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SUMMARY

In this paper we conduct a comparizon between the B-NN and k-RNN classifica-
tion rules using an extensive monte carlo simulation study. We observe that the
E-RNN rule performs better than the B-NN rule both in small and large sample
CHASCS.
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1 Introduction

Classification and pattern recognition is about assipning labels (or objects) to one of two or
more predefined classes (or categories). Various parametric and nonparametric procedures
are available in the literature for classification and pattern recognition. We will focus our
attention to only nearest neighbor (NN) type classification rules. Nearest neighbor classifi-
cation rules are widely used in statistical pattern recognition and also popular in computer
science, marine science, biological sciences applications, and other areas. Two types of NN
classification rules are (i) distance based nearest neighbor rules and (ii) rank based nearest
neighbor rules. Distance based nearest neighbor rules will be denoted by NN rules and the
rank based nearest neighbor rules will be denoted by RNN rules. Below we describe the
E-NN and E-RNN classification rules.

The —NN Methods: The NN classification rule was first introduced by Fic and
Hodpes (1951). Their &~NN rule & based on the density estimates using distance nearest
neighbors. The rule may be described as follows: Let { X, Xo, ..., Xy Jand {¥7, Y5, ... V0 ]
be training samples from two given populations, m; and ws, respectively. Let 2 be an un-
known observation known to be either from m or m to be correctly classified between m and
. Using a distance function d, rank order the distances of all the observations from Z. For
afixed integer &, the NN rule assigns Z to m; if &y /ny > ks /ne, where &; is the mumber of
observations from m;, (i = 1, 2), among the & = k) + ks observations nearest to Z. Cover and
Hart {1967) proposed a slightly modified version of the above rule and is described as follows:

The Conventional —NN Algorithimn:

This rule assigns Z to the population 7, (i = 1,2), if & = "**{k;}. That i, this rule
assipns £ to m; if the majority of the k nearest neighbors (in a distance sense), of 2 come
from w;, (i = 1, 2). We call this rule the comventional &E-NN classification rule.

Cover and Hart (1967) studied the 1-NN rule and found that the limiting risk, Bp(l), of
this rule, has the following lower and upper bounds, B* < Bp(l) < 2R*(1-R*), where B* iz
the minimum Bayes risk obtained as R* = [min(£, fi (z), &2 f2(z))dz, where & and f; are the
prior probability and the probability density function of the population m;, (i = 1, 2), respec-
tively. Devroye (1981a) imvestigated the &~NN rule and derived the following upper bound on
the asymptotic risk, Bp(k), of the mle, Bp(l) < (14 0) RB*, where a5 = 1_%5‘%3{1 -+ ?::_—"s:"
kodd, B = 5, and a« = 03399 and 5 = (0.9749 are universal constants. This bowund is
the best possible in a certain sense. For other properties and aspects of the conventional
E-NN rule, we refer the reader to Devijver and Kittler {1982), Wagner {1971), Fritz (1975),
Devraye (1981h), and Xiru (1985). It should be pointed out that, as the important reference
by Fix and Hodges (1951) is rather inaccessible, the paper has been reprinted at the end of
the commentary on it by Silverman and Jones (1989).

The k-R-NN Methods: The rank nearest neighbor classification rule was first introduced
by Anderson (1966G). In recent days, R-NN classification rule is gaining more popularity
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in the area of classification and statistical pattern recognition because of its simplicity and
robustness. The b-R-NN classification rule for univariate populations may be described as

follows:

The k-R-NN Algorithm:

Pool the sample observations X,'s, ¥;’s, and Z, and rank them in increasing order; then
count up & observations to the right-hand side of £ and count down & observations to the
left-hand side of Z; (i) if there are more X-neighbors than ¥Y-neighbors among rank nearest
neighbors, classify Z into the X-population my; (i) if there are more ¥-neighbors than X-
neighbors among 2k rank nearest neighbors, classify Z into ¥-population 7y (iii) if there
are exactly & X-peighbors and & ¥V-neighbors, classify 2 into either of the two populations
with probability § each (to break the tie); and if on any side of Z k observations are not
available then nse as many as available.

