] and Hurtado et al. [8]. Megiddo in [11] studied the case
where the center of the smallest enclosing circle must lie on a
given straight line. Hurtado et al. [8] used linear programming
to provide an G{r 4+ m) time algorithm for finding minimum
enclosing circle with its center satisfying m lincar constraints.

We will address problem F1 owith a different type of con-
strwint. Instead of placing the center inside a given convex
region, we consider the center on the boundary of the given
convex polygon, and the objective s to cover the entire region
inside the polygon. A similar problem was first addressed by
Bose and Towssaint [53], where the center of the minimum en-
closing circle lies on the boundary of a convex polygon of size
noand the objective 15 W cover 4 set of m opoints which may
not lie on or inside the polygon. An O((n + m)login +m))
time algorthm for that problem was also presented in that pa-
per. Here we derive some imteresting geometne charactenza-
tions and propose an Q(n) tme algorithm for problem P11 that
avoids the use of linear programming technigues.

Let the vertices of the convex polygon Pbe {vg. v, ... Up—1}
in anticlockwise order. We will use g to denote the edge
(vj, vjep) of P. If % denotes the mimmum radios circle en-
closing P whose center 2 is on the boundary of P, then € must
satisfy the following simple but interesting observations.

Observation 1. The circle © must pass through at least one
vertex af the polvgon P.

Observation 2. Let e be the edge of the polvgon P that containg
the point o If the circle € passes through exactly one vertex v
af polvgon P, then the line 03 iy perpendicular to the edge ¢ at
[roint o,

Let us consider the farthest point Voronon diagram ¥ (F) of
the vertices {ug, vy, ... Up—1 } of the polygon P. It partitions the
plane into regions, #(vo). #(v ), #vz)d, oo, #vy-1 ), such
that for any point p € #{v; ), dip, v;) zdip, v) for all v €
P, where di...) denotes the Euclidean distance between a pair
of points. From Observation 1, we can conclude that if v; is
on boundary of % then w1 farthest vertex from o and hence
o must be in (v, ). Sometimes the circle 6 may pass through
more than one vertex of the polygon P, and in thal case we
have the following observation.

Observation 3. [f the circle € passes through two vertices af
polvgon P, then o must be at the intersection point of an edge of

¥ P with an edge of the polvgon P. Moreaver, if '€ is passing
through move than twe vertices of polvgon P, then o coincides
with a vertex af ¥ (F).

From the above observations, we can conclude the following
lemma.

Riv,)

Riv,) Riv

Riv,)
Riv,)

Fig. 1. Illustrating the proof of Lemma 2.

Lemma L If the center o of the circle '€ lies on an edge e of
the polvgon P, then o must coincide with either the perpendic-
wlar pmjection af some vertex af P on the edge e, or with the
intersection point of an edge of ¥ P) and the edge e af P.

Proof. Lemma follows from Observations 2 and 3. O

We consider each edge ¢ of P, and locale the vertices of P
whose projection on e lies inside the edge segment e We use
A o denote the set of these points on ¢ which are obtamed by
these projections. Note that, if a point § € 3 is the projection
of a vertex v on an edge of Pand § € #{v), then the smallest
enclosing circle of P with center at § passes through v, So, we
consider only those members in 2 that lie in the farthest point
Voronot region of the comesponding vertex of P. Each element
fi £ 4 is attached with a vertex v such that § £ #(v). In Fg. 1,
the projection of the vertex v on the edge (v3, vq) 15 the only
member in 2 that 15 being considered.

In order o compute the smallest enclosing circle with center
on the boundary of P and which passes through two vertices of
P, we need to compute the set of points .o that are generated
due 1o the intersections of the edges of ¥7(FP) with the edges of
the polygzon P. Each element i € ./ 15 attached with a pair of
vertices (v, v') of Psuch that  is the point of intersection of the
boundary of F and the Voronoi edge which cormespond to the
bisector of the line segment [v, v'] and v° appears afer v along
the boundary of P in anticlockwise order. The members in set .o
partition the boundary of polygon into a set of polygonal chains.
Each of these chains must lie inside a single Yoronoi region,
and it 15 formed by a sequence of polygonal edges bounded by
a pair of consecutive members of set .o, Let us denote the sel
of these polygonal chains as 200 Py In Fig. Long.og, ..., 3 are
the elements of .« and the chains gy, by, ..., Wy are in 200 P).

