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SUMMARY. Various selection procedures are available for selecting the normal pop-
ulation which has the largest mean, when the variances are known and equal. However,
a general comparison of these procedures for all parameter combinations is not available
in the literature. In this paper, we compare two two-stage selection procedures with the
standard one-stage procedure by deriving general algebraic expressions for their efficien-
cies. We obtain necessary and sufficient conditions on the parameters for these efficiencies
to be more than unity. For illustration, we compute the efficiencies for some parameter
choices. Our results will help experimenters to decide which of these procedure will be
appropriate in a particular situation and also assist in choosing the different parameters

required for implementing the procedure in an efficient way.

1. Introduction

The problem of selecting the normal population with the largest popu-
lation mean has received considerable attention over the years. Bechhofer
(1954) proposed a single-stage procedure using the indifference zone ap-
poach. Subsequently, several authors have proposed different procedures for
this problem. Among these are the two-stage procedures of Tamhane and
Bechhofer (1977, 1979), and Miescke and Sher (1980) and some multi-stage
and fully sequential procedures. The question of comparing these procedures
is important in order to recommend to the experimenter the appropriate
method to use in a particular real-life setting.
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Bechhofer and Goldsman (1989) compared some of these procedures and
other fully sequential procedures using Monte Carlo sampling experiments
for some chosen parameter choices. Using numerical estimates of certain
performance characteristics, they assessed the different procedures for the
particular parameter combinations considered by them. However, it seems
that a general comparison of these procedures for all parameter combinations
is not available in the literature.

In this paper, for general parameter combinations, we algebraically com-
pare the above two two-stage procedures and the one-stage procedure by
first obtaining expressions for the efficiencies of the two-stage procedures
compared to the one-stage procedure. Using these expressions, we obtain
necessary and sufficient conditions under which a two-stage procedure is
more efficient than the one-stage procedure. These conditions could be used
by the experimenter to decide which of the above procedures will be suit-
able in a particular situation and also to appropriately choose values for
the constants needed to implement the procedure in an efficient way. For
illustration, the efficiency values actually attained by a two-stage procedure
are computed for certain parameter choices. These show that a two-stage
procedure may be highly efficient compared to the one-stage procedure, de-
pending on the values of the constants. We restrict our study to comparisons
between one-stage and two-stage procedures only and do not consider fully
sequential procedures since, as explained in Bechhofer and Goldsman(1989),
truly sequential experimentation is not a feasible possibility in many real-
life situations and in such cases the one-stage and two-stage procedures play
important roles.

Consider £ > 2 normal populations, denoted by my,---, 7, say, with
unknown means 1, - - -, jty respectively and a common known variance o2.
Let p = (u1,- -, pr). Without loss of generality, let the ordered values of
the p; be denoted by 1 < po < ... < pg—1 < pug. The values of the p; (j =
1,...,k) are unknown and the pairing of the y; with the 7; is unknown. The
objective of the experiment is to select the population associated with pg.
Let PCS(u,P) be the probability of correct selection (PCS) for a procedure
‘P, when the true mean is u. The procedures considered in this paper are
based on the indifference zone approach which requires that for given ¢ and
P*, the probability of correct selection satisfies

PCS(p,P) > P* whenever puj — pip—1 > 0. (1)

The quantities §, P*, 0 < § < oo, 1/k < P* < 1 are constants specified
before the experimentation begins.
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For the sake of completeness, we briefly describe the three selection pro-
cedures under study. For detailed information on these we refer to Bechhofer
and Goldsman(1989) and the cited papers.

Single stage procedure of Bechhofer (1954), (Procedure P1): n independent

observations are taken in a single stage from each m;, and let X;;, i =

1,...,k,j =1,...,n denote the observations from m;. Let Z; = (z;1 +... +

Tin)/n be the k sample means, i = 1,...,k. Let Tp = max{Z1,..., 7}

The population that yielded z() is selected as the one associated with .
It is easy to see that,

g

oo k=l n(x — u; n(r —
%=1

where ® denotes the c.d.f. of the standard normal variate.

Two-stage procedure of Tamhane and Bechhofer (1977, 1979), (Procedure P5):
Implementation of this procedure involves the use of three predetermined
constants, ni,ne, h, where ni,ne are integers and h > 0. The selection is
done in two stages if necessary.

(1)

STAGE 1 : A common number n; of independent observations Ty J=
1,...,n; are taken from my,---, 7, and the k first-stage sample means z; =

Z;il :Jcl(-;-)/nl, i = 1,...,k are computed. Let :EE;}) = max{:ﬁgl),...,:ﬁg)}.

Determine the subset I of {1,---,k} where I = {i | igl) > iﬁ]) —h}, h>0.