Daspupta and Lin (1980) investigated the 1-B-NN rule. They derived the asymptotic
risk, Fg(l), of the &-R-NN rule and showed that B* < RBg(l) < 2RE*(1 — R*), where R* is
the minimum Bayes error rate defined earlier. In fact, this asymptotic risk is exactly the
same as that of the 1-NN rule. Bagui and Pal (1995) extended Daspupta and Lins work to
more than two populations and also suggested a 1-R-NN rule for multivariate data. Bapgui
and Vaughn {1998) examined the BR-NN rule for univariate populations and derived an
upper bound on the asymptotic risk, Rg(k), of this rule which is parallel to the upper bound
obtained by Devraye (19581a). Bagui and Vaughn (1998) also noted that this risk converges
to the Bayes risk twice as fast as the conventional &~NN rule. Bapui et al. (2003) proposed
and studied a k-R-NN for multivariate data. In this article we present a wide-ranging monte
carlo simulation comparison between &~NN and &-R-NN classification rules under univariate

populations.

2 Asymptotic Relationship Between tI—-NN Rule and k-
R-NN Rule

Let X} possess a density function f; and V) possess a density function fs. We know that

Z has density either f; or fo. Let N = min({ny, ns). The finite sample probabilities of

misclassification (PMC) of the £-R-NN classification rule are given as follows:
ayallk;ng, na) = Plelassify Z € ma|Z e m) (2.1)
aoy(kiny,ne) = Plelassify 2 € m| 2 € ma). (2.2)

Thus, the total probability of misclassification (TPMC) or the risk of the &-R-NN rule is
given by

Rplking,ne) = Epoqalkyng, na) + Eaoe (kymy, ma). (2.3)
Thus, the asymptotic risk of the BR-NN rule may be written as

Ry = §malk) + Lanlk). (2.4)
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Let i z) denote the asymptotic conditional probahility of classifying # into 7, given Z = =
Viewing Bagui and Vaoghn (1998), 7{z) can be written as

2%
wiz) = Z ( gf; )1ﬁ{;j13§k‘i{;j+é ( 2: )'iliir{::l'l}?k{::l, (2.5)

j=k+1 J

G g fia
where, m;(z) = shenaeE i =12

Thus, the asymptotic PMC’s of the E-R-NN rule & given hy

yalk) =T|im az(k;ng,ne) = lim PlelasifyZ € m|Z € m) = f{l —miz))filz)dz (2.6)

T—00 TE—+30

an (k) = ulim ol frmg ne) = lim PlolassifyZ € my| 2 € ma) = /rr{;jfg{::ld:. (2.7)

—+ 00 e—o0

Using (2.4) to (2.7), the asymptotic TPMC (or risk) of the £-R-NN rule can be expressed

a5

Ra(k) =& f (1— m(2)) fal2)dz + & f a(2) falz)dz

2 2k i+ L[ 2
f‘flfl [Z( ) (2 (2)+ 5 : mt (2)m3(2)]dz (2.8)

=k+1 § ]

2k
+ [anEl Y (2 ) IIH“'(H-;(%)'J:& =)k (2)]dz.
i=k+1 J i fe

For simplicity of notation, writing o for 9;(z), Eg(k) can be re-expressed as

2k " = o
Ra(k) = Eqna(n2 =" + 251 + ( ) Enis (i + k)
1

2k 1 2k
+...+ Erfnt 4+ 2 Egtnk.
k1 2\ &

Theorem 2.1. (Bagui and Vaughn (1998)). The asymptotic risk has the following prop-

erty:

(2.9)

Rp(k) < Ra(k—1), k=23.....

Let Bpik) denote the asymptotic risk £~NN rule. From Cover and Hart (1967), Ep(k)
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can be expressed as

me—1

Ra{m=fflf1{::|[2 ) mmti )+

=0 J m

(2t (z)jdz
) (2.10)
+fapal X | F | dem @3 F e e

j=m+1 N e

where k& = 2m.

Clearly, from (2.8) and (2.10) we note that Bp(k) = RR{%:I for k even. Now from
Theorem 2.1, we may conclude that Bg(k) < R,q{,'z—r:l = Rp(k). Thus, asymptotic risk of
i=R-NN rule is less than that of asymptotic risk of &-NN rule & less than that of asymptotic
risk of &-NN rule.

In this article we present an extensive monte carlo simulation comparion between k-NN
and k-R-NN classification rules.

3 Simulation Methods and Results

The asymptotic properties are not necessarily valid for small sample cases. In this section
we examine the performance of B=R-NN and &NN rules using monte carlo simulation study
in small, moderate, and large sample cases. In order to compare the k-B-NN rule with the
conventional NN rule, random samples of equal size (n = ny = na) were simulated from
pairs of each of the following univariate distribution, namely, normal, lognormal, gamma,
exponential, logistic. Given these samples, (treated as training samples), 1000 random ob-
servations from m and another 1000 observations from ms were simulated and were classified
according to B-R-NN and NN classification rules. The proportion among the 20000 Z=
that were misclassified by the &-R-NN and t-NN rules were computed and displayed in the
following tables. We varied from 10 to 1000 and & from 1 to 6.