The computation of the sets o and 4 using the farthest
point Voronol diagram needs Of{nlogn) tme. Although the
farthest point Voronoi diagram for the vertices of a convex
polygon can be computed in linear time [1], computation of
all the intersection points of the Voronot edges with polygonal
boundary of polygon P needs Oinlogn) time (as stated by
Bose and Toussaint [3]).
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Fig. 2. lllustrating the proof of Lemma 3.

We present a simple O{n) tme algorithm for finding the set
o and . This avoids the computation of the farthest point
Voronot diagram. But, we need to study the properties of the
farthest point Voronoi diagram of the vertices of a convex poly-
gon, which will help in the formulation of our algorithm.

Lemma 2. Each cell of ¥ (P) is an unbounded convex region.

Proof. Let b be the perpendicular bisector of line segment
[vj, vg] that separates #(v ;) and 2 (vg). Note that, #(v; ) must
lic in the side opposite o v; with respect to the line b Sim-
tlarly it can be shown that, v; lies in the intersection of all
the half planes defined by the lines on the boundary of #(v;).
Thus, #{v;) is an unbounded cell. Again, #(v;) 15 convex
due to the fact that it i the intersection region of a set of
half-planes. [

Lemma 3. Let e be an edge of the polvgon P. The perpendic-
wlar bisector af e must define one of the edges of the boundary
af a Vionoi cell of ¥ (P). Furthermaore, this boundary is a
falf-line.

Prool. Let! be the perpendicular bisector of an edge ¢ = (1, v)
of P. The line [ intersects € at a point w. If we move along the
ling ! from w on the direction toward the intenor of the polygon
then we can locate a point z on line [ such that the cirele centered
at z with radius equal to diz, n) encloses all other vertices of
P. Hence, the portion of [ from z wward the other side of w
is a half line, and it defines Voronoi edge separating #(u ) and
#(v) (see Fig. 2). O

Lemma 4. [f the perpendicular bisectors of a pair of adfacent
edgese; = (vi—y, wand eip) = (vj, vix 1) ofa convex polvgon
P intersect outside P, thenP N # () = 0.

Prool. Let /) and {3 be the perpendicular bisectors of ; and
e+ respectively and they intersect at a point g outside P. The
Voronot cells 2#(v;— ) and #(1;) are in the two different half

Fig. 3. llustrating the pmoof of Lemma 4.

planes defined by the line &y Similady, the Voronm cells 2#(v; )
and # (v <) are in the two different hall’ planes defined by the
ling /7. The Voronoi cell # (v;) 1% in the common region of the
aforesaid two half planes as shown in Fig. 3, which is outside
the polygon P. [

From the above kemma, we can conclude that the intersection
of a Voronoi cell with the boundary of P is a simple contigu-
ous chain and hence the cardinality of the set o is less than
or equal to the number of vertices in P. Let wg, uy, ..., Hy
be the points in set o and they are in anticlockwise order
on the boundary of the polygon P. As mentioned earlier, the
members in .o define the set of polygonal chains %9(P). Let

G(P) = {g. try. .-, g1}, where the chain W, is bounded
by the points w; and wieq. Let o € (y)), where vp €
{vg. vp,oony Uyg—1 }. The farthest neighbor of all the vertices in

iy (f exists) is vy, We will use f(v) to denote the farthest
neighbor of vertex v, v € P.If v € W, then flv) = u;.
We would also introduce a new function index(), where
fn.ﬁ‘fr{u;} = j whenever u; = v;. Here in Fig. 1, fndf.r{u"]},
index{v)), index(vy) and index{vy) are 4, 0, 1 and 3, respec-
tively. The following lemma demonstrates the armngement of
Voronoi cells along the boundary of the polygon.

