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Abstract
searching in self-organizing map (SOM )-generated code-
books. This method performs a non-exhaustive search of the
codebook to find a good match for an input vector. While per-
forming an exhaustive search in a large codebook with high

We propose a novel method for fast codebook

dimensional veclors, the encoder faces a significant computa-
tionalbarrier. Due to s topology preservation property, SOM
holds a good promise of being utilized for fast codebook sear-
ching. This aspect of SOM remained largely unexploited till
date. In this paper we first develop two separate stralegies
for fast codebook searching by exploiting the properties of
S0M and then combine these strategies to develop the pro-
posed method for improved overall perdformance. Though the
method is general enough o be applied for any kind of signal
domain, in the present paper we demonsirate its efficacy with
spatial vector quantization of gray-scale images.

Keywords  Vector gquantization - lmage compression -
Self-organmizing map (S0M) - Topology preservation -
Fast codebook search

1 Introduction

With the advent of World Wide Web and proliferation of
multimedia contents, data compression technigues have gai-
ned immense importance. Data compression has become an
enabling lechnology for efficient storage and transmission of
multmedia data. Vector quantization [8] 15 known o be an
efficient method for data compression. The pedformance of a
vector quantzer (V) depends on two factors, the gquality of
the codebook and the time required for codebook searching
at the encoding stage. The sell-organizing map inroduced
by Kohonen [ 15] can be used for constructing a good quality
codebook. In this paper we propose a method which exploits
the properties of SOM for fast (non-exhaustive) codebook
searching withoul significant sacrfice in reproduction gqua-
lity. Here we work with mmage data only, though the method
can be applied w other kinds of data also.

A vector quantizer [8] Q@ of dimension k and size § can
be defined as a mapping from data vectors (or “points”) in
k-dimensional Euclidean space, R* inio a finite subset C of
RE. Thus,

Q: Rt

where C = {¥,.¥2, ..., ¥s5 | is the set of § reproduction vec-
tors, called a codebook of size § and each y; € Cis called a
codevector or codeword. Foreach y;, i e T ={1,2, .., 5}
is called the index of the codevector and T is the index seL
Encoding a data vectorx € R* involves finding the index j of
the codevector y; € { such that =¥l = Ix—¥ill ¥ &= J
and i, j € T. The decoder uses the index j to look-up the
codebook and generates the reproduction veclor y; comres-
ponding to X. The distorion measure d(X, ¥;) = [|x — ¥;|
represents the penalty of reproducing X with y;. Ifa VO mini-
mizes the average distortion, it 15 called the opumal VQ of
SIZE 5.
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The task of designing a V) is essentially finding a set of
codevectors for the encoder that partitions R* into S disjoint
regions or cells R;,i € T, where T = {1,2,...,.! St is the
index set, such that,

Ri={xeR" :Q(x) =y}

The decodermay be implemented asa simple lookup table
that selects the reproduction vectorcorresponding Lo an index
value produced by the encoder.

Vector gquantization has been vsed for image compres-
sion successfully by many researchers [2,3,10-12,17 .24,
25]. The oldest as well as most commonly used method
for codebook generation is the generalized Lloyd algorithm
(GLA) [22], also known as k-means algonthm. GLA 15 an
iterative gradient descent algorithm that tries to minimize an
average squared error distortion measure. Design of an opti-
mal V3 using GLA has been proposed and studied in [21].
Some of the other methods studied include fuzzy c-means
algorithms [4] and several other fuzzy vector quantization
technigues [12], stochastic relaxation technigues and simu-
lated annealing by Zeger et al. [28].

Kohonen's SOM [ 15] is & neural network technigque exhi-
biting several interesting propertes and consequently has
attracted attention of the researchers in the field of vector
quantization [2,24,27]. 50M 15 easy w implement and has
found numerous applications (for a list of references see
[13,26]). A discussion of general features of SOM algorithm
and their suitability with respect todesign of a codebook can
be found in [19]. In [6], Chang and Gray introduced an on-line
technique for ¥V design using stochastic gradient algorithm
which can be considered a special case of the SOM algo-
fthm and it is shown o perform slightly beter than GLA.
MNasrabadi and Feng [24] also used SOM for V) design and
demonstrated performance better than or similar to GLA.
Yair et al. [27] vsed a combination of SOM and stochastic
relaxation and obtained consistently better performance than
GLA. Amerjekx et al. [2] used Kohonen's SOM algorithm
to design a VQ for the coefficients of discrete cosine trans-
form of the image blocks and further compressed the output
of V() encoder using entropy coding. In [19], the present
authors used SOMs for designing V) and proposed a novel
surface-fitting method for refining the codebook for achie-
ving better psychovisual quality of the reproduced image.
Howvever, all the above works use 50M for generating good
codebooks. To the best of our knowledge, no attempt has
been made ull date wo exploit the properties of SOM directly
for designing fast codebook searching methods.

