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Abstrace—In this paper. a generalized statistical tool is intro-
duced to estimate key frames in a video sequence. The tool works
hased on the inter-relationship between different features of image
frames in a video. The image feature vectors are plotted in feature
space as points and a randomness measure is determined from
the distribution of these points. The randomness measure of the
feature vectors is defined with respect to simulated random point
patterns and expressed as a probability value of a frame being a key
frame. Since, depending on the video content more than one inter-
relationship of featurescan be used to determine a single key frame,
different probability values are derived to support a frame as a key
frame. To integrate these probability values a combiner model is
designed to uniguely decide the status of a key frame. The combiner
model is based on the Dempster-Shafer theory of evidence. To
demonstrate the idea, randomness measures, and consequently
the probabilities of a frame to be a key frame, are obtained sepa-
rately from spatial domain and frequency domain features. The
combined probability value enhances the confidence in selecting a
frame as a key frame. The result is tested on a number of standard
video sequences and it outperforms the related approach.

Index Terms—Dempster—Shafer (DS) theory of evidence, key
frame, spatial randomness measure.

I. INTRODUCTION

HE estimation of key frame in a video sequence is an im-
Tp-uruml research topic for various reasons. The content in
key frames can be used for video indexing for applications like
content-based video retrieval. Key frames are also used in de-
signing MPEG based codecs and streaming media applications.
In this paper we present a key frame estimation technigue.

As the name suggests, key frames in a video sequence are
those frames where there are significant changes in the image
content. Therefore, methodologies developed for key frame es-
timation have attempted 1o capture the significant changes be-
tween consecutive frames [2], [6], [8]. Naturally, the technigues
for key frame estimation focus on defining image features that
can eslimate significant changes in between-frame image con-
tents. For example, while one methodology utilizes optic flow
[4] to estimate change in motion energy between frames, an-
other rehies on an ensemble of features ke the change in mean
and variance of a local image neighborhood, motion vecors ele.

[5]. However, most of the existing technigues for key frame es-
timation are application specific and select features suitable for
that particular application, for example, detecting key frames in
videos of technical presentation [2] or for a surveillance system
[8]. In contrast, our focus 15 to develop a generalized applica-
ton-independent tool for key frame estimation, where a statis-
tical technique is used suitable for a wide range of image fea-
tures and a variety of applications. Some of the relevant existing
technigues for key frame estimation are discussed and our con-
tribution 15 highlighted in the next section.

For the proposed echnigue, mer-relationship between dif-
ferent image features, which estimate intra-frame or inter-frame
signmificant changes, 15 visualized as point patterns distributed in
the feature space. We have quantified the measure of significant
change of image content through a measure of randomness of
these point pattem in the feature space.

The spatial distrbution of feature vectors is lested against
a set of simulated feature population generated randomly [1].
In case the distribution of feature vectors agrees with that of
the simulated random points, we conclude that the relationship
between features 15 mndom. The randomness of every image
frame is quantified after calculating the extent of the deviation of
the feature vector distribution from the simulated random point
patterns. Naturally, the higher the randomness, the higher s the
chance of the frame o be a key frame.

For a robust inference of a randomness measure, a number of
inter-related feature modules are used o generate the random-
ness measures. 1L is as if a number of experts are looking at the
video and different experts are assigning different randomness
measures o a potential key frame. Naturally, there exists a need
to design an infrastructure to unify these different randomness
measunes. Inorder o do that, we have used the Dempster—Shatfer
(DS) theory of evidence [3]. The DS theory combines different
randommness measures into one confidence value of randomness
based on which key frame 1s detected.

The pnmary contribution of this work 15 i melaung the
randomness measure of the spatial point pattem with the key
frame estimation problem. The quantified randomness measure
15 expressed as a probability value that indicates the potential
of a video frame as key frame. The second contribution is in
the use of DS theory in unifying randomness measures or key
frame probahility values derived from different feature vectors.
Note that unlike Bayesian technigues, no a prioet knowledge or
model of the key frame 15 used in the decision fusion process.