Lemma 5. [f index(v,) = min{index(vy), index(v}),....
index(uy_ )}, then index(vy) <= index(v,. ) = --- =
index(u;,_,) < index(uy) < --- < index(v,_ ).

Proof. Two adjacent polygonal chains . and .. meet al
point n, .. which 1s on the perpendicular bisector (say ) of
the line segment joining the vertices v), v, € P. The vertex
v, (resp. v, ) and the polygonal chain , (resp. ) lie in
different sides of the line [ as shown in Fig. 4. So, a circle
C centered at wyoq with radius & (2. v,) passes through v)
and v, . and contains the polygon P. As the vertex v, is on
anticlockwise direction of u;, and the index of uj, 15 the least
among all the indices of v (07 < k), we have index(v)) =
index(v, ).

Mext, we prove the remaining part of the result. Note that,
any circle with center on the b{mndﬂ of P andj{}nwining P
does not intersect the circular are u) u;_l where v; uj._.l denotes
the arc from v, 0 v, ., on C in anticlockwise direction (see
Fig. 4). If index(v,_. ) — index{v;) = 1, then for any integer
f € lindex(v)). index(v,_ )], there does not exist a point on
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Fig. 4. Ilustrating the proof of Lemma 5.

boundary of polygon P from which vy s farthest among all
vertices of polygon P. Therefore, r-.l'!dl.'.l.'{l.':l.}l = r'ndf.l.‘{u;__l}l for
al j=0,%....r=1r42,..., k — 1. Hence, the kemma
follows. [

2.0, Algorithm

We first compute two arrays .of and #. One of the elements
from ./ or & will be the center of the maximum enclosing
circle of P

Algorithm. Computation-of-Array-.o/

Input: Polygon P with a set of n vertices.
Output: The aray = generated in anticlockwise order.

Procedure: We traverse the vertices of P in anticlockwise
omder. If for two consecutive vertices vy and vy, flw) #
Flupep ), then we compute the nys” (the members n o)
that e on edge e; = (v;., vy ) as follows:

Let v, = flv;) and vg = flu41).
(* For every pair of vertices vj and vy with y<j =
i = 4, their perpendicular bisector interseets g; *)
Set j =7and j" =j+ 1.
Repeat the following steps unnil j' = 6

Step 1 Draw the perpendicular bisector of vy and vy, and
compule iLs intersection point o,

Step 20 IF woappears o the right (toward anticlockwise direc-
tion) of the last element of array o,
then add n in the amray . with the pair of vertices
(v, u_',--,'l.
Set j = and "= j'+ 1.

Step 30 If w appears to the left (toward clockwise direction) of
the last element of amay oF, then
(* the region #(v ;) does not intersect the boundary of
F*)
delete the last element of ' € .o,
If the pair of vertices attached o 0’ is (vg, vy ) where
il = i, thenset j =1
(* j will never go beyond 7, because (v, ) inlersects
¥y,

Algorthm. Compuiation-of-Array-#
Input: The polygon P and the army =7
Output: The array # generated in anticlockwise order.

Procedure: Traverse the amay oF o extruct the chains
(W i=1,2,..., k}. Each iy is attached with the corre-
sponding v
Foreachi=1,2,....k do

For each edgefedge-segment e € ) do
Draw the perpendicular projection of v/ on e. Let it be
u.

If w lies inside e, then add it in # with the vertex v/,

Lemma 6. The elements aof set oF and 3 can be located in
CMn) time.