In Sect. 2 of the paper, we desenbe the codebook design
scheme wsing the SOM. Section 3 covers the encoding
methods indetail, we report the experimental results in Sect. 4
and Sect. 5 concludes the paper. Throughout this paper we
use peak signal to noise ratio (PSNR) [ 8] as the perfformance
measure of the V().

2 Codebook design

To generate the image (feature) vectors an i x w image is
divided into p x g blocks. The pixel values in the p = g
image block are presented in row-mgajor fashion to form the
feature vector X. Thus, each block 1s represented by a vee-
tor x € R*, where k = pg and each component x; of x
represents the value of (lexicographically ordered) i-th pixel
in the block. Further, to enhance the reproduction quality,
we use the mean-removed or residual vectors [8,19] in the
computations.

The 50M 15 a two-layver competitive learning network,
where the outpul nodes are armnged over a regular (usoally
square or hexagonal) display (also Known as output) lattice.
During the traming, when a tmining vector 15 presented o
the input layer, all the output nodes receive the same input
through weighted connections. The node having the weight
vector which matches best with the inpul vector, becomes
the winner node for that inpul. Next, the winner node and its
neighborng (according w their positions on the display lat-
tice) nodes are updated o move closer to the input. The pro-
cess is repeated several times over the whole training set. At
the end of the training the distribution of the weight vectors of
the SOM nodes resembles to a high degree 1o that of the trai-
ming data set. This is known as the density matching propery
of SOM. This property enables the SOM algorithm 1o gene-
rate a high quality codebook. Further, the tramed 50M exhi-
bits the property of topology preservation. Due 1o topology
preservation, the imput vectors close to one another, usoally
have best matching weight vectors, e, winner nodes those
are either the same or near-by over the display lattice.

Including the neighbors of the winner node in update
process (also known as neighborfood wpdate) 15 the most
distinctive feature of SOM. It sets SOM apart fromeonventio-
nal clustering algorithms (e.g., k-means, fuzzy c-means) and
other competitive learning networks (e.g., adaptive resonance
theory (ART) based networks). The neighborhood update
process causes the topology preservaton and density mat-
ching properties of SOM while retaining the good clustering
ability common in competitive learning networks. It can be
thought as the emergence of a global (network-wide) orde-
ring of the nodes through local learning (within the neigh-
borhood). The tained SOM generates a topology preserving
mapping of the input data onto the network lattice. This is
the property of SOM that we exploit the most in the methods
proposed in this paper. Further, density matching property
enables the SOM nodes to capture the statistics of the training
data. For a detailed general description of 50M algorithm see
[15] and for the same in context of vector quantization see
[19].

Here we design the codebook by tramming a 2-D SOM
with a set of training vectors from a set of lraining images.
As explained above, afler training, the set of weight vectors
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of SOM nodes form the basic codebook (or super codeboolk).
Since each of the weight vectors is uniquely associated with
a node in the display lattice, they can be indexed by 2-uples
of the form (x, v) representing the positions of the node in
the SOM latice.

3 The encoder

Apart from finding a set of good codevectors, the V) per-
formance depends crucially on the size of the codebook and
the dimension of the vectors. The inpul space can be repre-
sented 1o a finer degree by increasing the codebook size.
Further, the ¥V works by directly exploiting the intra-block
statistical dependencies. Therefore, a larger block enables
the quanteeer o exploit the statistical dependency existing in
the data to a greater degree [B]. However, using large num-
ber of codevectors and high dimensional vectors introduces
a serious performance bottleneck on the part of the encoder.
Given any vector o be encoded, the encoder has o search the
codebook for the best matchmg codevector. Thus, w make
full search of a large codebook with high dimensional vectors
the encoder hits a serious complexity bamrier.

To circumvent this difficulty many technigues have been
developed. These wehmgues apply varwous constraints on the
structure of the codebook and use suitably aliered encoding
algorithm. These techniques can be divided ino two major
categories. The memorvless VQs perform encoding/decoding
of each vector independently. Well known examples in this
category include tree-Structured VQ (TSVQ), classified VQ,
shape-gain VO, mulistage VO, hierarchical VQ ete. Methods
in the other category depend on the past information (thus
having memory) for their operations. Prominent members
include predictive V), recursive or feedback V), finite stale
VO (F5VQ) ete. Comprehensive reviews of these methods
can be found in [1,8,9]. All these echniques are aimed at
reducing the codebook search complexity without a signifi-
cant loss in reproduction guality. Among some of the recent
works, in [20] Lai and Liaw developed a fast codebook sear-
ching algonthm based on projection and triangular inequality
that uses the features of vectors o reject impossible codes.
In [14], a method for designing predictive vector quantizer
using deterministic annealing is proposed. An approach o
design an optimal FSVQ is proposed in [ 7], Interestngly, in
this paper the codebook is built using the SOM algorithm. A
novel method of designing TSV can be found in [3].

