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Selecting Useful Groups of Features
in a Connectionist Framework

Debrup Chakraborty and Nikhil R. Pal

Abstraci—Suppose for a given classification or function approx-
imation (FA) problem data are collected using ¢ sensors. From the
output of the ¢th sensor, rr; features are extracted, thereby gener-
ating p = l::=1_ n; features, so for the task we have X O R
as input data along with their corresponding outputs or class la-
hels ¥ C 3°. Here, we propose two connectionist schemes that
can simultaneously select the useful sensors and learn the relation
hetween X and Y. One scheme is based on the radial basis func-
tion (REF) network and the other uses the multilavered perceptron
({MLP) network. Both schemes are shown to possess the universal
approximation property. Simulations show that the methods can
detect the bad/derogatory groups of features anline and can elimi-
nate the effect of these had features while doing the FA or classifi-
cation task.

Index Terms—Classification, feature selection, multilavered per-
ceptron networks, radial basis function (RBF) networks.

I. INTRODUCTION

T I5 known that for a given problem all features that charae-
I terize a data point may not be equally important; some fea-
tures may even have unfavorable influence on the task at hand.
Feature selection technigques amm o discard the badfrmelevant
features from the available set of features. This reduction may
improve the performance of classification, function approxima-
tion, and other pattern recognition systems in lerms of speed,
accuracy, and simplicity. We want to emphasize that the utlicy/
suitablity of featres depends on the machine learning tool being
used and the problem being solved. For an easy-to-classify data
seet, there may exist a set of features that would be equally good
with different machine leaming tools, but usually this is not the
case. I there exists a feature that is necessary for discrimina-
tion, then every feature selection method should select it. On the
other hand, a given data set may have many correlated features
and there may be different subsets of features that are equally
zood for the task at hand using a given machine learning tool.
If features are ranked looking at the properties of each feature
and/or ignoring the tool that will be finally used to design the
pattemn recognition system, then one may end up with a set of
features with too much of redundancy and may not be able o
exploit the dependency of utility of features on the tools vsed.

The problem of feature selection has been well addressed in
literature and it has been tned out in various paradigms. Previous
studies on feature subset selection focused mainly around statis-
tical approaches hike principle component analysis (PCA) [23],
linear discriminant analysis (LDAY [ 14], ete. These methods at-
tempt w0 redoce the dimensionality of the feature space by cre-
ating new features which are combination of the original ones.
Henee, strictly speaking, PCA and related methods are feature
extraction lechnigues which extract a8 new set of features from
the available set of features, and the dimensionality of the ex-
tracted feature space is less than that of the original one. The
main drawback of these methods is that the new features lose
their original identity. Leaving aside the classical PCA and LDA
technigues, there have also been many other works on feature se-
lection in the stanstcal framework; some of them are [22]. [24],
and [37]. In [25], a unified framework to compare different fea-
ture selection algorithms with different objectives is proposed.

Blum and Langley [7] have given an excellent survey on fea-
ture selection in machine learning. These approaches are dif-
ferent in evaluation of the feature subsets. One can broadly clas-
sify the approaches as filter and wrapper approaches. In filter
approach, the feature evaluation index is independent of the
main classification/function approximation algorithm, whereas
in wrapper approaches the features are evaluated by the main al-
gorithm itsell. Wrapper approaches are considered better as the
relevance of a feature is generally dependent on the task being
performed and also on the ol being used o do the task [27].

There are many feature selection algorithms that use sofl
computing/computational intelligence wools. Methods desenbed
in [8] and [41] use genetic algorithms o select the relevant
feature subsets. Methods described i [3], [13]. [43]445]. and
[49] and a vadety of others use neural networks for feature
seleciion. Feawre selection has also been attempted vsing
fuzzy and neurofuzzy technigues [12], [42]. There are also
specialized methods to deal with featre selection for very large
dimensional data sets that are typical in application areas such
as bioinformatics [1]. [32].

In [33]-[35], MacKay has considered newral network
learning in a Bayesian framework. MacKay and Neal pro-
posed a featwre selection mechanism in the Bayesian keaming
framework called automatic relevance detection (ARD) [36].
In the ARD model, cach mput variable 1s associated with a
hyperparameter that controls the magnitude of the weights of
connections out of that input unit. The significance of an input
variable 15 determined according o the posternior distributions
of these hyperparameters.

In [39], Pal and Chintalpudi developed an integrated feature
selection and classification scheme based on the mulilayer per-
ceptron (MLP) architecture. The featre selection phase in their



method was integrated with the main learming task, and the MLP
learned cerain feature modulators along with the conventional
weights and biases of a neural network. In [9], 8 neurofuzey
system was developed for simultaneous feature selection and
system identification. The methodology developed in [9] was
modified for a classifier in [10].

We term the feature selecton methods descenbed in [9,
[10], and [39] and the method described in this paper as online
methods. They are in spirit with the wrapper methods of feature
selection. In wrapper methods, although the feature evaluation
is done through the classification/function approximation algo-
rithms, in most methods, one uses a fixed classifier or function
approximation system, and the best subset from the available
sel of features is chosen by evaluating each possible subset or
by a suitable search technigue. However, inoan online method,
the feawre selection phase is integrated with the task of learning
other parameters of the system. There are other methods avail-
able in literature which can also be classified as online. The
ARD [36] and its varant [46] also learn hyperparameters as-
sociated with the mput features. Some evolutionary Lechnigues
[47] also learn the importance of input features along with other
parameters of the classifier. For the classification problem,
LIKNON [5] wses a Imear programming fommulation o learn
feature weights along with other parameters of the separating
hyperplane.

This paper addresses the problem of feature selection in a dif-
ferent setting. Here, we assume that the features available can
be divided into a few groups. The motvation of the problem
comes from the fact that today for a given problem we often
obtain data from multiple sensors. For example, in an intel-
ligent welding inspection system, the sensors could be radio-
graph, acoustic emission, thermograph, eddy-current detector,
ete. The sensory information obtained from various sensors in
the raw form may not always be useful. Hence, from a single
sensory information, one may generatefextract several features.
If we use all these sensors, then the design cost and complexity
of the hardware will be more. Moreover, the leaming task will
also become more difficult. Consequently, the designer tries to
reduce the number of sensors without hampering the system’s
performance, so the problem is the selection of useful sensors
where each sensor generates a set of features. Conventional fea-
ture selection methods select good features from all available
features generated from all these sensors. However, our objec-
tive here 18 w discard all features obtained from bad sensors, if
any. In other words, we am o discard sensors which are not
necessary for a given problem.