In the next section, we discuss some of the related works on
key frame estimation that motivates us o develop an applica-
tion-independent generalized framework for key frame estima-
tion. In Section 11, we mirodece the model o measure random-
ness that quantifies the significant change in the content of video
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frames. In Section IV, the randomness measures, derived from
different sets of inter-related features, are integrated using DS
theory. Results and discussions of the proposed approach are
given in Section V followed by conclusions.

1. RELATED WORKS

Existing techniques for key frame estimation exploit different
image features o measure changes in the content of an image
frame in a video. The most common feature is 1o quantify the
difference of image frame information and this is utilized by
Stringa and Regazeom [8] to detect key frames in g movie s¢-
quence for a survetllance system. They have determined key
frame on the basis of the change of feature values in some re-
zions of interest in consecutive video frames. The pixels in the
frame difference image are used as features. If the changes in
features remain afmost unaliered for a certain perod of tme
then the initial frame where the feature values have changed
is wken as key frame. In a related context, Ju eral [2] have
designed a key frame detection system for movie sequences
showing technical presentations. Detected key frames are the
unigue slides shown in the presentation whose contents do not
vary significantly over a cenain time period baming few minor
changes. The authors assume an affine transformation model
for unskewing between-frame changes. The key frames are de-
tected after combining heuristics related 1o presentation tech-
nology and comparing changes in unskewed frames.

From a different perspective, changes in video content can be
analyzed by extracting the between-frame motion information
of significant image segments. Wolf has estimated the key
frame by analyzing between-frame motion information using
optical flow analysis of the image sequence [10]. The sum
of magnitudes of the optical flow components of each pixel
is computed for each frame and plotted in a graph apainst
their respective frame number. Key frames correspond to the
local minima points of optic flow magnitude graph having
neighboring maxima on both siles.

Optic Nows are also used by Luietal [6] todetect key fmames
in a long video sequence. The average magnitude of the mo-
tion vector 15 multiplied with the dominant motion direction ob-
tained from the optic flow 1o estimale the perceived motion en-
ergy (PME), which is taken as the main feature for key frame
detection. The frame from which PME staris to accelerate, or
the frame from which PME starts deceleration, 18 taken o bea
key frame.

The scheme in [4] equally subdivides the total span of a video
into subshots such that the between-frame feature variations
within subshots become minimum. As per definition in [4], akey
frame has the least feature variation with respect to features of
other frumes within a subshol. Optical moton, mean, and van-
ance of pixels in a local neighborhood are taken as features for
comparison of frames within a subshot. In a partial modifica-
tion Lo this approach, an itemtive scheme 15 implemented whene
the number and length of the subshots are decided iteratively to
make feature variation within a subshol minimal [5].

Overall, key frame estimaton is implicitly motivated by the
segmentation of between-frame information. The features of
this segmentation and related motion information govem the de-
termination of key frames. In [8], the values of the pixels in the

areas of mterest are compared against a threshold. In [2], [6],
and [10], consisiency of the optical motion 15 checked whereas
in [4] and [5]. feature variation within a video shot is used for
key frame estimation. The application domains of [2] and [8]
are very focused whereas treatments in [4]-[6] are more gen-
eralized. In the proposed approach, our focus is 1o exploit the
ensemble of features and their relations so that a generalized
tool for key frame estimation can be developed. The key ques-
tion is how this generalization could be achieved. The use of
a spatial randomness measure [1] of feature point pattern pro-
vides a generalized ool toquantify the randomness of an image
content. To the best of our knowledge this is the first attempt
where the randomness measure 15 used in video content anal-
ysis. Since our approach of assigning a frame as key frame de-
pends on the randomness measure of the frame, an important
question 15 how toseta threshold valoe for the mndomness mea-
sure o mark a frame as a key frame. We have used the concept
of DS theory to answer this problem by combining the deci-
sion making process of several rmndomness measure modules.
The design of our system is such that it is capable of accepting
and unifying different heterogeneous feature modules compared
to making a decision based on any specific set of feares or
usmg an apphcation-specific threshold. Before we explain the
randomness measure unification in Section 1V, we present our
approach of deriving randomness measure from image features.

