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SUMMARY. Capital Asset Pricing Models (CAPM) describe how the expected return of an
asset is determined in a securities market. We assume that the individual investors are risk averse.
An often observed but usually ignored feature of the distribution of security returns is its skewness.
To modify the usual CAPM to allow for skewness, we attempt to change the mean-variance set
up and try to work with a different metric. We explore the theoretical implications of the model

and study its optimality properties. We apply our methodology on Toronto stock exchange data.

1. Introduction

Capital asset pricing models (CAPM) evolved out of the consumer’s choice prob-
lem when faced with uncertainty. These models have been a major subject of re-
search in finance theory. It describes how the price of a claim to a future payoff
is determined in the securities market. To be more specific, CAPM describes the
expected rate of return of financial assets like stocks, bonds, futures, options and
other securities. The literature grew out of the works of Markowitz (1952), Sharpe
(1964), Lintner (1969), Mossin (1966), Black (1972) among others. These works re-
volve around the mean-variance model of asset choice first developed by Markowitz
(1952). A preference for expected return and aversion to variance is implied by
monotonicity and strict concavity of an individual’s utility function. However, for
arbitrary distributions and utility functions, expected utility can not be defined on
just the expected returns and variances. Nevertheless, the mean-variance model of
asset, choice is popular because of its analytical tractability and its rich empirical
implications.

Under the usual assumptions like the law of one price, no arbitraging and equi-
librium in the financial market, the mean-variance model can be motivated by two
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technical assumptions. We assume that there are n > 2 risky assets traded in
a frictionless economy, where unlimited short selling is allowed and the rates of
returns on these assets have finite variance and unequal expectations. It is also
assumed that the random rate of return on any asset can not be expressed as a
linear combination of rates of return on other assets. That is, asset returns are
linearly independent.

For arbitrary distributions of returns, the mean-variance model is supported by
assuming a quadratic (expected) utility function u(.) for any asset with random
return .

BLu()] = B[]~ S E[7?] = B[W)  J[(BV))? +0>(W)], (1)

where E(.) is the expectation operator and o2(.) is the variance. Under quadratic
utility, the third and higher order derivatives are zero and hence an individual’s asset
choice is completely determined in terms of a preference relation defined over the
mean and variance of expected returns. But this utility function displays undesirable
properties like satiation (an increase in wealth beyond the satiation point decreases
utility) and increasing absolute risk aversion (risky assets are inferior goods). Thus,
conclusions based on the assumption of quadratic utility function are often counter
intuitive.

For arbitrary preferences, the mean-variance model can be motivated by assum-
ing that rates of returns on risky assets are multivariate normally distributed. The
normal distribution is completely described by its mean and variance. Thus, for
utility functions that are defined over a normally distributed end of period wealth,
the assumption that asset returns are multivariate normally distributed implies that
demand for risky assets are defined over the mean and variance of portfolio rates of
return. Unfortunately, the normal distribution is unbounded from below, which is
inconsistent with limited liability. For a detailed discussion on this issue, see Huang
and Litzenberger (1988).

The first step to develop the CAPM is to explore the analytical relations between
the mean and variance of rates of return on feasible portfolios. This relation is
graphically described as the portfolio frontier. In a real life data situation, the
above assumptions for justifying the mean-variance set up is difficult to justify.
The data on the rates of return we have from the Toronto stock exchange (TSE)
does not match with them. The histogram of the returns of the companies show
that the data is very much skewed. So, the assumption of normality can not be a
good approach to build up the portfolio frontier.

In this paper we attempt to modify the estimation procedure for the portfolio
frontier by allowing for skewness in the data in our methodology. This can be done
by either using a different metric or by using a function of higher order moments
instead of just variance.

The next section describes the two approaches that we have developed; the
model and the estimation algorithm. Section 3 describes the data we have used for
empirical purposes and interprets the empirical findings. Section 4 provides some
concluding remarks, including plausible theoretical justifications for the results.
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2. The Estimation Models and Algorithm

2.1 Background. Before we initiate our discussion on how to modify the estima-
tion method of the portfolio frontier, we first formally define a frontier portfolio. In
the usual mean-variance set up, a portfolio is a frontier portfolio if it has the min-
imum variance among portfolios that has the same expected return. To make our
discussion more precise, consider n(> 2) risky assets where returns are given by the
random variables 7;, i = 1,...,n. By assumption, these are linearly independent, so
the covariance matrix V' with elements Cov(7;,7;) is positive definite. A portfolio p
is defined by w,¥ where T = (71, ...,7,) and w, is the n-vector of portfolio weights.
Now, in terms of this notation, a frontier portfolio is the solution to the quadratic
program

min %W’VW such that w'e = E(r,) and w'l =1, (2)
where e is the n-vector of expected rates of return on the n risky assets, E(rp)
denotes the expected rate of return desired, 1 is the n-vector of ones. The solution
to this problem is given by

w, = g +hE(r,) (3)

where g and h are functions of V" and e.