If SOM is used w generate the V) codebook, it implicitly
mtroduces some constraints through neighborfiood update
dunng the training resulting in Some inleresting properties
including topology preservation. Due 1o the wopology preser-
vition properly, the vectors close in the input space are repre-
sented by the weight vectors of the nodes those are close in

the SOM lattice. We exploit this property of the SOM in the
search method proposed here.

3.1 Searching the codebook

We design and analyee two strategies for searching the code-
book in a restricted manner to reduce the search complexity.
The first one uses the basic SOM generated codebook and
exploits its topology preservation property. Some prelimi-
nary results for strategy 1 are reporied in [18]. However,
in case of derailment it performs an exhauwstive search of
the codebook, thus increasing the computational complexity.
This shorcoming 15 overcome by combining it with the stra-
tegy 2 proposed here. The second stralegy uses a smaller
S0M along with the basic codebook. The smaller S0OM 15
trained with the codevectors of the basic codebook and we
shall callit Level2-S0M (L2-50M). Then we propose acom-
bined method that uses the L2-50M and the basic codebook
and utilizes the topology preservation property of the basic
codebook, thus exploiting the best features of strategies 1
and 2. 1t should be noted that the strategies 1 and 2 are also
independent methods for searching the codebook. Here we
call them strategies simply to differentiate them from the
final method that combine both of them. The methods are
described below.

311 Strategy 1: Restricted window search over SOM
lattice

This strategy is fashioned after finite state vector quantizers
(FSV(Q) [B]. FSVQs belong to a more general class of V(Js
known as recursive or feedback vector quantizers. Given an
input sequence of vectors X,, n = 1,2, .-, the encoder
produces both a set of code indexes wy, = 1,2,. ... and a
sequence of states S, = 1, 2, ..., whichdetermines the beha-
vior of the encoder. A FSVQ) is chamcterized by a finite set
of K states 5 =1{1,2, ..., K} and siate wansition function
Flue, &) Given the carrent stale s and lastcode mdex w, when
presented with the next vector x of the input sequence, the
FSV(Q) enters a new state determined by the stale transition
function fiw.5). Associated with each state 5 15 a smaller
codebook Oy, known as state codebook for state 5. The search
for the codevector for the new inpul X is now restricted 1o C,
which 15 much smaller than the full codebook, also known
as super codebook, O = | ), .g Cs. Obviously the major chal-
lenge in designing a FSVOQ involves the design of the state
transition function and finding the codebooks comresponding
Lo cach state.

One of the simplest and popular technigues for finding a
nextl-state function is called conditional histogram design [8].
This approach s based on the observation that each codeword
is followed almost invariably by one of a very small subset of
the available codevectors. This happens due to existence of
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high degree of cormelation belween successive veclors in an
input sequence. Thus the pedformance of the V) should not
degrade much if these small subsets form the state codebooks.
So, the training sequence is used 1o determine the conditio-
nal pmobability p(f | i) of generating the j-th codevector
following the generation of i-th codevector. The state code-
book for state i of size N; consists of the N; codevectors {y;}
with highest valoes of p(j | ). However, with this design,
especially for data outside the training sequence, the optimal
codevector may lie outside the state codebook. Thus often a
threshold of matching is used. If no codevector with match
exceeding the threshold is found in the state codebook, the
system 1s sad o “derail’ [7]. In such a sitwation usoally an
exhaustive search over the super codebook is performed for
re-initializing the search process.

In the codebook generated using SOM algorthm, the
nodes are located i a megular 2-D lattice. Each node in
tum is an image of a prototype or codevector in the lattice
space. Thus, the 2-tuple describing the position of the cor-
responding node in the SOM lattice can uniguely identify a
codevector. Further, due to topology preservation property of
S0M, the nodes nearby on the lattice plane encode vectors
with higher similarity than the nodes which are located far
away on the latice. In image compression (or more general
signal compression) problems the successive source veclors
in the input sequence are usually highly comelated. Thus,
the best-matching codevectors representing them are also
either same or very similar. This in turn is translated into
the best-matching codevectors being represented by SOM
nodes which are close to each other on the lattice. Thus, if
the codevector for an input vector corresponds 1o a node ¢ on
the lattice, then the codevector for an adjacent block is likely
Lo be within a small neighborhood N of . In other words,
in the FSV() sense, the set of codevectors whose images are
contained in the neighborhood N, form the state codebook
associated with f{r — 1, 8(r)), where ¢ is the codevector
chosen for (¢ — 1)-th source vector. It s to be noted that here

ne extra computational effort is vequived to form the set of

state codebooks. They can be identified unambiguously due
to the regular lattice structure of the SOM output space, and
efficacy of their use is based on the wpology preservation
property of SOM network.