This problem is different from the feature selection problem.
We call this group feature selection (GFS). Sensor selection is
a special type of GES, where each feature group comresponds 1o
a sensor. This kind of grouping resulls in a natural partition of
the total set of features according 1o their sensory origin. In this
case, selecting good featre groups is equivalent to the selection
of good (relevant) sensors. Such GFS can thus help to discard
poor sensors which can, consequently, yield systems with low
hardware and computational costs. Sometimes, itcan redoce the
time to make decisions, which is very important for many ap-
plications including medical apphcatons. There may exist other
natural groupings among features as well. Forexample, given an

tmage, there could be features based on cooccurance matrix [ 15]
and wavelet analysis. In this case, the set of cooccurance-based
features can form one group while the wavelet-based features
can give another group. The selection of individual featre is a
special case of this GFS methodology. To our knowledge, this
probilem has not been addressed in literature. We have reported
some preliminary results of this investigation in [11]. Note that
the issue of how to group the available set of features is not
within the scope of this work., We assume that the avalable
features can be grouped in some natural way, for example, ac-
cording 1o their sensory origin.

We use lwo connectionist schemes Lo deal with the problem of
GFS. The first scheme is a modified radial basis function (RBF)
network which we call group featre selecting radial basis func-
tion (GFSEBF) network and the other 15 a modified MLP called
the group feature selecting multlayered perceptron (GFSMLP).
In both methods, the vser needs o specily the groupings that
exist between the features. The networks are designed 1o dis-
card the effect of the bad groups. The basic philosophy of both
schemes are highly imspired by [39], but both schemes are gquite
different from that in [39] as our schemes have the ability to se-
lect groups of useful features and thus, as discussed eadier, can
be applied to the task of sensor selection. Moreover, in [39],
the authors discussed only a model for the MLP framework.
The GFSMLP network may be viewed as a generalization of
the method in [39].

The rest of this paper 15 organteed as follows. In Sectoon 11,
we discuss the GFSRBF network along with suitable leaming
rules. Then, in Sectuon 1L we discuss the GFSMLP. Finally, in
Section IV, we present results on some well-known classifica-
tion and function approximation problems. In Section VI, the
paper 15 concluded. In the Appendix, we discuss the universal
approximation properties of GFSRBF and GFSMLP.

1. GFSEBF NETWORK

Given an input data set ¥ = {&_,....2%.} = R, an RBF

network computes the function
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In (1), p; and ¢} are the parameters related to the +th basis
function, commonly known as the center and spread, re-
spectively, and ||, is the Euclidean norm. Let us assume
T = [ rooox)? and ;= [ oo iy, | Then, we have
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We assume that our data are generated by { sensors and, from
the sensor ¢, we generate n; (i = 1.2.....0} features, so
E::l vy = o Let the features from each sensor © be denoted

. o E ‘I
by a vector 8°. Hence, we can winle ® [4t a7 .. & .



Smmilarly, we can wate the vector mepresentng the center as
g, o omioom|, wherem! and 87,5 12,

the same dimensionality. Equation (1) can now be mewrillen as
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In (3), each basis function ¢; is represented as the product of

the component Gaussian functions C;', J=1.2....[, whenr
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Thus, each €% takes as an input the vector representing the fea-
tures from a specific sensor §, so the output ul‘(,'i'. isrelated o the
inputs obtained from the 5 sensor. Our objective is to eliminate
the effect of the features generated from bad sensors. For the
time being, let us petend that we know the bad groups. Hence,
wee gim to design the component functions in such a manner that
a component function €¥ coresponding 1o a bad group will al-
ways lake the value of unity (1) imespective of the input &* . If
we can do so, then ©*F will never contribute anything to the total
process, Le. ooy (x). Toachieve this, we design the component
functions as
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Clearly, in (5), if we set [3,] = (0, then fl‘f =z 1, thereby it
can ¢liminate the effect of the sensor o in cach of the basis
function & irrespective of values of &', On the other hand, if
;| 1s very large, then lf_':-".;;'; in {3) reduces 1o I’_':-,;;'. in {4) resulting
in no change in the role of the basis functions. However, how
do we know which group 1s good and which 1s bad? In other
words, how do we set the values of the 78" The solution lies
in the training process. We treat each /3, as an adjustable param-
eter and learn its appropriate value along with other parameters
through training. With these preliminaries, we next discuss the
network structure of GESRBE.

A, Nerwork Structure

GFSRBF network is a four-layer feedforward network as
shown in Fig. 1. The network in Fig. 1 s designed for data
obtained from three sensors, where two features are computed
from each sensor. Also, it assumes three basis funcoons and
two output nodes. The vse of three basis functions has nothing
Lo do with the number of sensors. We denote our training data
{1l e & WP 4 £ 01 Each pointa has p features
which can be divided into { groups and the otal number of
classes present 15 o The division of the features into groups
could be made based on sensors or by some other enteria. Inour
subsequent discussions, we denote the output of the fth layer
by =%, We now discuss the general structure of the network
layer by layer.
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Fig. 1. GFSRBF network structure.

Layer 1) This layer is called the input laver. The number of
nodes in this layer 1s equal o the dimensionality of
the mput data; here, itis .

Layer 23 This layer 1s called the component function layer, and
it 1 responsible for the feawre selection task. 1f the
network contams e basis functions, then this layer
will have { % ne nodes. Thus, this layer contains the
component functions for each basis function for all
feature groups. Let :}f:' denote the output of the com-
ponent function related to the ¥th basis function and
the jth group—the superscript “27 denotes the layer
number. Then, we have
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In (6), 7; is an adjustable parameter ml;t}ud to the ;th

feature group. We call v; = | — « 7, as the fea-

ture group modulator for the yth feature group. When

: }_2'.' » |. Thus, for a bad group of fea-
tures if ~, — 1), then the effect of the jth group gets
eliminated. The traming procedure (Lo be discussed in
Section 11-B) will start with very low values of .,
ie., with very small values of ﬁ_f- for all j, thereby
making all feature groups unimportant. As the training
process continues, the network allows features from
only those groups which can lower the sum of square
error significantly.