Let 77 denote the associated subset of 71, -, m,. If 77 consists of only one
(1)

population, stop sampling and select the population yielding Tpy) as the one
associated with p. Otherwise proceed to stage 2.

STAGE 2 : Take ns additional independent observations (L‘Z(-?), j=1,...,n9

from each population in 7;. Compute the cumulative sample means z; =
(7L :chjl) + 2072 mg))/(nl + ng), for iel. Then select the population that
yields max{z; | iel} as the one associated with puy.

Two-stage procedure of Miescke and Sher (1980), (Procedure P3): Ps3 is iden-

tical with Py except that finally the decision is taken on the basis of only
the second stage mean :J_UZ(-Q) = Z?il xgjz) /n2. The population that yields
max{iz(z) | iel'} is selected as the one associated with pu.

It is clear that Py is always better than Pz, but it is not clear if Ps is
better than P; or not. P3 may be used if for some unforeseen reasons the
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first stage data gets lost. We show later that even in that case, under certain
parameter choices, P3 may perform better than P;.

0 it S*=1

Let S* = cardinality of (I). Define S = { S i §F > 1

Then the sample size required by P; is kn and the total sample size
required by each of Py and P3 is T' = knq + noS.

When the true mean vector is y, let the Average Sample Number (ASN)
for a procedure P be denoted by ASN(P,u). Then, ASN(P1,u) = kn,
ASN (P2, u) = ASN(Ps, ) = kny+noE(S) = km, say, where E(S) denotes
the expectation of S at p.

To compare two procedures at a configuration u, we compare the prob-
abilities of correct selection of these procedures when n,n1,n9 are such that
both procedures have the same ASN. Let PCS(P,u, N) be the PCS at pu
for procedure P with ASN N. Then, as a measure of the efficiency of a
procedure, we can use the following criterion.

DEFINITION 1 The Asymptotic Relative Efficiency (ARE) of procedure
P; with respect to another procedure P; is given by

Y N=oo log(l — PCS(Pj, p, N))

Note that log(1 — PCS(P;, 1, N)),log(1 — PCS(Pj,p, N)) are negative
and so, P; is more efficient than P; if e;; > 1.

In Section 2, we derive algebraic expressions for eo; and es; and ob-
tain conditions on the parameters under which these ARE’s will be strictly
greater than unity. To derive these results, we first obtain expansions for
1 — PCS for these three procedures. In Section 3, we show how the effi-
ciency values may be calculated. The values of e9; are computed for some
parameter choices to illustrate how the efficiency varies with the parameters.

2. Main Results

To derive expressions for eo; and e3;, we need the asymptotic expansions
of the probabilities of correct selection of Py, Py and Ps.

Let a = 71 and b = 2. We first state the expansions as three theorems
below. The proofs of the theorems are given later in this section.

THEOREM 2.1. For given 1 and 0%, asn — oo,

n
log{1 — PCS(p, P1)} = — 5 (e — pe—1)” + o(n).
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THEOREM 2.2. For given p and o2, as m — oo,
log{1 — PCS(u, P3)}

a
(g — i1+ h)%, —

102 LZ(Mk —Mk1)2} + o(m).

== mmax{— 1o

THEOREM 2.3. For given p and o2, as m — oo,

log{1 — PCS(u,P2)}
a+b
402

a
402

= mmax{— (ke — pr—1 + ), — (e —/%1)2} + o(m).

Using Definition 1 and the expansions as given in Theorems 2.1, 2.2 and
2.3, it follows that taking kn = km, the expressions for eo; and e3; are :

altin — L 2
e = min{ (ILEZk _MI;kl_S;L) , (a+ b)} (3)
~ o a(pr — pg—1 + h)?
o { (kb — p—1)? ’b} ' W

From (3) and (4), we may now derive necessary and sufficient conditions
on the proportions a and b for e2; and e3; to be greater than unity.

THEOREM 2.4. Ps is more efficient than Py if and only if

Eh(2p — 2pk—1 + h)

1<b< .
(ke — pr—1 + h)2E(S)

PROOF. From (4), e3; > 1 if and only if

_ 2
a> <M) and b > 1. (6)
p— pg—1+h

However, since ARE’s are calculated when the ASN’s are made equal, we
have n = m and so k = ak + bE(S). Hence, condition (6) is equivalent

2
tok >k (%) + bE(S) and b > 1. Hence, e3; > 1 if and only if

kh(2p, —2pk —1+h)
pk—tk—1+h)2E(S)"

1<b< i Hence the theorem. O

THEOREM 2.5. Py is more efficient than Py if and only if

2
B — BE—1
> ——— ) . 7
¢ <Mk—uk1+h> (7)
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Proor. Clearly

a+b>a+bE(S)/k=[kan+ bnE(S)]/kn = 1.