We will now try to motivate the two approaches we have attempted in this paper
from the above discussion.

2.2 The mean absolute deviation approach. The quadratic program (2) is essen-
tially aiming at minimizing mean-square-deviation or what is known in the statistics
literature as the L? norm. This is the most popular metric used in statistics. In-
stead of L? distance minimization on the returns, we propose the use of the mean
absolute deviation or L' norm. This is more suitable in the presence of outliers
in the data and possible non-normality in the sense that this gives us an estimate
which can be theoretically shown to be more robust. The expectation operator is
replaced by the median as the suitable measure of central tendency in the objective
function. Now let us formally define our estimation method.

In this approach, a portfolio p is a frontier portfolio if and only if w,, the n-vector
of portfolio weights of p, is a solution to the quadratic program

1
min §WIQW such that w'e = med(r,) and w'l =1, (4)

Note that, here e denotes the n-vector of median returns on the n risky assets,
med(r,) is the expected median return on the portfolio p and @ is a suitable distance
matrix. To define @, we first define the distance measure L! we are working with.
s denotes the sample version, the sample size (number of observations) being T'.

T T
1 1 i _ wi!a)2
Li _ ?Z|w'xt—w'e| — ?ZM
t=1

— |w/x; — w'e|
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1 d (xt —e)(x e)’
t — t — _ '

t=1

where
T

1 (xt —e)(x; —e)
Q= T Z 1 1 '
— |[w'x; — w'e]
Now, with @ as defined above, it is not possible to get an analytical minimizing
expression directly. So we take recourse to an iterative procedure. We formulate a

reweighting scheme in the following fashion. At the it* stage of iteration, we define
Z (x¢ —e)(x¢ —e)’
T |wl(z 1) Xt w(i— 1)e|

where w(*~1) is the minimizing weight vector at the (i — 1)** stage with w” being
the initial weight to start the iterative procedure which we describe below.

Given the weights at the i*" stage, we carry out the minimisation of w'Q’w in
the usual manner subject to the constraints. Let w; be the minimising weights at

the i'" stage, then w}

is the solution to the following

1 )
Minw 4 L = §W'Q’w + A(med(r,) —w'e) +v(1 —w'l)

where A and v are suitable constants. We derive the first order conditions for the
above minimisation:

i

SLL

6)\3 = med(ry) —w,e=0 (6)
SL!

2 = 1w, 1=0 (7)

Since we are dealing with matrices which can be expressed as the sum of positive
definite matrices and number of observations is large compared to the dimension
of p, we can safely assume that we have nearly positive definite matrices to work
with. Then first order conditions are sufficient for the globally optimal solutions
assuming ) is fixed at each stage given the previous steps. From (5) we have

Wy = AMQ") e +7(Q") L. (8)
Pre-multiplying by e’ and using (6) we get
med(rp) = A(e'(Q")""e) + (e (Q")7'1). (9)

Again pre-multiplying (8) by 1’ and using (7) we get
AL'(QY) te) +4(1'(Q) 1) = 1. (10)
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From (9) and (10) we obtain

X = (Clmed(r,)] - A)/D
v = (B - Amed(r,))/D

where A = 1'(Q%) 'e, B=¢'(Q") e, C =1'(Q") '1 and D = BC — A%
Substituting A and «y in (8), we finally obtain

wi, = g + hmed(r,)] (11)

where g = (B((Q")™'1) — A((Q")""e))/D and h = (C((Q")"'e) — A((Q)~'1))/D.
Using these new optimal weights w/, we recompute @**' and continue in an iterative
fashion.

The stopping rule: At each step we calculate S* = | ||wi|| — ||[w5F!|| |. We stop
after j steps if S7 < e where ¢ = 0.001, a small prefixed quantity. The norm used
here to measure the change in w, over successive stages is the usual L? norm on
vectors.

Choice of initial value w°: We start with w® = argmin(w'Vw) under the usual
constraints, where V' is the usual sample covariance matrix but with the sample
mean replaced by the sample median of the rates of returns. That is, we initially
start with a weight vector which is close to the one obtained from the usual mean-
variance approach and then go on to modify this to take into consideration the
possible effects of skewness and non-normality.

Once the procedure converges, we plot wirQw), against med(r,) to get the port-
folio frontier for this expected value of the median. We then repeat this procedure
for a suitable range of values for the median to generate the entire efficient part of
the portfolio frontier.