Layer 3) This layer 1s called the basis function laver; the
number of nodes o this layer depends on the number
of basis functions used (required) for solving the
problem. The output of the uth basis function is

~p [k then 2
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Layer4) This layer s called the owtput laver. The number of
nodes in this layer 15 equal o the number of classes
present in the data or the dimensionality of the output
vector. The nodes in this layer are fully connected 1o
the nodes of layer 3. The connection between node ¢ in
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layer 4 and node 7 in layer 3 bears a learnable weight
wiz;. Like a conventional RBF network, the output of
the vth node in this layer 1s given by
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where ne 15 the number of nodes in layer 3. When
the network is used for classification problems, then
the target output of an output node lies in [0 1],
and this is true for all Kinds of class labels that the
data may have (probabilistic, possibilistic, fuzzy, or
hard). However, (8) shows that zé['i" 15 unbounded as
the leamable weight w77 can lake any value.
Consequently, for classification tasks, we modify the
output of this node by adding a standard sigmoidal
nonlmeanty 1o this node function, so that the learning
process becomes more simple. The output of node <
in this layer 1s then computed as

el 1
|+ ¢xp (— B My .2;*-;1])

For regression (function approximation) Ly pe of appli-
cations, nodes in the layer 4 use ( 8) while for classifier
applications (99 15 vsed. Now, we discuss the pamm-
eler updating strategies.

)]

B. Leaming Rules

We assume that there are « outputs and the traiming data con-
tain points in *B* along with its associated output in 1Y, In case
of classifiers, the output & is a label vector in 11, 1]7. Let the
output associated with a data point s be & [4',1 fa .. I,_.-'I.Thus.
we can define the instantaneous error for a data point & as

Rl = ;Z (354: n)
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For our further discussion without loss of generality, we omit
the subscripl ® and call the error term as £ The ermor function
depends on the weights ;8 connecting nodes of layers 2 and
3, the parameters of the basis functions, and the group feature
modulators /7;°s. We will consider fixed parameters for the basis
functions, i.e., basis functions with fixed centers and spreads.
We vse the gradient—descent technigque o update the weights
and the feature group modulators (7;"s. Thus, the update equa-
tions for wyy and #; are
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and
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Here, i), and ) are predefined leaming rates. For the clas-

sification network, ve., for the network with sigmoidal transfer
funcuons in the outpul units, we get
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and for the regression network, we gel

A L can
Link (0 (z\' i f.;;) 2 (14)
Lhiz;
For both networks
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Note that along with w;; and 3; the other parameters m: and
. could also be learned using the gradient—descent techmigue.
Since our objective here is o demonstrate the feature selection
ability of the proposed scheme, we do not update m) and ;..
but we use judicious cholces for them as discussed next

C. Selection of Centers and Spreads

Selecting the parameters for the RBFs forms an important
part in designing RBF networks. Generally, there are the fol-
lowing two common strategies used in practice.

1} The parameters for the basis functions are chosen a prior
and are kept fixed. Only the weights between the hidden
and output layers are updated during learning.

2y All parameters are optimized by a gradient—descent (or a
similar) technigue.

As discussed eadier, we follow the first strategy here. Initial cen-
ters and spreads are detenmined by running the fuezy « means
clusternng algorithm (FCM) [4] on the ramming data. We use
the fuzzifier rt = 2 in all reported results. Once we obtain the
cluster centers p; by the FCM algonthm, we calculate the spread
o; of the ith basis function as ||, — jIJ-||, where gt is the center
of the basis function nearest to g, . In other words

o ndn g, — g, (17}
B :

D, Threshold for the Feature Attenuators

The final values of the group feature attenuators () of a
trauned GFSRBF network can be used to decide the importance
of the sensors. A low value of +; indicates that sensor § is less
important and a high value indicates a high importance of the
sensor. In the limit, ;) represents that the sensor j s very
poor and it has derogatory effect on the system while +; = 1
suggests that the sensor ¥ 1s very imporant. However, as «,°s
are modeled and updated, it can take any value in 1.1 . Here,
we try to find a threshold 8 for v, such that if ~; takes values
less than £ we can discard sensor .

From (6), we gel

—yj— - (18)
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We call a group of features bad, if all component basis func-
tons (CBF) related to that feature group produce a response al-
most equal to one for all points. Specifically, we consider a fea-
ture group o be not important, if all CBFs produce a response
greater than 095, even for points which are as far as 2 distance
away from the center of the associated CBE. Thus, we select that
value of ~ as the threshold which makes the right-hand side of
(18) equal to 0.95 (= 1) when &' —rn}|| is replaced by 2o, This
wiy we oblain

e FW(LBA (19)
Equation (19) gives «; = {10125, Hence, we can safely discard
a featre group with attenuation |~} less than 0.01.

The GFSEBF network also has universal approximation

properties, which 1s discussed in the Appendix.

1I. GFSMLP NETWOREK

An MLP network can also be modified o do GFS. A fea-
ture selectmg MLP was proposed by Pal and Chintalapudi [39]
which used sigmoidal attenvation functions in the input layer.
We generalize their idea to propose GESMLP, a modified form
of MLP for GFS.

Here, the philosophy s different from that vsed in case of
EBF network. Let £, be the attenoator function attached to the
lth group of features. Each feature o of the lth group gets mul-
tiplied by the attenuator function £ before it gets into the net-
work. If £; = [\, then no feature of the fth group will get into
the network, while if I7 = 1, then every feature of the [th group
enters the network unattenuated. For intermediate values of £,
transformed values of the features enter into the network. Fig. 2
shows the architecture of a GESMLP with just one lidden layer,
and two groups of features with attenuation functions #4 and
£z Each attenvation function I; should be such that it has a
tunable parameter & and £y Z [0, 1]. To facilitate the learning
of &, Fp should be differentiable. Moreover, Ty should be such
that over a reasonably large interval {a, ), as J goes from o
to A, £ should either monotonically increase from 0w 1, or
monotonically decrease from 1 1o (0 There can be many choices
for b wetake fr = ¢ % i isa parameler related 1o the {th
group of features. If 3 — (b, then F; — | and if 5 — £,
then Iy — () The objective here is 1o select appropriate values
of /4's through training suchthat £; - 1, if  is associated with
a useful group of features and F; — 0, if the Ith group is a bad
or redundant group. The parameters &4 can be leamed by the
backpropagaton algonthm along with other parameters of an
MLP.