1. RANDOMNESS MEASURE
As noted in the introduc ion, we derive asetol image features
either from a single video frame or by comparing a pair of em-
porally apart video frames. The relationship between the image
features is visualized as point pattern in the featre space. Ran-
domness of this pomt patiem s measured as described next.

A. Mode!l of Randomness Measure

Let us present the concept assuming two image features 7
and . Assume a 2-D feature space where othogonal axes are
represented using [~ and (7. The spatial distribution of feature
K

veclors 15 given by (-'r[i:.:;:n—"-:n.u‘ where {ju,qr:: AT
image point, 1 < 3 <0 e and [ < g < ¢ for an image [ having v

rowvs and o columns. Naturally, (f.‘

3 : G
. 2 : 7
A -fw.o: 15 a point in 2-D

feature space. For every leature p-r.yin[, its distance from rest of
the points in the feature space is compared against a set of preset
distances. Let v be the nearest neighbor distance of a feature
point from the ith point of the remaining population and the
feature population at a distance less orequal 1o a preset distance
i from the «th point is given by #0040 For e such feature
points the total feature population within a preset distance g 15
givenby %0 fian £ ). Given this, the spatial distnbution of
the feature points is defined as

Gi=n VY #iy < g (1)

The feature space is nomalized 1o a unit square region. Hence,
the distance ¥ is incremented by a preset value from (0 1o 42
iwhich is the length of the diagonal of a unit square). Note that
i includes duplicate distances as every feature point pair s con-
sidered twice in caleulating neighborhood distances.
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Equation { 1) finds the ratio of number of points within a given
neighborhood of feature points with the total number of feature
points 1. Therefore, €3y is sre-length vector where i is incre-
mented e times between 0 and 2. The vector (ﬁ;uﬂ denved
from image data is known as empirical distibution function [ 1].
The extension of the analysis based on (1) 1o more than two fea-
tures 15 straightforward. The algorithm below can llustrate the
above process.

step Ve y o Ik

for s 1 to v

§ = o slep;
=1
fory = liwn

a1

S =g i points within the circle of radius g centred at point
S
end

iy A7)

end

Gigh 4Giing 1. m}

As mentoned carher, we need o cormelate the empincal dis-
tnbution function f?[;,r] against a set of simulated feature points
generated randomly. The spatial distribution of these simulated
random points can also be analyzed in the same way as(1) based
on inter-point nearest neighbor distance measure. The distn-
bution of random point pattern obviously depends on the total
number of points » within a given feature space (in this case a
unil square or hypercube).

Given the area of feature space as |A|. the distribution of »
arbitrary simulated points within a distance y (or within a cirele
of area 7y ) of a specified point is modeled as [1]

I:,-.:'I'rrl':'g-.l'_:I =iz [.1 = WIIQ ‘._]'l_l.].lll‘_J r [2}

The occurrence of points 15 assumed mdependent. Asin (1), the
distance iy alsoranges between 0 o 2. Assuming i 1o be fairly
large and A =+ |.-"1|_- . the model of (2) can be redrafted as [1]
fa iy /1 o ).'.'r-_a,uz:l. (3
Intuitively, as the preset distance o 18 ncereased in the model
(3), more and more points in the feature space are being in-
cluded within the distance and .y} approximates towards
unity. Also, as number of points « is increased in a given fea-
ture space A, the value of A increases, and for a given preset
distance u., Oy ';,IJ should saturate towards unity. This scenario
15 well captured by the model shown in (3). For key frame esti-
mation, we correlate empirical distribution {.:F[ ylagainst s, [y
for randomness measure of the feature points. I &, (i) repre-
sents an ideal mndom population, the queston is whether & N
is compatible with 7y, lfj-;.'_] or not. This issue s discussed next