The mean separations in Table 1 to 3 increase from 1 to 2 to 3 while the variance in all
cases remains fixed at 1. As mean separation |j; — p;| increases in Table 1 to Table 3, the
error rate drops; as kb incresses, the error rate drops. Both of these trends agree with the
theory. From Table 1, we find that the average error rate of the B-R-NN rule & 0.3647 with
a standard deviation (s.d.) of 0.02510 and the average error rate of the &-NN rule & 0.3801
with a standard deviation (s.d.) of 0.02366. Thus the Z walue of 2679 = 23206 supports the
hypothesis that the error rate for the &-NN rule is sipnificantly larger than the &=R-NN rule
at 1% level of significance. More accurately, since the P-value = 0.00369, thus the exact
level of significance & 0.369%.

From Table 2, we observe that the average error rate of the b-R-NN rule is (.1898 with
a standard deviation (s.d.) of 0.03271 and the average error rate of the k-NN rule & (0.2046
with a standard deviation (s.d.) of 0,03, Thus the Z value of 2.001 > 1.96 supports the
hypothesis that error rate for the &-NN rule is significantly larger than the b-R-NN rule
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Table 1: Average proportion of misclassification by &-R-NN and £-NN rules for the pair
N0, 1) ws. N(1, 1)

ke 1 a ] 4 i) [
n R-INN R-MM R-INN R-MN R-MNN R-INN
=MNN =NN MM =-MN =MNN =-MN

hLi] 0.4145 03007 03835 0.3825 0.3825 0.3682
1.4210 04202 1.366S 0.3615 03755 LARR2

0 04150 03517 03397 03545 03380 03417
0.4140 04235 03430 03602 03480 0.3472

] 04077 03880 03570 003547 (UGESETE (LES6T
11,4060 01.41.30 11,3805 11, 3850 L3510 L3750

100 (L3965 03747 03562 003520 034352 (L3365
1001 05045 06T 03690 03765 03725 0.3TET
S0 0.4042 03737 03555 03585 03500 03470
04085  0.3002  Q.3T80 0.3727 (03615 (0.3502

1000 04070 03675 03482 03487 03387 0.3300

04000 04000 03725 03682 03455 05480
Mia, b)] Marmal disteibution with mean a and varciance b,

Table 2: Average proportion of misclassification by &-R-NN and £-NN rules for the pair
N(0, 1) vs. N(2, 1)

k 1 2 3 4 k) L]
n R-INN R-MMN R-INN R-MN R-MNN R-INN
=NN =NN MM =-MN =-MN =-MN

i Ly 02082 03672 02605 0.176T 0ITET 01TTE
02835  0.BR3S  0.2EH0 0.ZR0 02360 02152
a0 02515 02037 01842 0.1TET 01595 0.1607
11.2400 11,2500 12060 . 2185 (1. 1080 (L1005
5 207 01707 03 016T0 01642 (1645
02145 02002 01740 01720 (L16RS {LLGETD
101 0.2210 0U1BGT 01742 016RE (L1630 (1635
0.21230 0.2145 0.1745 . 1TRS 01705 L1770

S0 02160 01790 0.ATH0 0.1TY 0 01705 016TT
02180 02092 017 0177 01800 0.1790

10K .21497 110355 {1.1852 1. 1780 {11800 LI rarr
0.2185 02230 0.1955 0.18922  (0.1865 (01847
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Table 3: Average proportion of misclassification by &-R-NN and £-NN rules for the pair
N0, 1) vs. N{3, 1)

ke 1 a ] 4 i) L
n R-INN R-MM R-INN R-MN R-MNN R-INN
=MNN =NN MM =-MN =MNN =-MN

1 1.1175 1.01542 .0875 0.0v47 00747 00747
1. 14135 {1.1510 {11250 1. 1270 11305 {11130

a0 1127 00715 00715 00730 40735 0.0730
0107 01235 00715 00707 00715 00725
el N08T2 0073 00727 005 00715 00720

{1LOTES 0.01825  (.0755 {1.0720 1.0715 0.0710
100 L0817 00745 00730 00727 00715 0006R95
(.0°700 00817 00700 0.0757 00715 0.0750
S0 (LOER2 00752 00752 0.07350 Q0737 0.0730

LURNE 5 {10875 1.0700 {1.07355 1.0730 10742
10 008938 0.07a5 00805 00762 00755 00T4AT
(1.0475 [EREEE 1.076D 11,0185 (L0760 0.077T

at 2.5% level of significance. Since the P-value = 00225, the exact level of significance is
2.25%.