Let ws consider a network with sigmoidal activation func-
tons and a single hidden layer. For each inpul vectlor &

(g, .. .. ,;,';J.,_"_II' = B, let S denote the set of features which
WLy 02 HEX
belongs to the fth group. Let 257, =; ', and Z; ' he the outputs

of the ith nodes of the input, hidden, and output layers, respec-
tively. Thus, for input =, if 1, = 5y, the output of the {th node
in the mput layer would be

S 5
ghat =y

(200

MLP with GFS.

Fig. 2.

Let w.'_g.i;ﬂ be the weight of the ink connecting the jth node of
the hidden layer with the kthnode of the output layer. Similarly,
rr.-f_lz" denotes the weight comnecting the ith node of the input
layer with the jth node of the hidden layer. Thus

o L
5= T ERLTIEE (213
Ligrg i
and

=l T
N E

For an input ®, if the target is £, then we define the instanta-
neous emor f as

1 i :
I =3 [.3:_"—%] . (23
3 # n 5 )
We define
it —. w L3 (24)
-3 [
[

Thus, the update equations for the two sets of weights can be
derved as

A e by Tk Ry e
wip 't 1) =y Y- i LT (1 -z ) (25)
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and
Q12 : s 2 RAEN
w; it+ 1= we Tt = mE (I — .,_1. 'j L (26)

In (25) and (26), v is a predefined leaming constant. The update
equation for the feature attenuator of the fth group 9 can be
derived as

Bl =11 = g+ ¢ Y e e, (27)

L O
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Here, ¢ is also a predefined leaming constant. The 4, "s are so
mitalized that at the beginning of taimning no feature group 1s
mmportant (e, no feawre gets imto the network). As trining
continues, the 3:"s of the groups which can reduce the error
more will be changed significantly w make I} — 1.

Although we have shown the derivation for an MLP with only
onge hidden layer, its extension to MLPs with more than ong
hidden layer is straightforward. The GFSMLP also has the uni-
versal approximation property, which is proved in the Appendix.

IV, EXPERIMENTAL RESULTS

We provide here experimental results on five data sets: Chem,
Ins, R5-Data, Wine, and Breast Cancer.

The Chem data sat [48] 15 used to test the function approxima-
tion capability of the network. Chem contains data for operator’s
control of achemical plant for producing a polymer by polymer-
ization of some monomers. There are five inpul features, which
a human operator may refer to for control and one output, that s
his/her control. The input variables are monomer concentration

I:'r;.lj-, change of monomer concentration (i}, monomer flow
rate (g, and two local emperatures nside the plant (g and
1iz). The only output (' is the set point for monomer flow rate.
Chem contains a set of 70 data points obtained from an actual
plant operation. In [48], it has been reported that the two local
termperatures inside the plant, ve., wg and w3 do not significantly
contribute W the outpul.

The remaining data are on classification problems. Iris data
sel[2] is g 4-D data set of 150 examples equally distributed in
three classes. There are previous studies which suggest that two
features among the four are enough for the classification task.

RS-Data [26] 15 genemted from a 256 level satellite image
of size 512 % 512 pixels captured by seven sensors operating
in different spectral bands from Landsat-TM3. The 512 = 512
ground truth data provide the actual distribution of classes of
objects captured in the image. This image s available along with
full ground wuth in the catalog of sample images of the ERDAS
software and is used for esting various algorithms [26]. From
this image, we produce the labeled data set where each pixel
is represented by a 7-D feature vector and a class label. Each
dimension of a feature vector comes from one channel. This data
have eight classes representing different landeover Lypes.

The Wine data set [6] consists of 178 data points in 13 dimen-
sions distributed in three classes. These data are the resulis of a
chemical analysis of wines grown in the same region in Ltaly but
derived from three different cultivars. The analysis determined
the quantities of 13 constituents found in each of the three types
of wines,

The Breast Cancer data set [6] consist of 699 points in 9-D
distributed in two classes (malignant and benmign).

In the following secuons, we discuss in details the results ob-
tained by GFSRBF and GFSMLF networks on these data sets.
As stated earlier, the attenuation parameters for each network
are mitialized so that at the onset of tramming the network con-
siders all feature groups to be unimportant. Thus, for GFSRBE
we sel 7, 0,000 which makes ~; = (0, ¥, where § nepre-
sents a feature group. In GFSMLF, we sl #y = 5 thus making
F, 001,55, For both GFSRBF and GFSMLE, we consider
0.01 as a threshold for the feature attenoators, e, if the value

TABLE 1
WALUES OF +; I8N GFSRBF ror Cuem Dara SET
(CONSIDERING THREE GROUPS OF FEATURES)

Litoup 1 Liroup 2 Crmiup i
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Fig. 3. Plot of g and w,.

of +; corresponding to feature group y is less than (L01, then we
discard that feature group.

A. Chem

In this example, we demonstrate the feature selection capa-
bility of our network for the function approximation task. As
stated earlier, the data setl consists five input features. The five
mnput features can be easily divided mto three groups with me-
spect o the type of information. The monomer concentration
v 1 and change of monomer concentralion {a. ) can consbtule
one group, the monomer flow rate (g can be a second group,
and the temperature parameters (uy and ;) can form the third
eroup. With 135 basis functions, we find that the GFSRBF net-
work acceptls only the second group of features, Le., only g 15
mmportant for the task (see Table 1), Fig. 3 shows the plot of the
output y with ;. Fig.o 3 reveals a very strong comelation be-
tween g and y (correlation coefficient = 0998111, The Chem
data set was vsed by Lin and Cunningham in [31]. To evaluate
a system, they used a performance index (P1) defined as

el 5 o
_ Ve e )

P ]
E 5ol | i

(28)

Here, b and oy are the desired and actual outputs, respectvely.
They obtained a P1of 0002245 on Chem by using features -,
wea, and vy, The PLin our case was (00004271,

A close look into the Chem data set shows that the valoes of
feature 3 numerically dominate all other features. Table 11 shows
the ranges of the input and output features. Since an RBF-type
network computes the Evchidean norm, it is quite natural that
features with larger numerical values dominate the output of
the basis functions. Therefore, wsy has the swrongest influence
on the network behavior, Moreover, w; has a strong positive
correlation with the output . Consequently, the network picks
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Fig. 4. Number of times each feature was selected for Chem data set using

TABLE IV
VaLves oF 7. in GESMLP For NORMALIZED-CHEM DATA SET
(CONSIDERING THREE GROUPS OF FEATURES)

up iz, However, previously, ithas been reported that the features
1y and we also have some effect on the output [48]. Our network
cannotdetect that, and as a result we getreasonable (bul not very
good) pedfomance as suggested by the PLvalue. This 15 not a
problem of the model or of the philosophy being vsed, but 15 due
Lo very wide variance of different featres. To establish this fact,
we nomalize feature 3 {2, ) and the output () so thal each of
these two lie in [0, 1]. We call this new data set as nomalized-
Chem.