Now o formulate the search method we define a search
window size 5, x 5, and a quality threshold T For the first
vector an exhaustive search is performed and the index in
the form of (xy, yy) pair is generated. For the subsequent
k-th vector x; the search is performed among the nodes on
the SOM lattice falling within the search window centered at
the node (xp—1, vp—1 ) Cwe call it the previous index). Due to
topology preservation property of SOM and the characteristic
similanty between neighboring image blocks there 15 a high
possibility of finding a good match within the window. If
the best match within the window exceeds the threshold T,

then the index (xg, v ) of the corresponding node is selected;
otherwise, rest of the codebook 1s exhavstively searched 1o
find the best match. Now (xg, v ) becomes the previous index
for (& 4 1)-th vector. Thus we can identify the full codebook
generated by the SOM as the super codebook of FSVQ), the
current states as the predecessor index (xp— . vp—1 ), and the
state codebook as the set of codevectors within the SOM
lattice window of size 55, x 5, centered at (xg_y, ye—1).

There are two issues to be taken care of. The first one
concerns the case when the previous index is close o the
boundary of the SOM lattice and the window cannot be cen-
tered at it. In such a case, we align the edge of the window
with the edge of the lattice. The second issve relates to the
image blocks at the beginning of a row of blocks, ie., the
blocks at the left edge of the image. Since the image blocks
are encoded in a row-major fashion, for other blocks the pre-
vious index comesponds 1o the index for the immediate left
block. For the lefimost blocks we use the indexes of the lefi-
most blocks in the previous row (i.e., the block at the top of
current block) as the previous index.

There is also a design issue regarding the choice of the
window size as well as the quality threshold T. For a given
threshold T, smaller window sizes will reduce the window
search time, butl the instances of derailment will be higher
Again, for a fixed window size, the higher the threshold, the
more is the instances of derailment. It is difficult o predict
theoretically suitable choices of these parameters since that
will require the knowledge about the distribution of the code-
book vectors over the SOM lattice as well as the distribution
of the image vectors being quantized. In the ‘Expenmental
results” section we have presented some empineal studies
regarding the choice of these parameters. Below we present
the strategy 1 in analgorithmic form. Searching for the best-
matching code for inpul vector X; among a set of codevectors
& 15 denoted as (x;, vi) +— BestMarchi(x; : 5), where the
output {x;, ¥ ) 15 the SOM lattice position of the best mal-
ching code.

Algorithm: Strategy 1
Input:

SOM codebook C of sizem x n
Search window size 5, ® 5y
Cuality threshold T as PSNR value over image block
Sequence X = X, X2, ... Xy} of mage vectors o be
quantized.
Begin
Fork — 1N
do

- ifk=1 then

= {xp, vi) — BestMatchixg : C);
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- else
= Compute the search window over the SOM
lattice w. r. L. (xgp—1. ¥e—1);
Let the set of codevectors within the window
be W
= (xg, vi) — BestMarchixg : W),
- if PSNR(¥(q v Xe) = T then
o (tp, Vi) — BestMarch(x, - C — W)
o if PSNR(Yix, v %) =
PSNR(¥(;, 3, %) then
- Xk, ¥e) — (£, )
- k—k+1;
End
Ot

Sequence of code indexes {{x, w) |1 =k = N}

3.1.2 Strategy 2: Codebook searching with L2-50M

The efficacy of strategy 1 depends on its rate of success in
finding the successor code within the search window sur-
mounding the predecessor code. Failing o do so requires
exhaustive search of the codebook. Since the window size is
significantly smaller than the size of the full SOM codebook,
even a relatively small number of exhaustive searches can
affect the overall search complexity significantly. The cases
of derailments can be atiributed to several factors. Firstly,
though neighboring image blocks are more often than not
highly correlated, there may be significant number of dissi-
milar neighboring blocks in the image. Secondly, the quality
of the topology preservation achieved by the SOM degrades
if there is significant difference between the dimensions of
the data and the display lattice [23]. This is often ermmed in
SOM literature as the dimensional mismatch. In this case, we
train a 2-D SOM with a complex data of quite high dimen-
sion. Thirdly, as discussed earlier, the parameters of the algo-
dthm, the window size and the guality threshold affect the
frequency of derilments. What 15 more intemesting, a signi-
ficant fraction of the derailments could be false derailments.
These cases happen when the best matching code 15 within
the search window, but the matching guality does not satisly
the gquality threshold. In that case, though a full seqach is per-
Sformed, the code found during the window search is finally
selected. This can happen frequently iff we set the quality
threshold reasonably high o ensure good reproduction qua-
lity.