Proof. We use the monotone matrix searching technigue
W compute the farthest neighbor  flu) for every vertex
v of the convex polygon P in Q{n) time [3]. Note that,
the wvertex v; lies in Voronon cell corresponding to vertex
Flui) and the vertices flwp), flnd..... flug—) are in an-
iclockwise order, and the chains g ... fp_y are also
i anticlockwise order. There may exist some Voronor cell
#{v) that does not contain any vertex of P IF in addition,
P rosi(u) £ W, then the chain in the cell #(v) is a segment
of an edge of P, and that segment 15 bounded by two con-
secutive members in . If v, = flv) and v = flyo),
then P Moa#{vg) is either emply or a segment of edge ¢ for
ewch i=7y+1,..., d — 1. Each boundary of those segments
is defined by the point of inkersection between the edge e
and the perpendicular bisector of the joining line segment of
two vertices say, [vj . vyl where p< f| < j» <4, Those per-
pendicular bisectors are the boundanes of the Voronoin cells
A, Rluvpa )., #(vg). We identify these members of .o
{on e;) by observing the boundary of the Voronot cell corre-
sponding 0 vertices vy, Uss, ..., U—1 in that order. Step 3
indicates the case where the perpendicular bisectors of seg-
ments [vg.vy] and [vg, vp] intersect outside polygon P oand
hence from Lemma 4 P 70 oa#(v;) is emply and therefore the
newly enumerated u appears o the left of the last element of
array . Note that, in case #{vg) Ney =0 #up)Ne £
and R(v;)Neg =Wfor j=04+1,042,..., "= 1. then
the separator w (€ ;). separating segments #{vg) Ne and
#{vp ) Mey, 15 the intersection point of g with the perpendic-
ular bisector of segment [vg, vy:]. We execute Steps 1-3 for
cach of the n vertices of P, and each iteration produces an u
in .. In addition, for the deletion of each element in .o (in
Step 3) we execute Steps 1-3 once. If the final length of o
s & n —k elements of o will be deleted. Thus, the result
follows. O

Now, we are in position o present the algorithm for identify-
ing optimum location of the center of the minimum enclosing
circle of P on boundary of the P.
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Algorithm Problem_F1{F)
Input: Polygon Powith vertex set of n vertices.

Ouitput: The point = on boundary of P.

Step 1: Compute the set «f = {ug. g, ...} using algorithm
Computation-af-Arvay-=f.
Assign dy, = 00.
For cach u; € o do
(* Let v; be the one of the farthest neighbors of u;,
and 15 attached to u; )
If d (rej, u}}l < dyig. then assign o = ; and dyg, =
dlu;, vy).

Step 2: Compute the set 3 = {wyg, wy. ...} wsing algorithm
Computation-of-Arvay-34.
For each wy & 3 do
(* Let v; be the vertex attached to wy; #)
If diwy, vj) < dyiy, then set dyjy = d{w;, v;), and
set & = wj.

We now have the following theorem stating the time com-

plexity of our proposed algorithm for problem PL

Theorem 1. Algorithm Problem_P 1{ Py computes the location
% in n) time.

3. Problem P2

Here we consider other variation of this problem. Instead
of placing one center on the boundary, we place two base
stations in order o cover the region. Given a set 5, of n
points, the 2-center problem for § 15 1o cover § by two closed
disks whose radii are as small as possible. In [14], Shanr
presents a near-linear time algorithm running in @(n log” n)
time. Currently best algorithm for its solution is proposed by
Chan [6]. He suggested a deterministic algorithm that runs
in O(n log® niloglog n)?) and a randomized algorithm that
runs in 2 (n log® n) time with high probahility. A varation of
this problem is the discrete rwo-center problem that finds two
closed disks whose union cover the point set § and whose cen-
ters are at points of S, This problem is solved in € (n?? log” n)
tme by Agarwal et al. [4]. Recently, Kim et al. [9] solve both
of the standard and discrete two-center problem for a set of
points that are in convex positions in O(n IugJ' nloglogn)
and Q(n log” n) time, respectively. A detail review about this
problem cian be found in the paper by Shin et al. [15].

In this section, we consider a different set of constraints while
placing two circles for covenng the convex polygonal region
P. We consider the case, where only one edge of P is available
for placing base stations. The problem in general form is hard
o solve. The problem of computing a single constrained circle
& of minimum radius which covers P, can be computed in
(3n) time by considering the ;5" which share the edge e
The procedure 1s very much similar to that of Problem P1. Our
objective to compute two constrained equal cireles for covering
the entire region P with minimum radius. We propose an O'{n )
time algorithm for this problem.