With normalized-Chem, we mun GFSEBF with different
number of basis functions and different mitializations of the
FCM algorithm. The FCM outputs ame used to compute the
centers and spreads of the basis funcuons. For a fixed number
of basis functions, vanous FCM imualizations do not sigmil-
wcantly change the feature attenuators and the performance.
Table 11T gives the average performance of GFSRBF on nor-
malized-Chem data set for different number of basis functions.
With a fixed architecture (a fixed number of basis functions),
five independent runs are made with different initializations,
and the average value of PLand the number of groups selected
are shown in Table UL The frequency of ecach of the groups
selected in these 30 runs are shown in Fig. 4. From Fig. 4, we
see that the network rejects the third group for most of the runs.
From Table IIL we see that the best pedormance 1s obtaimed
by vsing three basis functions and 15 basis functions. In case
of three basis functions, the network considers the first and the
second group of features, but for 15 basis functions, itconsiders
only the second group. In both cases, the networks mesull in
almost the same average pedommance. This establishes that
changing the number of basis functions changes the learning
machine, so the impornance of the features may also vary.

The performance of GFSMLP on nommalized-Chem data set
for different hidden nodes 1s shown in Table 1V, Here too, the
average performance in termsof PLand the number of groups se-
lected are shown for five independent runs for each architecure.
Table IV shows that the GESMLP selects two groups for all runs.
The two groups selected are the first and the second group. The
P1 value suggests that GESMLF can also do the function approsx-
tmation job with a good accuracy. Note that GESMLP gives rel-

Ml FI Mool oy
hidhlen nodes suelectid
Mean | &rd, Nev, | Mean Bl New,
K [EGTEEETEN AL 2.0 LT
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TABLE W
VALUES OF 7 ; FOR IR1s Data SET (CoNsSIDERING FOur GROUPS OF FEATURES)
Using GFSEBF

Liroup 1 Crroup 2 | 3o 3 | dimoup
i i 1 )50 (KN
[ [ITE .53 11.1E

atively more importance on the first group than GFSRBF. This
emphasizes the fact that importance of a feature (or a group of
features) 15 4 function of the ool being used o solve a problem.

B. Results on Irix Data Set

For this data set, we select 1O points randomly asthe tmining
data. First, we assume that the four features of Ins form four
groups with one feature m each group, so we oblain a feature
modulator for each feature. We use a network with six basis
functions. The values of the modulator functions for all features
are shown in Table V, which cleardy shows that the network does
nol accepl the first and the second features. This resull is consis-
tent with the well-known fact that the third and fourth features
of Iris data set are enough for the classification task. The number
of misclassifications obtained on the training data is three and
on the whole data (150 points) 1s five. This performance is gquite
comparable with that of other classifiers [4].

Physically, the Iris features are the sepal length | £, sepal
width [ {21, petal length [ fa), and petal width { 1) of Ls flower.
Therefore, we can make two natural groups of featres, iLe.,
one group chamelenzing the sepals and the other containing
the petals. In other words, we consider features 1 and 2 as the
first group and features 3 and 4 as the second group. With this
grouping, we ran GESRBF for different basis functions and dif-
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TABLE VI
MISCLASSIFICATIONS AND NUMBER OF GROUPS SELECTED FOR [RIS DaTa SET Wit GFSRBF (CoNsSIDERING TWO GROURS OF FEATURES)
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Fig. 5. Vanation of attenuntor values and misclassification with number of iterations for [ns data set: (2) misclassification, (b) attenuator values for group |

features, and {c) attemator values for group 2 features.

ferent FCM mmitiahizations. Table V1 shows the average misclas-
sifications and the average number of groups selected for five
independent runs of GFSRBF for each architecture. Table V1
clearly suggests that our network selects only one group me-
spectve of the number of basis functions used. Also, m all cases,
the network selected group 2 (e, f; and f.) features.
GFSMLF can also select the relevant features For the Iris data
sel. We use a GFSMLP with ten nodes i the hidden layer, each
with a sigmoidal activation function. We use the same 100 sam-
ples for training as used for GFSRBF. In Fig. 5{a)—(c), we show
the performance of our feature selection algorithm in a pictorial
manner. Fig. 5(a) gives the variation of the misclassifications
with the number of terations for a typical run. Fig. 5(b) and (c¢)
depicts the feature attenuator values | 1) for different iterations
for groups | and 2, respectively, for the same run. Fig, 5(a)

shows that the misclassification drops sharply from 100 to 10
at around 800 werations. Fig. S0c) reveals that at that tme the
features in the second group enter the network. As the traming
continues, we find that again there is a sharp decrease in mis-
classification around 1800 iterations when the first group of fea-
tures gets i the network [Fig. 5(b)]. This behavior is consistent
with most of the runs. We find that the second group of fea-
tures first gets in the network to give an average misclassifica-
tion of 10 (averaged over ten runs of the same network with
different initializations). If training is continued, then the first
eroup of features also gets in and reduces the misclassifications
to (1. The final network produces a misclassification of 1 on the
wholedata. Thiscleardy demonstrates the feature selection capa-
bility of the network. [t suggests that features 3 and 4 constitute a
very important group of features for Iris, but the other group also
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TABLE V11
WALUES OF +; 1IN GFSRBF For RS-Dara (COMSIDERING 5EVEN GROUPS, ONE FEATURE PER GROUFP)
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TABLE VIII
MISCLASSIFICATIONS AND NUMBER OF GROUPS OF FEATURES SELECTED FOR RS514 Data SET WitH GFSEBF
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has some discriminating ability that can facilitate the learning in
MLP. In fact, this observation is consistent with the results re-
ported elsewhere [39] which suggests that features 1 and 3 have
equally good discriminating power as features 3 and 4. Here, we
like to emphasize the fact that this network 1s pnmarily imtended
toselect features. Once the features are selected, one can remove
the nodes and links associated with the bad or redundant features
and retrain the net for a few more epochs for further improving
the performance of the network. For example, in this particular
case, after features 3 and 4 are selected, one can delete the hinks
associated with features 1 and 2 and retmin the net o achieve a
better pedommance.