B. Test of Randomness

While populating &' [+] following (3), a number of simula-
tions are executed for each of the neighborhood distance speci-
fied by 3. Since vi numbers of feature vectors are derived from
the image data, each simulation generates v random populations
distributed in a unit square (assuming feature space is 2D). If
there are ¢ numbers of simulations, then distnbution function
for simulated data points is expressed as the mean of {0l

&
Gyl o« 1y Gyl (4)

a1

€50y s caleulated following ( 1) but for the random population.
Again the range of ¥ is fixed between O 1o 2

With this observation what we get is two sets of distibuo-
tion: re-length (ﬁv‘(yj denved purely from image feature vec-
tors and wo-length Gy derived from s number of random point
sels closely approximating (3). Totest the randommness, we need
Lo comelate [':3[_1.;] and a[y)‘-. The higher correlation between
C:T':?f,'_‘_l and Gy indicates that feature calculated from a partic-
ular video frame or from a pair of frames are spatially random
in feature space.

For each of e neighborhood distances of y for the mndom
points, we can evaluate

i
Lyl = mini iy}

(5a)
[ 5h)

s O (0

for +=1,2,3,... 4

The parameters I7 () and L (i) are upper and lower envelops of
€1y, respectively, derved from the simulated data. For a par-
ticular ., if (ﬁv‘['.r;} is either less than L [y) or higher than £ [0,
(i) is considered significantly away from the €y} and not
considered random. This may be mferred as the feature vectors
having clustering tendency. Incase | w115 within the envelopes
that is having close correlation with Gy, the image features are
randomly distributed, which we need o quantify as discussed in
the next section.

C. Quantification of Randomness Measure

As noted in Section U1-B we are comrelating values of (?I:yj
and Ty atdifferent preset distances. If their values agree (that
is closer to each other) at different preset distances, we assume
that the feature pomt distribution generating (i':y:l is random.
Note that our objective is not to find an overall relation between
{?Ii'_n\',.':l and (7} but to look at their values at discrete intervals
of w. The objective in this section is 0 quantify the agreement
or closeness of values between GIL;.',') and -(:"{g,-']_ Of course., as
noted i Section [HI1-B, Ifj'l:],r: valves outside the upper and lower
envelopes are not at all considered as random.

The measure of departure w] 1) of (?I:y;] from the mean spatial

randomness characterieed by C."!fg,r;l can be expressed as [1]

uill = [ {_(;‘(yj — iy g i6)
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Extending (6), the measure of departure o can be recalculated
for the entire simulated feature points generated for (7,

il fl = [{G_I.-I_’_i;:: i":fj-[-;,u‘_l}ﬂ.-f?; fr 7=1.223.....5. (D)

The modified mean of disribution of random population
(7;(y is calculated excluding the data from jth simulation:
Gilui=1{s 11 '35 .. Giiyi. The measure of departure
2u( 1 gives the degree of departure of jth simulation from the
mean of all the other simulations (that is baming fth simu-
lation). To determine the extent of randomness in the image
features, we would like o investigate the rank » of w«(1] in all
the i §) values.

To caleulate v, unigue «j} values are sorted in ascending
order. The position of «f ) closest to «i 1] magnitude is the rank
of w1 ;. The rank r of 1 1] is expressed as the probability of the
image features in th frame being random

i

pilp e B (8)

Ha

If the image data is derdved from KLth frame in the video se-
quence!, p{f) is the probability that the fth frame is random
given that &, numbers of unique w71 values are obtained in
total » number of simulations.

Before we explain how pik) can be utilized to decide key
frame let us take an example to understand how inter-relation-
ship of features can be used to measure randomness. ldeally, the
use of both spatial and frequency domain features are a belter
choice to measure the significant change in the content of image
frames. In the following sections, this is analyzed.