From Table 3, we find that the average error rate of the £-R-NN rule is 0.0782 with a
standard deviation (s.d.) of 0.01072 and the average error rate of the k-NN rule is 0.0851
with a standard deviation (s.d.) of 0.02364. Thus the Z walue of 1.595 > 1.282 supports
the hypothesis that error rate for the t-NN rule is significantly larger than the &-R-NN rule
at 10% level of sipnificance. Since the Povalne = 0.05536, thus exact level of significance is
5636

From Thble 4, we find that the average error rate of the k-R-NN rule is 0.1898 with a
standard deviation (s.d.) of 0L03265 and the average error rate of the E-NN rule is 0.1999
with a standard deviation (s.d.) of 0.02731. Thus the Z value of 1.42 > 1.282 supports the
hypothesis that the error rate for the b-NN rule is significantly larger than the &-R-NN rule
at 10% level of significance. Since the Povalue = 00778, the exact level of sipnificance is
T.78%.

From Table 5, we find that the average error rate of the k-R-NN rule is 0.0781 with a
standard deviation (s.d.) of 0.01072 and the average error rate of the E-NN rule is 0.0811
with a standard deviation (s.d.) of 0.01315. Thus the £ = 1.060 with a P-value = 00.14456
(0.10) does not support the hypothesis that error rate for the E-NN rule is significantly
larger than the E-R-NN rule at 10% level of significance. The exact level of significance is

14.456%. In this case, on the average, the &-B-NN rule performed better than the &-NN
rule but not significantly better.
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Table 4: Average proportion of misclassification by B-R-NN and £-NN rules for the pair
LG0, 1) vs. LG(2, 1)

ke 1 a ] 4 i) [
n R-INN R-MM R-INN R-MN R-MNN R-INN
=MNN =NN MM =-MN =MNN =-MN

hLi] 02002 03672 02605 0.176T 0.1T6T 01TTE
L2TES 1.2650 0.2005 1. 1000 0.2005 .17TR2

0 02515 02037 01842 0.ITET (01595 01607

0.2485  0.3505 03080 0.2155  0.1955  (.1835

] (.2m7 01707 0735 01670 01642 (1645

0.2150 02002 0.1745 0.1722 L1645 L1662

100 01.2210 0UIBGT 01782 016RE (L1630 (1635
0.2115 02147 0.1T40 0.1TEO0 01TED 0.1TES

S0 02160 01790 0.aTs0 0.1TY 0 01705 01677
0.2180 0.2082 0.1770 0177 {11800 .17H2

1000 02197 01935 01852 0.1TEO 0 01800 Q.177T

02185 02227 01055 01922 (01865 01847
LiGia, b Logistic distribution with location parameber o and scale parameter b,

Table 5: Average proportion of misclassification by &-R-NN and £-NN rules for the pair
LG(0. 1) vs. LG(3, 1)

k 1 2 3 4 5 L
i R-INN R-MN R-INN R-MN R-MN R-INN
=MNMN =INN =-NN -MN =MN =-NN

10 01175 00842 QOBTS 00747 00747 0.0747
01065 01060 00780 00737 00735 0.0760
20 0.1127 00715 00T1s 00730 00735 0.0730
1.1114) 0.1242 (L0705 0.AITnT 00725 0707
Al 00872 00735 00727 00705 00715 00702
0070 Q08T 00760 0.0TET 00715 0.0712
1041 00807 00745 00TH 00727 00715 0.0R05
(L0 Th0 LIXNES B+ {LThs 11740 00755 L0745

SO0 00882 NOTIZ QOTE2 00730 00737 0.0730
00885  ONOBTT  0OT00 00737 0073 0.0742

W00 00958 0075 00805 00762 0075 0.074T
00075 00082 00760 00802 00760 0.0780
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Table 6: Average proportion of misclassification by B-R-NN and £-NN rules for the pair
LN{0, 1) vs. LN{2, 1)

ke 1 a ] 4 i) L
n R-INN R-MM R-INN R-MN R-MNN R-INN
=MNN =NN MM =-MN =MNN =-MN

1 L1877 117355 1.1735 . 1675 L1675 L1675
{11940 {1.158582 1. 1660 1. 16R2 11725 {1670

a0 1120185 1.1775 01675 {1677 1647 (1657

(120185 (1.31352  0.1600 1. 16010 .1660 0.1662

el 0.1882 01732 0.1672 0.1715 01672 0.1650

11910 0.2005  0.1660 {1. 1702 (L1675  {(.1600

100 0.2135 N.18TS 01702 0. 1602 N.IGET (1665
1.2130 02172 (.1810 1. 15201 L1670 0.1602

S0 12150 1.1847  0.1700 0. 1762 1765 0.1602
012240 0.22(12  (.1875 1. 1885 {11770 (.1765

100 02115 .1852 0.AT6T {.1752 11725  (.1715

0.2185 0.2205 0.1515 1. 1860 L1815 01770
LMia, b) Lognormal with mean s aod varcianee b,