C. RS-Data

This data set contains 262 144 points distributed in eight
classes. In previous stwdies with this data set [26]0 [28],
traming-test partitions were created in the following manner.
From each class, 200 points were randomly selected 1o geta
training sample of 1600 points, and the rest of the data was
used for testing. In our study, we also use the same protocols
o generate the rmming-test partibon. For thes data set, we
initially consider ecach of the seven features as constituting a
group. Running GFSRBF with 30 basis functions, we obtain a
misclassification of 18.43% on the training data and 15.59%
on the test data. The final values of the feature atlenvators are
shown in Table VII, which reveals that the network completely
discards the second feature. In [26], a musclassification of
21.8% was obtained on the test data. In [ 28], a misclassification
of about 14% on the test data was reported. The perdformance
of our system is comparable 1o those, though our system uses
smaller number of features.

In another expermment, we generated an additonal feature
from each of the seven channels of the image. For each pixel p
in the image, we considered 115 eight-neighborhood over a 3 =
3 window and computed the standard deviation of the 9-pixel
values (the neighborhood of ¢ and the pixel itself); we call it
the. In the new data set, for each channel, we take the gray
value of p and , as features, so we have 14 features divided
o seven groups. We call this the RS14 data set. Table VI
shows the average misclassification (in percent) on training and
test data for five independent runs for different architectures.
Fig. 6ia) shows the number of tmes cach feature gets selected
for these 20 runs. From Fig. 6(a), we find that the features from
the second sensor are selected the least number of tmes. This

15 consistent with the results described in Table VII using seven
features.

No previous study regarding the goodness of features of
RS-Data exists. We made a naive feature analysis 1o compare
our results. We mn the S-nearest neighbor classifier [4] on
this data with all possible combination of six features, ie., in
each mn, we left out one feature. Among the seven possible
combinations, the feature set {1,345 6.7} mesults in the
least number of misclassifications. This cleady points out that
feature 2 is a poor feature.

The GFSMLP selects smaller number of groups from RS 14
data set than GFSRBF. Table IX shows the percentage of mis-
classification and the number of groups of features selected for
different number of hidden nodes for GFSMLP. Foreach archi-
tecture (a fixed number of hidden nodes), the average misclassi-
fications and average number of features selected for five inde-
pendent runs are reported in Table 1X, from where 1t s evident
that GFSMLP produces a poorer classification than GFSRBE
However, for all cases, our results are better than the result re-
ported in [26]. In [26], a misclassification of 21.8% 15 reported
on the test data. Fig. 6(b) shows the frequencies with which var-
ious groups are selected by GFSMLP. Here oo, the features
from the second sensor are selected the least number of times.
Hence, this result is also consistent with the results of the pre-
vious experiments on RS-Data.

. Wine

For Wine data set, a natural grouping of features was not pos-
sible. Thus, we considered 13 groups with one feature in each
group. We used 100 randomly chosen points from the data set
for traming and the emaining 78 points for testing.

We tmined GFSRBFs with different number of basis func-
tions. As shown in the first column of Table X, we considered
five different architecwres of GFSRBFE. For cach architecture,
we made ten independent runs of the network with different
initializations, keeping the training-test partition fixed. Table X
shows the average misclassifications along with their standard
deviations for ten independent muns of GFSEBFs with each ar-
chitecture. Similady, for GESMLP, we also considered five dif-
ferent architectures as shown in the first column of Table X1. For
each architecture, we made ten independent runs. The summary
of the runs by GESMLP s included in Table X1 Tables X and X1
show that the number of features selected by GESMLP is always
lovwer than that selected by GESREBFE. Fig. 7(a) and (b) shows the
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Fig. 6. Bar diagram showing the number of times each feature was selected for RS14 data set: (2) GESEBF and (b) GFSMLP.

TABLE IX
MISCLASSIACATIONS AND NUMBER OF GROUPS OF FEATURES SELECTED FOR RS14 Data SET Wit GFSMLP
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frequency distribution of the number of times ecach feature 1s se-
lected over 50 runs of GFSEBF and GFSMLP, respectively.

In [29], the average misclassification obtained after feature
selection using three different feature selection methods 1s re-
ported. They report results with three methods called relief (a
feature-werght-based statstical approach), IFN (an information
theoretic feature selection scheme), and ABB (a breadth first
search, backward selection algorithm). With Wine data set, they
report an average west error of 8.3%, 5.0%, and 21.7% on the re-
duced set of features using IFN, rehief, and ABB, respectively.
They use a decision tree as the classifier. With GFSRBE, we
obtain a mean test error (the mean of the entries of the fourth

column of Table X) of 3.28%, and with GFSMLPF, we obtain a
mean test error (the mean of the entnes of the fourth column of
Table X1) of 5.66%. This shows that our method produces com-
parable results with other state-of-the-art classifiers and feature
selection methods,

E. Breast Cancer

For the Breast Cancer data set, we randomly selected 500
points from the 699 points o use them as the mining set, and
the rest are used for testing. For this data set, we also tested the
performance of GFSRBF vsing different architectures. We con-
sidered networks with 5, 7, 10, and 15 basis functions. Table X1
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Fig. 7. Bar diagram showing the number of times each feature was selected for Wine data set: {a) GESEBF and (b) GFESMLP.

TABLE XI1

MISCLASSIFICATIONS AND NUMBER OF FEATURES SELECTED FOR BREAST C

SNCER DATA SET WiTH GFSEBF
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Fig. 8 Bar diagram showing the mumber of times each featune was selected for Breast Cancer data set: {a) GFSEBF and (b) GFS MLP.

shows the mean misclassification and standard deviation for
ten independent runs of GFSRBF for each architecture. It also
shows the average number of features selected.

Table XII reveals that the performance of GFSRBF on this
data in terms of misclassification and the number of features
selected does not vary muoch with the change in the number of
basis funcboons. The bar diagram in Fig. 8(a) shows the number
of times each feature 15 selected for 40 muns.

Table X111 shows the pedommance of GESMLF on the Breast
Cancer data set. Here also, the same protocol 1s followed as in
case of the GFSEBF network., We considered GFSMLPs with
5.7, 1), and 15 lidden nodes. Here too, we find that the per-
formance 15 quite stable with respect to changes in the number

of udden nodes. Fig. 8(b) depicts the frequency of the selected
features over 40 runs. Fig. 8 weveals that GFSRBF completely
rejects feature 4, while features 2,36, and 7 are always selecied.
Omn the other hand, for GFSMLF, feature 9 15 the keast important,
and although feature 6 appears o be the most important, there
15 no feature which 1s always picked up by the network. This
reemphasizes that vulity of a feature s dependent on the ma-
ching learning tool that 15 used o solve the problem.