From the above discussion, it becomes evident that if a
lowe-cost method For addressing the issue of deraillment can
be found, the codebook search can be made considerably

faster. To devise such a method we draw upon the ideas of
classified VQ (CVQ) [ 8] from design perspective and on hie-
rarchical SOM (HSOM) [16] for implementation. In 8 CVQ)
the codebook is partitioned into a set of classes. The set of
codevectors belonging 1o a class has a high degree of simi-
larity among is members. Each class has one representative
codevector. Searching the codebook for an input vector X is
performed as follows:

— Find the best-matching vector among the set of class
rEpresentaive s.

= Select the best-matching codevector from the partition
comesponding to the best-matching class representative.

Generally in CVQ, various clustenng methods are applied
to build the partition (i.e., the classes) of the codebook. On
the other hand, in neural network literature, the HSOM 15
used to speed-up the search for the winner node in a large
SOM. Several SOMs are arranged in a hierarchical fashion.
Each node in a higher level SOM comresponds 1o a subset
of nodes in the larger next level SOM. The winner-search
starts with finding the winner node in the highest level SOM
and proceeds o the next level by confining the winner-search
within the subset of nodes associated with the winner node
in the previous layer. The higher layer SOM is ofien built in
a bottom-up fashion by training it with the weight vectors of
the next layer SOM.

Here we take a similar approach by training a smaller
SOM, which we call the Level-2 SOM (L2-50M) with the
codevectors of the basic SOM codebook. The basic codebook
is partitioned into sets Pys of best matching codevectors for
each of the weight vectors of the L2-S0M. In other words,
the set of weight vectors {w;} of L2-50M induce a partition
{5} of basic SOM codebook C such that

ldiyr —wi) < diyr —w;)| ¥w; € {wil. ¥y e Py

These two SOMs can be used independently for implemen-
ting a memorviesy fast codebook searching method on their
own. We distinguish this method as strategy 27, The search
method can be formulated as follows:

Given an inpul veclor X 10 be quantized

1. Find the best-matching weight vector for x from
L2-50M.

2. Select the best-matching codevector for x from the
subset of basic SOM codebook corresponding o
the best-matching L2-50M node.

We present below the strategy 2 in an algorithmic form.

Algorithm: Strategy 2
Input:
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L2-50M
Partition {P;} of basic SOM codebook C (ie., P =i
- th node of L2 - SOM,) and U Pi=C

B lﬁl"p-ll.,'.‘. =
Sequence X = {x), %, .. . Xy} of image vectors to be
quantized.

Begin

Fork «— ltwo N

do
- winnery «— WinnerSearch(x; : L2 — SOM);
= (xg.¥p) « BestMarch(xXy : Pyippen );

End

Oyt

Sequence of code indexes {{x, vi) |1 =k = N}

3.0.3 Combined method: Restricied window search with
L2-80M {ook-up for re-initialization

As we have stated earher, we intend to enhance the search
performance of strategy 1 by augmenting it with a low-cost
solution for re-initialization of the search after a derailment
occurs. To find a good codevector after a derailment, a memo-
ryless search technique (of which the exhaustive codebook
search is the simplest but most expensive altemative) needs
to be employed. The index of the current codevector then
servies as the previows index for the next input, and thus the
restricted codebook search can be resumed.

Instrategy 1, we have used the exhaustive codebook search
for addressing the derailment problem. However, the strategy
2 described above is 8 memoryless and non-exhaustive code-
book search method with significantly lower search com-
plexity. Thus, this search technigque can be used wvery
effectively 1o address the derailment problem in strategy 1.
Therefore, we design our final combined method by pedor-
ming the SOM window search as in “strategy 17, for finding
the codevectors in general, while we employ the L2-50M
{ook-up based codebook search for (1) finding the first code-
vector and (2) finding the codevecior when derailment
occurs. The method isdepicted below in an algorithmic form.

Algorithm: Combined ( Final) Method
Input:

SOM codebook C of size m = n

Search window size 55, * 5y

Cuality threshold T as PSNE value over image block
L2-S0M

Partition {7 } of basic SOM codebook C

Sequence X = {x), X2, ... Xy} of image vectors o be
quantized.