Without loss of generality, we may assume that the given
cdze e hies on the x-axis, it joins the vertices vy and vy, and

Fig. 5. Mustrating the proof of Ohservation 4.

xl{vp) = x{vy). We use the term constrained cimcle to denote a
circle whose center hies on e, Let %6 and %> be two constrained
equal circles of minimum radius that cover P. Let 2 and § be
the centers of % and %> respectively, and x(2) = x(). Now,
we have the following simple observations.

Observation 4. If v ix the vertex of P such that div, vy) =
Max{d (v, wilx{vi) x(w)}. and v is the vertex such
that div', v)) = Max{d{vi. v)|x{y)Zx(v)}. then the ra-
dins of each circle € and €7 is greater than o equal to
max{d (v, vg), div', 1)) (see Fig. 5).

Observation 5. If a vertex v is inside €| but not inside €5 and
a vertex v is inside €2 but not inside %, then x{v) < x(v").

MNote that, the radius of % (the constrained circle of minimum
radius enclosing Py is greater than or equal to the maximum
among the radii of % and ;. If € passes through only one
vertex of P, then its radius s exactly equal to the maximum
radius among the cicles % and %7, This situabon can be
handled in linear tme as mentioned for the problem P1. From
now onwards, we assume that the circles % and €7 are smaller
than the cicle .

Let vy = max{v; € %) and wp = min;{w; ¢ %2}. The
vertiees {vg, Usp—1. Up—2. .. .. Ups1 } are allin ') and the vertces
{wry, Wy ey vpr—1} are all in %62, From Observation 5, we can
conclude that x (v ) = a{ug). We first compute two constrained
circles which cover the vertices {w, vp—1, Vp—2, ... Vs } and
E T L vyt mespectvely. These help m computing )
and 2.

3.1 Algorithm

We will use Py(s) to denote the convex polygon with ver-
tees {ug, Up—1. Up—2, ..., Ug}, where s may assume values

On—1n-—2 ..., 1. Similarly, P2(s) denotes the convex
polygon with vertices {vp.va, ..., vy b, where s may assume

values 1,2, ....n—2,n— 1,00
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Fig. & llustrating the proof of Lemma 7.

Lemma 7. Let®™ and " be two minimum radius constrained
circles enclosing the vertices af Pa(s) and P2(s") respectively.

1. ifs" = s then the radius of € is less than or equal to the
radius af €F*.

2. Ifs" = 5 then the x-coondinate of the center of €™ is greater
than or equal to the x-coordinate af the center of €%,

3. Suppose both the civcles pass thiough exactly two vertices of

the polygon P and &' = 5 If €% passes through the vertices
v, and vp with a < b, and 6** passes through the vertices
vy and vy with z < w, then z5a <bsw.

Proof. Suppose the radius of the cirele €% is r and it is centered
at a point p on edge e. Since €* encloses up to the vertex vy,
and g is on the left of vy, then x{vg) £ x{p), and also x(v;) <
x(ip)yforall i =5+ 1,542 ..., 5" Since €% encloses the
points in Pa(s) and also the points veep, tyez, oo, Uy we have
r less than or equal to the radivs of €** (see Fg. 6). If r is
strictly less than the radius of €™, then at least one point v
(€ {vgg1, Upga,-. -, v by is outside %* and max}';_‘._hl dip, ;)
is greater than or egual wo the radios of €%, Hence follows the
second staternent of the lemma.

Observe that, €** does not properly contain €%, otherwise
wi can redoce the size of the constrained circle covenng all the
points of P2(s") by moving the center of €** a small amount
toward lefl. Using similar arguments, we can say that the arc
Uzt of €% must be inside €% where ;0 denotes the are
from v, W vp in anticlockwise direction. Hence the kemma
follows. O

Lemma 7 says that, if the minimum radius constrained cirele
" covers the vertices of Piis). and 5 =k + 1, then its center is
either at o« or at the left side of x, where 2 is the center of .
Similary, forany 5" < &' —1, il the minimum radius constrained
circle " encloses the vertices of Pr(s), then its center is either
at fi or at the right side of i, where § is the center of 5.