From Table 6, we find that the average error rate of the &RNN rule iz 0.1774 with a
standard deviation (s.d.) of 0.01407 and the average error rate of the &~NN rule is 0.1853
with a standard deviation (s.d.) of 0.01892. Thus the Z value of 2.010 > 1.96 supports the
hypothesis that the error rate for the 5NN rule is significantly larger than the &--RNN rule
at 2.5% level of significance. Since the Povalue = 0.02222, the exact level of significance is
2.222%,.

From Table 7, we find that the averape error rate of the --RNN rule is 0.3447 with a
standard deviation (s.d.) of 0.02412 and the average error rate of the E-NN rule is 0.3597
with a standard deviation (s.d.) of 0.02289. Thus the Z walue of 2.T06 > 2.576 supports
the hypothesis that error rate for the NN rule is significantly larger than the &-RBNN rule
at 0.5% level of significance. Since the P-value = 0.00341, the exact level of significance is
0.341%.

In majority of the cases, E-RBNN rule performed significantly better than NN rule.
From Table 1, 2, 6, and 7, we see that when there i a preater overlap between two popula-
tions the &~RNN rule tends to perform significantly better then the E-NN rule. However,
when the overlap between two populations decreases, the sipnificance level ncreases. This
means both will tend to perform statistically equivalent way. The fact is that there is no
significant difference between the two rules which is more apparent in Table V.

Computational Complexities of the I—RNN and the —NN Rules:
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Table 7: Average proportion of misclassification by &-HBNN and &-NN rules for the pair
EX(0, 1) vs. GA(2, 1)

ke 1 a ] 4 i) L
n =RNN =RMMN =-RINN -RMN =RMNN =RNN
=MNN =NN MM =-MN =MNN =-MN

L1 0.3540 0.3527  0.3512  0.3535 05567 (0.4302

0.3600 03552 03575 03637 05610 04505

a0 0.3mE 03282 03312 03312 05362 0.3422

(.37 03467 03365 0.3415  0.5350 0.3315

] 0.3920 0338 00387 003232 05147 (L3182

(.40 03867 08485 03627 05380 03345

100 NE860 03T 03410 03310 03255 03250
(.3845 03837 03725 0.3665 (035525 0.3445

S0 03740 034097 03397 03202 03277 0.3252
0.3600 03717 03530 03470 05370 0.3425

100 03760 05475 03372 05555 03287 05212

(13605 015710 1.3525 1. 5hR2 {15440 113400

EXia, b] Exponential disteibution with location parameber a and scale parameber b,
GALa, b)) Gamma distribulion with shape parameter a and seale parameter b,

Suppose there are N, N = n; + ne, observations in the training data, then the cost of
finding the rank of Z & equal to logN. On the other hand, for the conventional £-NN rule,
the cost of finding k-neighbors & (N — K)(N — 2)... (N — k) comparisons and distance
caleulations imvolving a cost of operations as each square distance requires 1 subtraction
and 1 multiplication, which is much higher than that of the .-RNN rule.

4 Concluding Remarks

In this investigation we have done an extensive simulation study to compare the E~BNN and
the B-NN rules in univariate cases. We observe that the -RNN rule performs significantly
better than the NN rule in majority of the cases. We also note superior performance of
the k-RNN rule when there is larger overlap between two populations. The -RBNN rule is
based on ranks of X's, ¥'s, and 275, s0 it has better robustness properties. Also, the B-RNN
lessens the burden of caleulating the distances of all obserwations X's and ¥'s from Z as
they are needed for the conventional the E-NN rule. Thus, the computational complexity
for the --RNN rule is much less than the t-NN rule. Users of the 5NN rule may find
the B-RNN rule as a computationally simpler alternative to the NN rule. The &-RNN
rule is particularly useful when the observations are available in terms of their ranks. The
comparison of the £-RNN rule and &NN rule under multivariate data & under investigation
and findings of this will be reported later.
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