2
So it follows from (3) that, es; > 1 if and only if a > (%) . Hence

the theorem. O

REMARK 2.1. Theorems 2.5 and 2.6 may be used to determine the
constants of a procedure to be used in a given situation. Depending on the
choice of @ and b, Py or P3 may be more efficient or less efficient than P;.
Clearly, for all p, given h, it will always be possible to choose a satisfying
(7) and thus make P, more efficient. However, given h, it will not be always
possible to choose a and b so that (5) is satisfied.

REMARK 2.2. From (3) and (4) it is clear that eg; > es; for all p and
so, P is always more efficient than P3. So, in our illustration in Section 3,
we only consider P; and Ps.

REMARK 2.3. For a given choice of n,n1,h,d, from (7) it may easily be
checked whether P, is more efficient than P; or not. However, even when
eo1 > 1, to judge how this efficiency varies in different situations, es; needs
to be computed. In Section 3, we show how ey values are computed and
show some illustrative values of es.

To prove Theorems 2.1-2.3, we need the following result which we state
below as Lemma 1. This result can be easily proved using standard tech-
niques of mathematical analysis and so its proof is omitted.

LEMMA 1. Let {fn} be a sequence of real-valued uniformly bounded con-
tinuous functions on R. Assume that f,(x) uniformly converge to f(z) for
each © and f(x) is continuous such that limy_,o f(z) and limg,_,_o f(x)
exists. Then

im { [ @ g@ac) = s ),

n—00 zdR

where ¢ is a continuous probability density function having support on R.

PROOF OF THEOREM 2.1. Writing ¢(z) as the p.d.f. of the standard
normal variate, it follows from (2) that

1-PCS(p,P1) = /OO ll _lﬁ@(w)] ¢ <M> de
=1

—c o

— [ s,
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say, where

[fn [1_H@< )>]f6 nla:,uk)/Za

Hence, by Lemma 1,

Tim {1 - PCS(p, P)Y"™} = ig’n&“éo fu(z),

On simplification, it follows that

i fa()

. =)\ 17 [ )

=L H/ wo2r D N e e B A
Let Aj,, = {(X; > z} and let p, = 1-J[*'[J%__ {_ exp{— 2=ty gy,

Then

pn = P(X; >z for some i) = P(U?;%Ajn).

1

) ) L ) L
Since P(Ak—1,n) < pn < (B —=1)P(Ag—1,n), nhﬂnolop{{ = nlgrolo[P(Ak_l’”)]n' By
Lemma 1,

o n n(u — Ln
lim [P(Ag—1,)]"/" = lim l/ o‘/;w exp{—%fl)z}du] = k(z),

n—0o0 n—0o0

C@mng_1)?

where k(z) =1if 2 < pp_1 and k(z) =e = 202 if > 1.
Hence, from (8), using Lemma 1,

: o 1/n
Jim {1 — POS(p, P1)}

T — 2 )2

Theorem 2.1 follows. O

PROOF OF THEOREM 2.2. Let p1,= Prob[k is not in I], ps, = Prob[(k
is in I) and (:E,(f) not highest in stage 2)],

Then,

1 —PCS(n| Ps) = cipin + c2pon = c3(pin + p2n) 9)
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where c¢1,co, are positive constants bounded away from 0 and oo, ¢z <
max{cy, o}

Let p3, = Prob [(k not in I) and (:I:,(Clz1 highest in stage 1)], and p4,
= Prob [(k in I) and (:E,(f_)l highest in stage 2)]. Then, ps, = capi, and
Pan = C5p2, for some constants cq,c5,1 < ¢q,¢5 < k — 1. Hence, from (9),
for some constant cg,

1—PCS(u| P3) = c6(p3n + pan)-

Clearly, ps, = ¢rProb(z{”,~z} > h) = Prob [Z < = /3% (u, — w1 + B)] ,
where Z is a N(0, 1) variable.
Now using the inequality,

(1/z —1/2°)g(z) < F(z) < g(z)/x, x>0,
where F, g denote respectively the c.d.f and p.d.f of Z, we get,

. 1 a
nlgfolopz*n/zn = exp {—@(Mk — Pk—1+ h)2} :

Following the proof of Theorem 2.1, since ¢; values are bounded away from
0 and oo, it follows after some simplification that

b
pzllén — exp {_E(Mk - Mk_1)2} , as m — o0.
Hence
i _ 1/n
Jim log[1 — PCS(u | Ps3)]
= max) - — (e — pr—1 ), 17 (pg — pk—1
and this proves Theorem 2.2. 0O

PROOF OF THEOREM 2.3. Let p5, = Prob[(k is in I) and (Zy, not highest
in stage 2)] and pg, = psy, + Prob[(k not in ) and (Zy < max{Z;,iel, T})].