Again from Lemma 1, we can conclude that the center of
circle €" is either on edge ¢ with y-coordinate x(v;), 1<i<s
or it is at the inersection point of ¢ with an edge of the
farthest point Voronoi diagram of the vertices {vy, va, ... vg}
of Pa(s"). Let w/2(s") = {ug,pvq, 02, ..., iy} be the set of

intersection points of the farthest point Voronoi diagram of
Pyis") with the edge . With each element of «/2(s"), the cor-
responding pair of vertices s attached as in problem P1. The
center of the desired eirele €7 o cover the vertices of Pa(s")
is cither the perpendicular projection of v on e or one of the
members in .of2(57) for which the radius s minimom. Simi-
larly .=/ (5) 18 also computed for the polygon Pys). Therefore
we are interested about the intersection points of ¢ with the
edges of two Farthest point Voronoi diagrams with the vertices
of Pris) and Pa(s") respectively.

Initially while preprocessing the point set, we do not have
any prior information of & and & that determines € and 5.
Initially, we stat with Py(n — 1) = {vg, -1 }. Given .=/ {[)
for the polygon P(f). we incrementally compute ./ (I — 1)
for the polygon Pi{l — 1) by adding the next vertex vp—;. The
same procedure s followed for computing o/ 2(0) for all | =
A T n—1, 0. The following lemma descnbes an important
relationship between %2 (0) and 27200 4 1), computed for Pa(l)
and Pyl 4 1) mespectively.

Lemma 8. Let o/ (0) = {ug. wy.uz. ..., b and xi{ng)=x
() sa(uz)= - - Sx{ug ). After introducing the next vertex
U1, w2 + 1) = {ug. 0,05, ..., u ko and x(wg)<x(u)) <

x(uy) s --- <xlug). Then,

(1) m+12z=r1.
(ii) wg = ng. 0wy =uy. ..., Hi_|= N

Furthermaore, if uy— is generated by the perpendicular bisector
af the line segment [vy vis;] (i, j = O). then the point u; iy
generated due to intersection of edge ¢ and the perpendicular
hisector of line segment [viej, v ].

Prool. Observe that the vertex vy is farthest from any point
in the segment [y, vy] on the edge ¢ among the vertices
(U Uye s uph IF the vertex vy 15 not included in the circle
centered at -y, passing through vy, then there exist a region on
e such that, from any point on that region, the distance of v
s more than that of v In that case, after including the vertex
Vs, ib may happen that the vertex vy is farthest from any
point in the segment [x{wy), (v )] and hence, e N#{(y) = W,
where #(v) represents the Voronon cell for vertex v in the Far-
thest point Voronol diagram of {vy, va, ..., tr+1 }. Henee from
Lemmas 4 and 5, we can conclude that, there exist a vertex v
(1= s <) such that, e N #(v;) £ W and e N #(v,) =¥ for all
a8 =< o=l and u; is the point of intersection between the edge
e and the perpendicular bisector of line segment [ve, v ] As
i,y is generated by the perpendicular bisecior of the line seg-
ment [+ . v ], therefore, s = i + j. Note that, if v,, 15 the

farthest vertex among {vy, vz, ..., yr} from any point on seg-
ment [u;, ;] for 1=S4<r — 1, then Uy, 15 also the farthest
vertex among {vy, vz, ..., U} from any point on segment

[, 00504). O
The same incremental result for .of ((0) 15 as follows:

Lemma 9. Let o/ () = {ug, 1y, w2, ..., ' b, and x(up) =
oudzx(uz) = .. Zx(ugy ). After introducing the next vertex
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1, A1 — 1) = {up, uj, 05, ..., .}, and x(ug) Zx(n)) =
xuy)z .. zx(uy). Then,

() m'+ 1=t
(1) =g M| =M. Mp ) =M,

Furthermaove, ifup ) is genevated by the perpendicular bisector
af the line segment [v;, v;_;] (i, § = 0), then the point u:. iv
generated due to intersection of edge ¢ and the perpendicular
hisector af line segment [vi_;, v;_1].