2.3 Incorporating skewness with variance. In this second approach, instead of
considering a different metric, we incorporate the standard measure of skewness
in the minimizable objective instead of considering only variance. This is done by
using a linear combination of the measures of skewness and variance which we call a
proxy measure of dispersion L. We define the sample version of the proxy measure

as , . . . 9
Lo =77 ) (W =€)’ +(1-7) {T > (w'(x — 6))3}

where 0 < v <1, we = Y| w;i[med(z;)] = med(rp) = g, (say) and Y, w; = 1.
Note that we have taken the square of the third moment as our indicator of skewness
to take care of a possible negative sign cancelling out with variance.

The above L; is to be minimised with respect to w under the constraints as
before. So we form the Lagrangian as follows,

MiNw x AL = Ls + A1 (Z w; — 1) + Ay (Z W;T; — qp) .

Here we will be using a Newton-Raphson type iterative procedure for a multi-
parameter set up. We calculate the following quantities in the iterative steps.
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FOI'lSjSma
5L 1 « -
S = 5o = 2ym ) (Wk - e)(zj — )
J t=1
1 T
-7) {T Z(W'(Xt - e))B}
t=1
3 T
| {T S (W (xe — €)% (30 — ) + M + AM} '
t=1
L S
Smy1 = E - Zwi_l’
SL N
Smyz = Y Zwiwi_qp

Define S = (51,52, ---7Sm+175m+2),-
For 1 < j,k <m,let

8L d
P - _ _
ik 5wj5wk T ; Tht CUk w]t CU])
T T
6(1—~) [ 3 _
+7T T;(w'(xt—e) (zre — T) ; (x¢ —e))*(zjt — ;)
6(1—7) [ 1 &
+T{TZ( (xt —e)) }22 (xt —€))(xp — o) (25t — Z5).
t=1
6%L .
Imy1; = Lim+y = how; =1, j=1,2,...m
6%L
Im i = Im = — = ~‘, :1,2,. R
+2,j J,m+2 6)\2610] l'] J m
Imvimyt = Imgimie = Imgrmyz = 0.
Tmi2yx(mrzy = ((Ljk))-
Define the it” stage value by
wi
wxl) = | A
Ay

Using Newton-Raphson method, we get the (i + 1)!" stage iterate as
wxH) = w () 171 S

.» and S’ are recomputed at every stage.

where I7Y|,
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Stopping rule: We continue upto the j* step where we have
I+ E0  — [w l9 | <

where € is a prefixed small positive quantity.

After convergence, we need to check all the eigenvalues of the I matrix at that
stage of iteration. If all the eigenvalues are positive, then only we can say that a local
minima has been reached for the proxy measure using the weights thus obtained,
if not the global minimum. To illustrate our method, we chose three alternative
values for v, namely 0.25, 0.5 and 0.75, to check the effect over the entire range of
values for 7. Basically, these different weights give different levels of importance to
the skewness in the data which is revealed through the second term of the proxy
measure. Smaller values of « imply greater weightage to the skewness factor.

Choice of initial value: As we are using the Newton-Raphson method, the choice
of initial value is of great importance to us in terms of convergence. For some choices,
the procedure may not converge at all. The best possible choice would have been to
start with uniform initial weights. But that is not possible here as we have a set of
constraints which won’t allow uniform weights. So we tried an intuitively appealing
set of initial weights which is close to uniform. We consider

1.
w? = —i=1,2,...,m—2
m
1 ~ 2~
o b mYEH A
Wy = . o , I FE Tt
Tm — Tm—1
P 3_ 0
m - m m—1
0 _ 0 _
A= A =1

3. Empirical Analysis

3.1 The data. The data used here for empirical purposes is from the Toronto
Stock Exchange, Canada which is obtained from the internet site:
http://metalab.unc.edu/pub/archives/misc.invest/historical-data/stocks/canada
The time period for which the data was collected is 1993—-1996. It includes com-
panies from the following sectors: OIL and GAS (4 companies), METALS and
MINERALS (4), FINANCIAL (2), SOFTWARE (3), CONSUMER PRODUCT
(4), PAPER and FOREST (4), INDUSTRIAL PRODUCTS (3), TRAVEL and
TOURISM (1), PHARMACEUTICAL (1) and REAL ESTATE (2). There were
50 companies which we considered at the start. However, we used the criteria of
stochastic dominance (Risky asset A is said to stochastically dominate, in the sec-
ond degree, risky asset B if A has the same expected rate of return as B and a lower
variance.) to bring this down to 28. We finally worked with these 28 companies.