0D, Estimation of Randomness Using Spatial Domain Feature

Let us take the example of billiards video sequence.
Fig. lia)—(c) are the first, third, and the tenth frames of the
sequence, respectively. Cleardy, there is significant change in
image content between Figo 1a) and (¢) compared o almost
no change between Fig. 1a) and (b). Fig. Lid) s the absoluwe
temporal difference of the frames of Fig. 1(a) and (b). The
spatial domain features, average intensity and busyness of in-
tensity defined within a 3 » 3 image mask, are evaluated on the
frame difference daw of Fg. 1(d). The busyness of intensity is
the absolute sum of consecutive pixel differences within 3 % 3
image mask. The consecutive pixel differences are calculated
both along horizontal and vertical directions [7]. The frame
matrix is of size 73 x 110 pixels and it generates 7668 number
of 2-D feature vectors after ignoring border rows and columns.
These image features are plotted as point patterns as shown
in Fig. 1(f) with @ and y axes representing average intensily
and busyness, respectively. The randomness of the frame is
estimated from the distribution of these point patlems.

Following (1), f_:‘[:_;.':: is calculated after varying + between
o 2 taking vn WM. Again, following Section [I-B, after
100 simulations to generate random point pattern, Gy’ is eval-
vated and ploted (along y axis) as broken-line curve against

IIn case & and (& 4 Tith frames are used to denive feature vectors, pik’
indicates randomness of (& — 1th frme.

]
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Fig. 1. {a) Frame #01. (h) Frame #03. (c) Frame #10. {d-{e) Absolute tem-
poral difference of Frume #01 and #03 and Frume #01 and #10, respectively.
{Fr-(g) Distribution of 2-0 spatial domain feature vectors of Fig. Wd) and (),
respectively. (hi-(i) Plot af Gy versus O w0 for Fig, 1E and {g), respectively.
Black diagonal curve: complete spatial mndomness (C5R). Star-marked curve
and circle-marked curve: upper and lower envelops. Broken-line curve: empir-
ical distribution function (EDF) plot.

Gﬂ'{y} (along o axis) as shown in Figo 1h). Ideally the diagonal
ling in Fig. 1(h) signifies maximum randomness or complete
spatil randomness (CSR). For every nearest neighbor distances
{which is 100 numbers in between 0 and +2), the maximum
and minimum of (7 (y]) for 5 = 1,28, ... 100 as derived in
(5) gives upper and lower envelopes. The broken-line curve of
Fig. 1{h) furthest from the diagonal and above the upper enve-
lope, shows the relationship between feature patterns derived
combining frames () and 3 versus Oy’ based on 100 numbers
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Fig. 2.

respectivel y.

of mndom sitmulatons. Clearly, the observation rejects the hy-
pothesis that the temporal variation between frames 0 and 3 is
random. This 15 cormoborating with the visual imterpretation.

The identical experiment is carried out between the frames 1
and 10. The temporal difference image between Fig. 1(a) and
(c)is shown in Fig. lie). The distribution of 2-D featre point is
shownin Fig. 1({g). The corresponding plot of (ﬁ;uﬂ versus (717
is shown in Fig. 1(i). Notice the broken-line curve is well within
the upper and lower envelope, closer o diagonal. This s a clear
indication that the change in the scene content between frame
1 and 10 is significantfy random. This is also conforming 1o the
visual test and the obpectve measure of randomness 15 detailed
below.

We have evaluated the measure of departure from ideal spa-
tially random point patterns as givenin (6). For the temporal dif-
ference image of Fig. 1(d), the departure measure is 1.54 %10 °
while that for the Fig. 1{e)is 49138 x 107 . The comesponding
rank of the measure of departure with respect o the simulated
point patterns is 100 and 48 for Fig. 1{h) and (i), respectively.
The rank 100 of measure of departure of feature pattems of
Fig. 1(d) means that the pattem are least random comesponding
to all the 100 simulated set of point patterns.