Lemma W. The total time complexity for computing {.o7 (1),

Il=n—-1,n-2 ..., L} is Oin) time. Another pass of same
time complexity computes {92000, =2,3, ..., n— 1,0}
Prool. We compute o ((n — 1), o/ (n —2), ..., a7 1(1) 1era-

tively considering n vertices of P one at a time. Each iteration
we delete a sequence of 1's from rear end of 27 (0 4 1) for
producing .« (). For each deletion of . in =8 (0 4 1) we me-
compute the intersection of € with the perpendicular bisector of
segment joining vertices vy with a vertex attached with ey (say
u) only once. After the deletion step, the newly enumerated o
appears at the left of the last element of the aray and gener-
ates o (1. Observe that, at most @) elements need to be
deleted for computing {4 (). /=n—-1.n—-2,.._, 1}. Thus
the result follows, O

We now descenbe an terative method for computing two
minimum radii constrained circles %" and %" for covering all
the vertices of P. Initially, we take Pi(s) = {vp, Up—1. ty—2.

coos b where x{vi)=x{w)forall i =n—-1.n—-2,...,: 5,
and Pa(s"y = {1, 2,000, ug b, where x(vi) Z2x{w) forall i =

2.3, ....5 . Let " and " are the minimum radii constrained
circles for L'uluring Pyis) and Ps(s’) respectively. Note that,
Ihuk'cmur 11% " and ‘:C_:’ are vy and vy respectively. Let the mdii
of %" and " are ¢’ and r” respectively. At each iteration we
do the following:

If ¥'zr" and %" and %" do not cover all the vertices of P,
then we execute the following steps to update %" such that it
covers all the vertices of Pals" + 1) ={vp, v, o0, et gt}
Note that, the center of " lies in the region # (v 5 )N e. The
center may be (1) the perpendicular projection of vy one, or
(i1} & member of o/2(s" 4+ 1) which is computed as Ililmi.'s:

Prior to considering the vertex v, ket the circle €7 passes
through the vertex vy, for some 5% <5, If it passes through
more than one vertex, then vgs 15 the rightmost one among
them in the sequence {vy, va,.. ., vy We also have o/2(5%) =
fop. oy, ..., Wy b where i 1% the intersection point of ¢ and the
perpendicular bisector of [v,, vu-1] for some s'~! < s/, We
compute the point of intersection (say o) of ¢ and perpendicular
bisector of (v .. vw- ) for j =0, 1. .. until we have x{n) =
x{iy— ;). Here, u is the desired center of circle € as mentioned
in Case (ii). We get o/2(s" + 1) by emoving all the members
of w#2(5") whose x coordinate is less than x{u), and finally add
win 2"+ 1), =

We set r” = d(u,ups1), where v is the center of 7.
Finally, if the updated " covers some more vertices, namely

T, T T P Uy j. thensets* =5+ 1, ands” = 5"+ j. In
this case, we need not have o compute o/2(s" + 2), of2(s" +
3), .oes Sals + ).

Ifr' < r” and %’ and %" do not cover all the vertices of P,
then we nse .o (5) o compute .o {:.'—I}Z_{mf_i follow the similar
method as described above to update €" such that it covers
all the vertices L}I Pz — 1) ={vg, gy, ey ooy g, te—1}e
After updating €", we compute its radius r'.