So, pen, = Prob [z < max{z;,iel, 7y}] = diProb[(k — 1isin ) and
Tp_ 1= max{(a_ci, iGI,) :%k})]

Hence, proceeding in a similar manner as in the proof of Theorem 2.2,
we can write,

1 —PCS(p | P2) = da[pin + psn] = ds(pin + Pen)



SELECTING NORMAL POPULATION WITH LARGEST MEAN 347

In this case, some computations will show that,

a+b
402

1 ny+no

1/n _
402

(Pon) /™ — exp {— (:Ulc_,ukl)2} = exp {— (,uk_,ukl)z} .

and as before,

a
iy —>exp{ yp z(ﬂk_ﬂk—1+h)2}-

So it follows that,

. . 1/n
Jim_ log{1 — PCS(uu | P2)}

a+b a
— max{— > (e — e—1)% ——Q(Mk—uk1+h)2}-

4o 4o
Hence Theorem 2.3 is proved. O
3. Calculation of ey;.

Given k,u, h and m, n; and ny have to be determined in order to im-
plement P,. This requires computation of E(S) since ng = km — kny/E(S).
An expression for E(S) at the least favourable configuration(LFC) is given
in Lemma 2 below. As shown in Sehr(1988) and Bhandari and Raychaud-
huri (1990), the LFC in this context is the slippage configuration given by
pw=1(0,...,0,0+79) where ¢ is as in (1).

LEMMA 2. Let F(z) and fq(x) denote the c.d.f and p. dfofaN( a, \/—)
variable. Then, for given k and h, at the slippage configuration, E(S) is given
by:

(k — 1) [0 {Ep (z+h) Y2 Fy g (a+h) — {Fy(x—h) Y2 Fy 5 (x—h)] fo(w)da
+ [P0 [{Fy(ath) Yot — {Fy(a—h)} = fo45(x)d

PROOF. Let I iz, p .z (z;) = Lif T —h < 7; < Zpy) and zero otherwise.

Then,

ZI T1— hfl?[h Ti).

Hence, writing Fj(z) and f;(x) to denote the cdf and pdf of z;, i =
L,....,k,

b oo
B(S") = Z/ Plzj < o+ h for all j # i|z; = a)f;(z)dw
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which simplifies to
(=1) [ (Fola+ W) Fasslo + B fo(o)da
[ B+ Y fssw)da).

Now, since S = S* if S* > 1 and S =0if §* =

E(S) = E(S*) — Prob[S* =1]. (10)
But, from definition of S*, Prob[S Z Prob(E;), where E; =
{(@1,...,2x) : ; <2 — h, for all j #4} and the E s are disjoint. Then,
Prob(E / Prob(E;i|z; = ) fi(x)dx

So, after some computations it can be shown that

Prob(s* = 1) = (k= 1) [ {Fo(e = )} Fyus(a — ) fo(a)ds

+ [ B = WY fors(@)d o).
Hence, from (10), the lemma follows.

In a particular situation, using the expression for E(S), for any choice
of ny, E(S) may be calculated from Lemma 2 and hence the corresponding
value of ng may be obtained. Then, for implementing Ps with these values
of ny,n9 and h, e2; may be calculated from (3). Some illustrative values of
e9) for the case kK = 4, m = 50 are given in Table 1.

REMARK. Table 1 illustrates that Py may be less or more efficient than
P1 depending on whether the condition of Theorem 2.6 is satisfied or not.
So, the experimenter may be first guided by Theorem 2.6 to decide which
procedure will be more efficient in a given situation. However, among the
parameter combinations for which Py is more efficient according to Theorem
2.6, Table 1 shows that for given 4, h, m, the actual efficiency first increases
with the first stage sample size and then decreases. So, in a practical situa-
tion, given m, h and d, it is important to do computations using E(S) as in
Table 1 to choose n; for maximising the efficiency. This values of n; may
then be used for implementing the procedure.
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TABLE 1. VALUES OF e2; AT LFC FOR k =4, m = 50
AND SOME CHOICES OF 6,h AND mj.

(5 h 1 €21
0.2 0.35 9 0.91
12 1.66

15 1.50

20 1.30

30 1.16

0.2 0.25 9 0.91
15 1.51

18 1.74

20 1.66

25 1.48

30 1.34

0.2 0.15 20 1.22
24 1.47

30 1.78

32 1.68

0.15 0.15 23 1.84
25 1.96

30 1.70
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