CAPITAL ASSET PRICING MODEL WHEN DATA IS SKEWED 115

To calculate the rate of return on day (n+1) we used

opening stock at (n + 1)** day — opening stock at n*" day

RoR =
opening stock at nth day

3.2 Empirical results for the mean absolute deviation approach. The estimated
portfolio frontier for the real data and the simulated multivariate normal data are
shown in Figures 1 and 2. From Figure 1, it is seen that the efficient part of the
portfolio frontier is almost linear. In Section 4, we provide a plausible theoretical
justification for this. Our intuition is strengthened when we look at Figure 2. Even
with the simulated multivariate normal data, the portfolio frontier looks like a
combination of two straight lines.

35
30
25 7
20
15
10

median returns

0 T T T
0 20 40 60 80

proxy measure

Figure 1. Portfolio frontier with real data sets (using L1)
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30 A

20

median returns

0 T T T
0 1 2 3 4

proxy measure

Figure 2. Portfolio frontier with simulated mvn data (using L1)
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3.3 Empirical results for the proxy measure. We first carried out the estimation
algorithm to build the portfolio frontier for a simulated multivariate normal data.
We chose three values for v, namely 0.25, 0.5 and 0.75 for our study. The result we
got was close to the parabolic form in each case. But as skewness was incorporated
here, and v = 0.25 gives highest weightage to it, we got disturbances in the normal
parabolic form in that case (Figure 3). Such disturbances were lesser for the higher
~ values (as in Figure 4 for v = 0.75).

8 -

median returns
I ()]
1 1

N
|

0 1 1 1 1
0.1 0.2 0.3 0.4 0.5

proxy measure

Figure 3. Portfolio frontier with mvn data with v = 0.25 (using proxy measure)
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Figure 4. Portfolio frontier with mvn data with v = 0.75 (using proxy measure)

Next we looked at the TSE data set. As mentioned earlier, we worked with the
stochastically undominated returns only. Since we did not make any distributional
assumptions on the rates of return, we needed to impose some restriction on the
underlying utility function. We considered the Von Neumann-Morgenstern utility
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function ~
u(w'x) =1- e~ W XTAL
where L is the proxy measure defined earlier.

Now, for different values of + chosen earlier, we get an almost parabolic form
of the efficient part of the portfolio (Figures 5-7). Note that we do not observe
the inefficient part of the frontier, since the investors are risk averse. All these
look similar to the convex form which we obtained in the usual variance minimizing
approach. Since the chosen utility function is parametrized by the median and the
proxy measure only, we can expect that in the limit, any portfolio on the frontier
will have the weight vector of the form

w, = a + f[med(ry)],

though the constants a and (3 are different from those obtained in the usual mean
variance approach. In such a case, the market portfolio, which will be a convex
combination of the other optimal portfolios, will also be on the frontier.

20

15

10

median returns

0 T T
0 1000000 2000000 3000000

proxy measure

Figure 5. Portfolio frontier with v = 0.5 (using proxy measure)

4. Interpretation of the Empirical Results and Conclusion

To interpret the results we have obtained using the approaches discussed above,
we first look at the usual results which follows from the assumption of multivariate
normality of the underlying distribution. In the usual CAPM, for any portfolio p
which is not the minimum variance portfolio, we have a nice expression for the zero
covariance counterpart. Geometrically, its the point of intersection of the portfo-
lio frontier with the horizontal line drawn from the point where the tangent to the
frontier at p intersects the vertical axis, i.e. the variance axis. Using the algebraic ex-
pression
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Figure 6. Portfolio frontier with v = 0.25 (using proxy measure)
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Figure 7. Portfolio frontier with v = 0.75 (using proxy measure)

for this zero covariance portfolio z¢(p) of p, we can express any portfolio as a linear
combination of p and z¢(p) with some zero mean error. More precisely, we obtain

re =by + blrzc(p) + bary, + €

where Cov(7.(p), €4) = E(€g) = 0. The portfolios p and zc(p) are called the separat-
ing portfolios and this property is termed two funds separation. These separating
portfolios are always on the portfolio frontier and for the usual CAPM setup the
market portfolio of returns and its orthogonal counterpart are taken as the sepa-
rating portfolios.

We have tried to develop our alternative algorithms in the above line of approach.
the results we obtain are quite interesting.



CAPITAL ASSET PRICING MODEL WHEN DATA IS SKEWED 119

4.1 The mean absolute deviation results. Here, we get almost linear portfolio
function when we work with the TSE data. We try to explain this linearity when
we consider two returns only. We have

— — — T
wiTy +wexs =¢q, we=1—w; = w; = %
1— T2
where we have assumed that z7 # 73. This implies
Elw'x - w'%| = E ‘(q_a«;) (% - 1) + (22 — T3)
Tr1 — T2

which is linear in gq.