While considenng the last uncovered vertex, a typical sit-
uation may arise. Let % and %" be obtained after g iteraive
steps which cover all the vertices of P excepting only one ver-
tex, say v, and their radii are v and r" respectively. Without
loss of generality, assume that r' <", In the g + 1th iteration,
we include v in both €’ and €7 Let the u{}rn:spxmdiﬁng radii
are r* and r** respectively. If r*=r**, then %" is %" with-
out including v, and € is %" after including v. On the other
hand, if r* < r**, then v is included in %". We also need to
exccute one more iteration as follows: let the 6" 1% observed
to pass through ve in the g-th iteration and r* < r**. We in-
clude v+ in %7, and observe its updated radius %, If r* < r",
then %" is set to the updated %" in the g + 2-th iteration (afer
including v,+). Otherwise, € is set o the € obtained in the
g + l-th iteration. After fixing %", the remaining points will be
covered by €.

Theorem 2. Optimum size circles € and €" with centers on
edge ¢ that cover all the vertices of polvgon P can be located
in Cn) time.

Proof. Result follows from above discussion and from Lem-
mata 7, 8 and 10. O

But there is no guarantee that the two circles %" and %" will
cover the entire polygonal region.

Observation 6. I 6" and € together do not cover the polveon
P completely, then there exists exactly one edge €', (¢' &£ ¢),
which is not fully covered by € and € (see Fig. Ta)).

It the situation stated in Observaton 6 does not occur, then
%) =% and €1 = %". Otherwise, the uncovered edge ¢ can
be detected while computing " and ", We now compute the
optimum constramed cireles %) and €2,

Mote that, % and %2 are of same size, and they must in-
tersect at some point, say m, on edge . Let the equation of
the line containing ¢” be v = m - x + ¢. Let vg+ be the ver
tex of P on the boundary of circle %", and having the least
x-coordinate value, whereas v+ be the vertex of P on the
boundary of cirele ", and having the maximum x-coordinate
value among all such vertices. From Lemma 7, we can con-
clude that % passes through either verex vy or some other
vertex o the left side of vy, Similarly, %7 passes through ei-
ther vertex vgs or some other vertex to the nght side of s
Our objective 1 o locate the point = and hence the centers
x and f. The following observation guides us to detect these
puoints.
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¥ o' (y = mxdc) W
L

Fig. 7. llustrting the proof of Observation é.

Observation 7. The point © is the intersection of the perpen-
dicular bisector of the line segment [2, B] with the edee ',

Assume that, the coordinate of 718 (x,, v;) and the coord-
male of 3 15 (xy, 00, From Observation 7, we can say that the
coordinate of f§ is (2x; — 1, 0) (sce Fig. 7(b)). Initially, let
us assume that %) and %2 pass through vgs and ves respec-
tively, whose coordinates are known. As both the circles pass
through 7, and have centers at o and f§ respectively, we can ob-
tain a degree four polynomial equation nvolving x; from the
following constraints: (i) d{vg+, 2) = diz, m), (i) div-, ) =
diff, my, (i) vp = m - xz + ¢, and (iv) xp = 2xp — 1y (e
Fig. 7(b)). Hence we can compute %, f§ and 7 in constant time.
If 2 & #vg+) then ¥ passes through a vertex to the left of
v+ . Without loss of generality, we choose vy, and repeat the
same procedure replacing ve by veo; for i = 1,2, ... untl
o € W{vgep). Similarly, if § & #(v,=)), we apply the same
procedure assuming that €" passes through the vertex ves_j.

Theorem 3. The minimum radii constrained circles 6| and €7
covering the region P can be computed in Q{n) time.

4. Conclusion

In real life, finding the location for placing mobile base sta-
tion avoiding the forbidden region 5 an important problem in
facility locaton. Suppose P be a polygonal region which is for-
bidden in order to place a base station in the context of mobile
communication. Here, we consider the problem of placing one
base station at any point on the boundary of P oand assign a
range such that every point in the region s covered by that base
station and the range assigned to that base station for covenng
the region 15 minimum among all such possible choices of base
stations. Here we consider the forbidden region P oas convex
and base station can be placed on the boundary of the region.
We present optimum linear time algorithm for that problem.
We also consider the placement problem for a pair of base sta-
tions on a specified side of the boundary such that the range
assigned W those base stations in order to cover the region is
minimum among all such possible choices of a pair of base
stations on that side. We also present a linear time algorithm
to solve this problem.
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