Begin

Fork «— 1toN
do
= ifk=1 then
= winnery +— Winner Searchi(xg : L2—50M);
= (g, vi) — BestMatch(Xy : Puinner, );
= else
—= Compute the search window over the SOM
lattice w. © L. (xp—1, ¥e—1);
Let the set of codevectors within the window
fe W
= {xp, vi) — BestMarchixg - W);
- if PSNR(¥ix ). %) = T then
o winner, «— WinnerSearchi(xg : L2—50M);
o (xp, Vi) «— BestMatchix; :'f-"",,-mwl}l:
o il PENR(Yiy v %) =
PSNE(¥3, 40 %) then
- (X, ¥r) (e, F):
-k —k+1:
End
Output:

Sequence of code indexes {{xg, ve) | 1 =k = N}

314 The search complexities

In strategy 1, the reduction in search complexity depends on
the success rate of finding a suitable codevector in the search
window without derailment which necessitates full codebook
search. Let py be the probability of derailment for a veclor
%; £ X to be coded. Then the number of search for encoding
A5 given by

N W]+ IC] pa. (1)

where | W] and |C] are the sizes of search window and code-
book respectively. Clearly, py depends on the window dimen-
sion 5, % a5, the SOM dimension m x i, the quality threshold
T and most crtically on the sequence of inputl veclors x;.
There is no straightforward way of computing it. Only a
rough estimate can be formed empirically using the training
data.

For strategy 2, the search complexity depends on the num-
ber of nodes M of the L2-50M. Let us assume that all nodes
of the L2-50M are equally likely to be winner. Then each

node of the L2-SOM has (1)

main codebook. Thus for an input vector x; € X, the cost of

number of codevector of the
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finding a codevector is given by 3.2 Transformation and Huffinan coding of the indexes
M ICI 4 Foracodebook generated with an m = n SOM the components
T M (2) of indexes vary from O to m — 1 and 0 to n — 1 respectively.
However, due to the topology preservation properly, eéven
and cost for encoding X 18 without restnicting the search, neighbormg image blocks are
mapped nto nearby nodes mthe SOM lattice. So instead of
IC] using the absolute values of the coordinates, if we express the
0% | M M (3) " jndex of a vector in terms of offsets from the previous index,

Based on the above analysis, we may express the search
complexity of the combined method as:

IC]
Nwl+ M +=) pa 4
+( +M)p.r (4)

It is evident that since | == M << |C|, for all practical
purpose, (M + %l) <<= |(|. Hence, computation cost given
in Eq. (4) 15 much less than that given in Eq. (1).

Other than search complexity, another interesting charac-
teristic of the above methods can be observed. The basis of the
search methodis) developed here is twolold, (1) successive
signal blocks to be gquantized possess high degree of simila-
ritweorrelation and (2) as a wesall of topology preservation
praperty of SOM, similar mpul vectors are represented by
weight vectors of same node of SOM or nodes close to each
other over the SOM lattice. Therefore, we usually find best-
matching codevectors for successive nputs corresponding o
nearby nodes over the lattice plane. Thus, if we express the
sequence of code indexes as the sequence of 2-tuples of offset
vitlues over the SOM lattice, the smaller values will dominate
the distribution of the offset values. This might kead to design
of a good entropy coding scheme for the index values. This
characteristic is likely 1o be further enhanced when the search
is restricted o asmaller window over the lattice asin the stra-
tegy | and the combined method. In the experimental results
i(Fig. 4) we have provided a comparison of the distribution
of the offset values for the methods discussed here.

1.e., {.-.';‘, _vi‘}l = (Xp — Xg—1. ¥r — ¥r—1) then .-.'i‘ and _1.';‘ are
more likely to have small values. Figure 1 depicts the histo-
erams of the index components expressed as offset values for
512 %512 Lenaimage for aVQusing 32 x 32 30M with 8 = 8
blocks (1.e.. 64 dimensional vectors) employing exhaustive
search. For restricted search the distobution 1s expected o
have even sharper peak around (0.

Clearly coding of indexes in terms of offset values will
allow s toperform efficient Huffmancoding. However, using
offset values stretches the range of index component values
from —(m — 1) to {m — 1) and from —(rn — 1) o {n — 1)
respectively. Hence we need more code words. We can res-
trict the range of the offset values within 0w (m — 1) or
in — 1), whichever is greater, if the index values are further
transformmed mio {.-.'1", _v;“'}l as follows:

= Ifxf =0thenxy =ux
= (therwise .-.'E“ = .-.'i“ + m
- Ity = 0then w =7

= Otherwise _1.':' =y +n

Figure 2 depicts the histogram corresponding to the trans-
formed offsets for the Lena image (comresponding o the index
offsets shown in Fig. 1).

The decoder computes the index values (xgp, i) from
{.-.'i" . _\'i"}l as follows:

I .-.': = {m — xg_)then xp = xp_1 + .-.'i“

Otherwise, xp = X1 + (xf —m)

If yg =(n—y,_y) then yp =y + ¥
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Fig. 2 Histogram of the transformed offset values for exhavstive
search vector guantization of the Lenaimage. The frequencies depicted
for each value is the sum of x and y frequencies

—  Otherwise, vi = w1 + {_1,-;:' —n)

In our scheme we have used mean-removed vectors, Thus
we need o store/transmitl the block average corresponding

to each index. For achieving efficient Huffman coding of

the average values also, here we use a difference based value
transformation scheme developed by the authors and reported
in [19]. The scheme exploits closeness of the average values
of neighboring blocks due to their high correlation.