This argument can be generalized to the more than two returns case. This
seems to give an explanation for the linearity observed here. Even though the linear
portfolio frontier leads to the closure property and a separation result as discussed
above, we do not get any closed form expressions for the separating portfolios. The
method for finding out the zero covariance portfolio is not transparent. Ofcourse this
argument entails that we must consider an utility function such that the indifference
curves touch the linear frontier at unique points. So we need to have indifference
curves with a strict curvature to do suitable analysis in this situation.

4.2 The proxy measure results. We refer to the Figures 3-7. Here, we get the
almost parabolic form as in the usual mean variance approach. So we would like
to get a structure akin to the two fund separation result obtained in the classi-
cal approach. (For a detailed discussion on the empirical methods involving the
estimation of CAPM, see Rao and Krishnaiah, 1994.)

To get towards the two fund separation, we tried to find the zero covariance
portfolio in this case. But, we did not get any nice algebraic form. We obtain

1 & 1 & ’
L = », (W'(x; —€))* + (1 -7) l; > (W' (xe — e))S]
1 - i )
S A T ln— {Dw'(xt )
+ D (W (xe — ) (W (zu —e))? H
t# u
where
Vi = (xt—e)(x;—e).
1 1 [&
= 7 Zw'%w + (1 - 'y)? [Z{w'(xt —e)(x; —e)w}

Aw'(x; —e)(x¢ —e)wHw'(x; — e)(x; —e)'w}

+Z Z w'(x; —e)(x; — e)ww'(x; — e)(z, —e)ww'(x, —e)(x, —e)w]|.
t# u
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Let w), be the optimal weight for the return vector 7, on portfolio frontier. Then,

T
~ 1
L) = v wiviw,
t=1
L [T
+(1 - 'Y)F Z(w;Vtwp)3 + Z Z(W;)WWP)(w;)V;f,uwp)(w;)Vuwp)
t=1 t# u

For this approach L(r,) is the counterpart of Var(r,). We define the counterpart
of the covariance term as

T T
~ o~ 1 1
L(rp,rq) = 7; ZW;,V;&UJq +(1- '7)? [Z(WLVth)(W;Vtwq)(w'quq)
t=1

t=1

30N (W Vawy,) (W) Vi utwg) (w) Vaw,)
t# u

The only striking feature here is the V;, matrix, which tries to capture the
skewness within the data. It compares two time points instead of comparing a point
with the median and retaining the sign with it. But from the above expressions it
is not easy to find out a closed form solution for the zero covariance portfolio for r,.
However, it is clear that it would depend on the relation between two time points.
So, even if we try to build up an equation as in the CAPM, we may approach a
multifactor model situation®, instead of a single factor one as in the usual CAPM.
Since the above equations were not analytically tractable, we suggested scoring
method for finding solutions.

The form of V; ,, is indeed quite interesting. The absence of such a term in the
usual objective function seems to suggest that the classical approach imposes some
sort of symmetry on the data and the estimates. If indeed the data were symmetric,
then V; ,, should be insignificant but not otherwise. As we have seen real life data to
exhibit significant asymmetry, this V4, term seems to have an implicit importance
towards understanding the nature of the portfolio frontier.

4.3 Concluding remarks. In this paper, we have tried to explore the theoretical
and empirical implications of two alternative methods of estimating the portfolio
frontier as a first step towards building an alternative CAPM. As the methods
suggested here do not yield tractable algebraic forms, we do not get closed form
solutions as in the usual approach. The method is also quite computer intensive.
These methods do not give us the elegant form in which one is used to seeing the

'n the multifactor model we have the relations in the following form:
E(re|Zi—1) = B(fel Ze—1) (B pupe| Ze—1)) " B pue Ze-1)

where r is a row vector of n asset returns, f is the vector of factor realisations, uy is the vector of
innovations in conditional mean of returns. The information set at time t is the data upto time
point t — 1, denoted by Z;_1. In fact, the first term represents the conditional expectation of
factor realisations. The second term is inverse of conditional covariance matrix and the third term
is the conditional covariance of asset returns with the factors.
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CAPM. But, despite all these technical problems, we find this exercise to be worth-
while as real life data sets on returns show significant departure from normality,
rendering the usual mean variance approach quite suspect. One needs to drop the
restrictive assumptions and look at the distribution of returns with a flexible point
of view. In this context, the use of the L; norm or incorporating skewness is indeed
useful.
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