Here too, we compare our methods with the results reported
in [29]. In [29], a test error of 6.0%, 6.4%, and 6.4% 15 reported
on the Breast Cancer data set using a redoced set of features
obtained by IFN, relief, and ABB, respectuvely. Using GFSRBE
we obtain a mean misclassification (mean of the entries in the
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TABLE XIII

MISCLASSIFICATIONS AND NUMBER OF FEATURES SELECTED FOR BREAST CaAnCER DiaTa SET Wit GFSMLP
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fourth column of Table XI1) of 1.071%, and vsing GFSRBF, we
obtlain a mean misclassific ation (mean of the entriesin the fourth
column of Table XI1) of 1.28%.

F. Evaluation of Features

We now try toevaluate the guality of features that are selected
by GFSRBF and GFSMLP. We use the Wine and Breast Cancer
data set for this purpose. We again demonstrte here that the
suitability of the featres depends not only on the data but also
on the learning machine. We trmin conventional MLPs and con-
ventonal RBFs with all the features presentin the data and also
with the features selected by GFSMLP and GFSRBF and com-
pare their performance.

For the Wine data set, a GFSRBF selects, on average, 6.16
features. Thus, we take the six most frequently selected features
as shown in Fig. 7ia) as the features selected by GFSRBF for
the Wine data set. These selected features are 1, 2, 7, 10, 12,
and 13, For the Wine data set, the GFSMLP selects 4.82 (=2 3)
features on average. Thus, the GFSMLP selected features are 1,
2.8, 10, and 13 [as evident from Fig. 7(b)]. Similardy, we get
the GFSREBF selected features for the Breast Cancer data set as
1,2.3,6.7, 8, and 9 and the GFSMLP selected features as 1, 2,
G, and 8.

For the experiments, we use the same trining lest partitions
as vsed in the previous experiments. We use the Mathworks
neural network woolbox implementations of RBF and MLP. For
MLPF, we use sigmoidal activation functions and the frainfm al-
gonthm for training. The Mathworks neural network toolbox

implementation of RBF takes the same spread for all basis func-
tions. We experiment with spreads ranging from 0.1 1o 10 with
an mcrement of (L1 and report the best result that we obtain.

Table XIV depicts the results of a conventional MLP when
run with different hidden nodes on different sets of feaures of
the Breast Cancer data set. For each architecture, five indepen-
dent runs are made, and the average percentage of misclassi-
fications on the training and test data along with the standard
deviation are reported in Table X1V, The last row of Table X1V
shows the mean test errors using the different sets of featres.
Table X1V clearly shows that an ordinary MLF produces smaller
testerror on the GESMLP features for all four different architec-
tures that we have tned. When MLPs are trained with features
selected by GFSRBE the west result s slightly worse than what
is achieved with all features. This reemphasizes the fact that fea-
tures selected by GFSRBF are good, but they are the best with
RBF. Table XV gives the results of a conventional RBF on the
same set of features. Here, we see that the performance of an
EBF network 1s almost the same on both featres selected by
GFSRBF and GFsSMLP.

Tables XVI and XV display the results on Wine data set
for MLP and RBF on different sets of features. As expected,
here too, we notice that, on average, an ordinary MLP performs
better with the GESMLP selected features and an ordinary RBF
network performs better with the features selected by GFSEBF.

V. DISCUSSIONS

We discuss some of the features and limiwtons of the
methods proposed here. In order 1o analyze the behavior of
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our schemes, as discussed in the Introduction, we characterize
features (or groups of features) as essential features, redundant
features, derogatory or bad features, and indifferent features.
Essential features are those that are necessary for the task at
hand and any reasonable feature selection method should select
them. The bad features are those which linder the learmng and
must be discarded. By redundant features, we refer o those
features, all of which may not be needed for the task at hand,
but some of them are required. In other words, we can consider
the set of redundant features as a set of good features, but not
all of them are required to solve the problem. The indifferent
features are those which neither help nor cause any problem in
learning. For example, if a feawre has almost constant value for
all samples in the training set, then it is an indifferent featre.
MNext, we provide an example o illustrate our elassification of
the features.

Exampfe: Let us define a four-class problem with five fea-
tures: sex, height, weight, eyve color, and number of legs. The
four classes are chamcterized as follows:

Class 1ymale and short beight or low weight;

Class 2ymale and long height or beavy weight;

Class 3)female and short height or low weight;

Class 4) female and long height or heavy weight.

From the description of the four classes, it is easy to see thal sex
15 an essential feature and height and weight are good [eatures,
but if one of them 1s selected then the other 8 redundant. The
eve color 15 a bad feature as 1t does have a relation o the class
definmitions and 1t does not help o wentify the classes but adds
the dimension of the problem. The menber of legs 15 an indif-
ferent feature, as it takes the same value for all mdividoals/data
points.

Hence, the essential features and some of the good ones can
solve the problem and there could be more than one such choiee.

With these definiions in mind we review the behavior of our
networks, The proposed methods are primarily dependent on
eradient search. If a group of features can reduce the error faster,
its associated modulator 1s expected o change faster to enhance
its influence on the trmining error. Thus, if the training error is
low, we can state the following.

« Essential features are selected by the network; otherwise,
the error cannol be low.

« Derogatory/bad features (the features which hinder the
learning process) are not selected by the network because
the error cannot be low. Bad features cannot redoce the
training error; rather, they may increase the error. If the
traming tnes o set the modulators associted with bad
features to high values, then the error will stant increasing
unless all weights associated with those features are sel Lo
practically zerm values.

« Smee indifferent features cannot reduce the ermorn the
modulator values are not expected o change. Thus, these
features will not get mto the network because when the
traming starts all features are treated as nol important.

« Some redundantcorrelated features, however, may getinto
the network as we do not penalize the network il it selects
more features.