4 Experimenial resulis
As wehave stressed earlier in the paper, we expect the propo-

sed method to work efficiently with a farge codebook consis-
ting of high dimensional vectors. Our expernmental protocols

have also been selected o reflect the above characteristics of

the V. In our experiments, we have tmimed a 32 = 32 S0M

Table 1 Comparison of V)

with training vectors generated from a composite of sixteen
256 level images each of size 256 % 256, This results inalarge
codebook with 1,024 codevectors. Further, we use image
blocks of size 8 = 8, which makes the dimension of the vee-
tors 64, Wereport the test results with three 512 = 512 images
Lena, Barbara and Boat. In the training set 16 images of size
256 x 256 are used. The expenmental setup for the mesulls
reported here are as follows: The search window 15 sel o
8 = 8 and the quality threshold T 1s setat 30 dB PSNR. A
6 = 6. Level-2 50M 1s trmined with the 1024 codevectors in
the basic codebook. The experimental results for strategies 1,
2 and the combined method are summarized in Table 1. Note
that, the strategies 1 and 2 are fully implementable resricted
search methods on ther own,

In Table | the search complexity 15 expressed in terms of
the number of codevectors examined during the search pro-
cedure. For the exhaustive search, for 4096 blocks noa test
image the number of codevectors examined is 4096 x 1024 =
4194304, For the restricted search methods the complexily
is expressed as percentage of the number of codevectors
examined with respect o the exhaustive search (shown in
parenthesis). It is evident from the results, that compared to
the exhanstive search all the three proposed methods sub-
stantially decrease the search time without any significant
sacrifice in the reproduction guality. The reproduction quality
of the SOM-based Vs with exhavstive search are studied
in detail and compared with existing methods in [19]. The
exhaustive search results are better than those reportedin [19]
for the same block sizes. This is due to the use of larger code-
books in the current work. The stmlegy 1 nearly halves the
search complexity with neghigible decrease in PSNR values
for all images. Strategy 2 reduces the search complexity for
all the imagesto 15-16%, 1.e., V/6-th with drop of PSNR 0,37,
.26 and 034 dB for Lena, Barbarm and Boal respectively,
compared 1o the exhanstive search. The proposed combined

with exhanstive search and Image Search PSNR Naow of distance caleulations Compression
restricted searches (Strategies e thaod (dB) (% wert exhaustive search) ratio (hpp)
1.2 and the combined methaod)
Lena Exhaustive 28.95 4194304 0227
Strategy 1 28.82 1993984 (47.5%) 0218
Strategy 2 28.58 6R7393 (16.4%) 0.226
Combined 2847 472071 (11.3%) 0218
Barbara Exhaustive M.37 4194304 0.231
Strategy 1 2434 2710144 (64.6%) 0227
Strategy 2 2411 654899 (15.6%) 0.232
Combined 2409 604710 (14.4% ) 0,228
Boat Exhaustive 26.97 4194304 0207
Strategy 1 26.93 2348224 (56.0%) 0.203
Strategy 2 26.63 656693 (15.6%) 0.207
Combined 2661 512804 (12.2% ) 0,203
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(1) Exhaustive search (h)strateqy 1

{d) Conbined Mathod

(C) Btrategy 2

Fig. 3 The reproducedimages fora exhanstive search, b SOM window
search (strategy 1), ¢ Level 2 50M search (strategy 2) and d proposed
commbined search method for Lena image

method reduces the search complexity to about 11% with
PSNR decrease of 0.48 dB for Lena, to about 14% with drop
in PSNR of 0.28 dB for Barbara and to 12% with loss of
PSNR 0.36 dB for Boat. Thus the comparison of strategy 2
and combined method reveals asignificant decrease in search
complexity for the combined method with a very little sacti-
fice in quality.

The compression ratios reported here are the final values
with Huffman coding of the tansformed index offsets and
the difference coded block averages. As can be seen from the
results, strategy 1 and combined method produce almost the

same compression ratio for all images while the exhaustive
search and strategy 2 results show marked similarity in com-
pression ratio. This is the consequence of the restriction
imposed on strategy 1 and combined method through the
use of the search window. Figure 3 shows the reproduced
Lena image quantized using exhaustive search YV, strate-
zies 1, 2 and combined method in the panels (a) to (d) res-
pectively. Visual inspection reveals almost no difference of
quality among them. Figure 4 shows the histograms of offset
values (for each offset value x and v frequencies are shown
side-by-side) for the methods swdied.

The Fig. 4a and 4¢ show marked similarity while 4b and
4d are almost identical with more concentration of the offset
values at and around zero. This explains the higher compres-
sion rates achieved by the strategy 1 and combined method
due to more efficient Huffman coding of the indexes.

Now we compare the overall performance of the three
schemes based on the three factors, namely reproduction
gualiry, search complexity and compression ratio. Strategy
1 has the best reproduction quality (see Fig. 3) as well as its
compression ratio is either lowest (for Barbara) or the same as
that of the combined method. However, it has a much higher
search complexity compared to the strategy 2 and combined
method. Strategy 2 reduces the search complexity to a great
extent with a slight decrease in reproduction quality, but it
has compression ratio higher than strategy 1. The combined
method reduces the search complexity further with negligible
decrease in reproduction quality, but achieves low compres-
sion ratio similarto strategy 1. Thus, considering three factors
together the combined method outscores both strategy 1 and
strategy 2 when applied separately.

As mentioned earlier, for the design of the encoder, the
choice of the search window size s, % 5, and the guality
threshold T play important roles. We have conducted an
empircal study by designing the YV (the combined method)
with various choices of the search window sizes and qua-
lity thresholds, and collected the statistics for quantizing the

Fig. 4 The histogmm of offsel el (a) : : 3 15 i)
vitlues. aexhanstive search, i &
b SOM window search (strate gy i B
1, ¢ Level 2 30M search b g
(strategy 2) and d proposed e
combined search method for ) ]
Lena image. x and y values are a0
grouped for each value N |
<l -0 r ar. dr) -3 A1 i ar dr:
1000 () 1700 )
&
X0
&N
=IK1
U - 5
P
] L L a =
A0 -0 c e an 3 -at 1 ar ar
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Fig. 5 Variation ofnumber of distance calculation with search window
size and quality threshold for quantizing Lena image
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Fig. 6 Variation of reproduction quality (measured in PSNER) with
search window size and quality threshold for quantizing Lena image

Lena image. In Fig. 5, the variation in number of distance
caleulations fordifferent window sizes and quality thresholds
is depicted. It can be observed that for both increase of win-
dow stz as well as threshold value, the distance computation
mereases. However, the variaton 1s much less with respect
Lo threshold value compared o the vanation with window
size. This clearly indicates the strong possibility of finding a
eood match within a small window. In Fig. 6, the variation of
the reproduction gquality 15 presented. Here it 1s evident that
the quality threshold has more influence on the reproduction
quality than the window size. Figure 7 depicts the frequency
of Level 2 SOM searches caused by the derailments. This also
indicates a greater influence of the quality threshold than the
window size.

5 Conclusion

Kohonen’s SOM is used by several researchers for designing
the codebook of a vector quantizer. However, these methods

Fig. 7 Variation of number of level 2 S0M searches (e, derailments)
with search window size and quality threshold for quantizing Lena
image

are restricted mainly o the use of SOM as a clustering
algorithm. In this work, apart from utilizing the clustering
properly, we exploited the other notable property of topology
preservation Lo formulate an encoding method with reduced
search complexity. First we designed two separate strategies
using SOM for fast codebook search. The first stralegy used
the main SOM generated codebook and exploited the topo-
logy preservation property by restricting the codebook search
to a small window. This strategy is designed in line with the
finite state VQs without explicit calculation of state code-
books. However, exhaustive search of the codebook is per-
formed when a good match is not found within the window.
Evidently, each exhaustve search requires |C| distance caleu-
lations, The second strategy uses along with the basic SOM
another smaller SOM (L2-50M ) rained with the weight vec-
tors of the basic SOM and produces a partition of the code-
vectors. This strategy does not exploit the topology preser-
vation property but partitions the codebook into smaller sub-
codebooks. Thus, for every codebook search on the average
M+ ]%l distance calculations need to be performed. Finally,
we proposed a method that combined the best features of
both strategies, i.¢, the L2-50M as well as restricted search
within a window, to deliver best overall performance. Thus in
the combmned method, the decrease in the total cost of derail-
ments with respect o the strategy 1 is ([E."r - (M -+ l—%))pﬂr
distance calculations. The use of SOM and restricted search
combined with suitable transformations of index values and
block averages enabled us to apply Huffman encoding to
enhance the compression ratn withoul compromising repro-
duction guality.

The choice of two design parameters, “the search window
size” and the “guality threshold™ influence the computatio-
nal load of the encoder significantly. However, our empirical
study shows that the mte of increase in computational load
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with increase of quality threshold for a fixed window size is
much greater than that when the threshold s kept constant
and window size is increased. This indicates that if a match
satisfying certain threshold is o be found within the search
window, more often than not it is found within a small neigh-
borhood of the previous index. Thus this finding also indicate
the suitability of SOM-based codebook search methods pro-
posed m this work.
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