To summanze, we can say that the proposed schemes will be
quite effecuve in selecting essential features and eliminating bad
and indifferent features, but the selected feature set may contain
some correlated (redundant) features. Moreover, depending on
the initialization, the raining may converge Lo a poor minimum
(very high training error) and in that case the selected features
are not likely to be good ones. Usually, such a situation does
not anse but if it does, it 15 not difficult to deweet and discard
that solution. Finally, if there are several subsets of features or
several subsets of sensors that can solve the problem equally
well, our system can pick up any one of them depending on
the mitialization. In other words, depending on the initialization,
different set of features/sensors may be selected by the system
in different runs. This phenomenon 1s evident from some of our
experiments, for example, from Figs. 4 and 6-8, we see that the
network selects different sets of features in different runs but
each run produces an acceplable and comparable training error.

V1. CONCLUSION
Many real life applications use data from several sensors for

decision making. Intelligent sysiems for automatic inspection
and controlling of welding, medical diagnosis, and controlling
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of range safety for missile testing are some such examples. Typ-
wcally, each sensor output 15 converted into a set of features. For
example, X-ray radiograph may be used o compute a set of fea-
tures for weld imspection. More sensors mean more cost, more
processing time, and sometimes more hazand (X-rays), and they
do not necessarily lead to a better performance. Therefore, if we
can reduce the number of required sensors, we can save cosl,
time, and design complexity, and sometimes minimize the risk.
This 15 a very important problem but not addressed in literature.
In this paper, we provide some novel solutions o this problem.
In particular, we achieved the following.
1y We proposed two schemes for solving these problems. One
scheme 15 based on the RBF framework and the other uses
MLP.
2) Both schemes are capable of selecting useful groups of
features (sensors ).
3) Both schemes can also select individual features,
43 We proved that both GFSEBF and GFSMLP have the uni-
versal approximation property.
5) Our experimental results reconfirm that the importance of
featres depends on the tool used to solve a problem.
6 Our himited expenments show that GESMLP usually needs
lower number of features w do a task than GFSEBF.
In near future, we would hike o extend this concept 1o the neu-
rofuzzy framework.

APPENDIX
UNIVERSAL APPROXIMATION PROPERTY OF GFSREBF

The unmiversal approximaton property of RBF 15 well known
[16]. [40]. If ~; = I, then GFSRBF reduces 1o RBF. How-
ever, during the training process, 7; usually takes values in
[{.1]. Therefore, it is necessary to check the universal ap-
prosimation propery of GFSRBF. Unless, GFSRBF has the
universal approximation properly, it may not be able to learn
the inpul—outpul relation for all functions and thus may not be
able w do the GFS task, so we check this propery here.

We consider the GFSREBF network for function approxi-
mation (Le., the one without the sigmoidal nonlinearity in the
output node) with a single output. The prool can be casily
extended for the multiple output case.

Definition: Let ¥« BY and (7 be a family of functions on
A with values in ®. Suppose that for all &,y £ X, such that
x # y. there is a function f £ {7 such that fiz) £ fiy): then
we say that 7 is a separating family of functions on X [17].

Letz = {s'. 5" ..., &) We define a function family & as

H P il - .
1_[ |:r*.xp {— —”HI :ni I }:| &
! -

7l

iy —

I
e WY z}u_.; =p7 e L], rei
il

Nexl, we prove a few lemmas conceming the function family &,
Lemma [ 415 a separatmng family.
Proof: For any i fal.af ... .8 and iy

(st.a5.....80% € X, if & . then there exisls an i,

0w <2, such that si = s‘;. Without loss of generality, we as-
sume &) 7 8l Pickany ¢ € B with +, J 0 00 gl ) 7 e,
then it is done. If giiz) = dfwal, let

il

1 2™
. o1 —m

ilEL) = [exp 7
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then m! is equidistant from both 8} and 3. Let #it’ be such that
it 1s not equidistant from both s} and #.. As 5] # =], then !
always exists. In ¢, replace m! by ' and call the new function
o, Then, dim) ) #£ &l

If

12 i [ i

L N ||l#z —

N |4 —

52

4

X[ i |eEp

52

then select #ie such that it is equidistant from both st and &3 so
that @i e rU':r-; Thus, < is a separating family.
Lemma 2: ® contains the function 1.
Proof: A functon ¢ © b with +; =
function 1.
Lemma 3: I gy & &, then " £ & forany v & K.
FProof: Consider

0, %7 1s the

. N2y
! ”31 — !
ofzl =] |exp 5
. ¥
P
then
e
f ||4‘r-J - m.-f”
T IES L - _ =
palx; —H 1 —
il "

Hence, (i) o o,

We will now prove the universal approximation property of
GFSREBF vsing Stone-Wierstrass theorem.

Stone-Wierstrass Theovem [17]: Let X be a nonvord com-
pactset and {7 a separating family of functions on ¥ containing
the function 1; then for any continuous real-valued function
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Fig defined on X, and for any « = 0, there exists a polyno-
mial pia} D70 w (i)™, where g (i € (7 such thal

sup d| Sl — pigh e e N} < e

Let us denote the network output by £ FSREFE, for an
x— (8.8  _..&'] = B In other words
; it 2 i
e : & — ¥
GFSRBF[z) = Z'!.I':g ]_[1 ] —T

1) Theorem: For any given continuous function | on the
compact set X B and arbirary ¢ > ()

hu.p{ Jiz! — GFSRBF ) == (8", 4% ... J'r;l = _Y} < g,

Proaf: 1t direetly follows from Lemmas 1-3 and the
Stone-Wierstrass theorem.

Universal Approximation Property of GFSMLP

The universal approximation property of MLP with sigmoidal
activation functions 1s well known [18]-[21]. [30]. Here, we
show that adding attenuation functions in the input layer does
not affect the universal approximation property of an ordinary
MLP.

For convenience, we assume one feature in each group. The
net mpul o neuron § in the hidden layer 1s

wety =Y wiglwidy (29)
-
where I, is an attenuator of feature &, Note that if the groups
contain more than one feature, then the attenoators for features
in the same group will be the same. We can consider the atten-
uators as parts of the weights connecting the input to the first
hidden layer. Thus, we can say

W =, b (30
and

el = Z Wi (31)

s0 the net input to a node in the first hidden layer remains of the
same form as that of a conventional MLP. However, the weight
Wy, is composed of two parts wyy and F;, where both s and
F; are adjustable, w; i 18 unrestricted n sign and magnitude, and
45 ¢ L1, For any trained MLP, if we consider W ;s 1o be the
weights connecting the inputs and the nodes in the first hidden
layer, then a decomposition as in (30) is always possible with
the trivial choice of #; = 1,945, Thus, the GFSMLP is equiva-
lent toan ordinary MLF, and hence the universal approximation
property would be retaimed.
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