We now show the use of randomness measure for frequency
domain features in wavelel space.

E  Estimation of Randomness Using Frequency
Domain Features

In this module we have used both low and high frequency fea-
ture spaces of wavelet transform [9]. Each frame of the video se-
quence is subjected 1o Haar wavelet transform. After first level
ol decomposition, low-pass—low-pass (representing spatial in-
formation of the image after low-pass fillering along row and
then along column) and high-pass—high-pass (representing edge
information of the image after high-pass filiering along row and
then along column) frequency space points are taken as feature

iz LR s oa
| AU AT, s

{b)

{ak(h) Distribution of 2D wavelet domuin feature vectors of Fig. d) and i), respectively. (cHid) Plot of ({y) versus Gri g for Fig. 2(a) and (b},

vectors. For N = & image, two N/¥ = N/2 feature spaces
are obtained afler using low-pass wavelet masks [ 1] and
[ ]TI, and high-pass masks 1 —1 and [1 -1 ]'J fol-
lowed by down sampling of number of rows and columns by
2:1.

Fig. 2(a) and (b) are distibution of point patterns where
points are feawre vectors representing  low-pass-low-pass
(ploted along w-axis) and high-pass-high-pass (plotted along
iy-axis) coefficients of images of Fig. Lid) and (e ), respectively,
after one level of Haar wavelet transformation. Fig. 2ic) and (d)
are comesponding plots of randomness measure with respect 1o
100 sets of simulated rmndom feature vectors. Cleardy, plot of
1’;‘{:.';'] VETS LS E;I:.:i‘)';' in Fig. 2(d) represents higher randomness
compared to that in Fig. 2{c). The ranking of the randomness
measune using wavelel features for Fig. 1(d) 1s caleulated as 96
while that for Fig. 1ie) is 47 testing against 100 sets of random
simulations.

As mentioned in the Inroduction, vadous feature modules
similar w the ones developed in this or previous section may
be employed to derive mndomness measures and corresponding
probability values to declare a frame as key frame. In the next
section, we investigate how these probability values are inte-
erated so that key frame can be detected with higher confidence.

IV, INTEGRATION OF RANDOMNESS MEASURE

In the previous section, randomness of image content is quan-
tified through the estimation of mnking parameter gk ). Since,
the randomness measure depends on the type of features and
the methodology used to caleulate randomness, 1t s logical 1o
experiment with a number of inter-related features 1o measure
randomness. Altemately, we may hypothesize that no one par-
ticular set of feature measure and/or randomness test is abso-
lute to determine a key frame; rather & combination of features
should work better. Determining and subsequently fusing pi )
based on different sets of features add on to the robusiness of the
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Fig. 3. Schematic for combination of differsnt feature modules wsing DS Theory.

inferencing system. Moreover not all features may be sensitive
Lo randomness test all the tmes and this may as well depend on
vaned contents of image sequence.

This 1ssue can be viewed as if a number of expernts are de-
termining the randomness of the image content. And the final
decision is taken only after fusing the opinions of all the expens
as visualized in Fig. 3. We have used the DS theory of evidence
to integrate different g0k values due o different set of features
i order to geta unwue randomness ranking of each frame of the
video sequence. Note that we have not used any a prioei knowl-
edge of the possible location of key frame in video sequence.
This s unlike vsing Bayesian techniques where a priovi knowl-
edgeis used. The DS theory provides an advantage that accuracy
of each expernt or feature-processing module may not be known
precisely. The DS theory can combine evidences or beliels so
long at least one evidence 15 common between the experts [3].
The different decision making modules for key frame estimation
also generate evidences or beliefs independent of each other,
which is why DS theory should be fit for combining beliefs from
multiple independent sources. This 1s very relevant for image
feature based key frame estimation problem.

Given a set of randommness ranking [k} for &th frame we
first map them into a belief funcion that determines support for
fth frame to be a key frame. This is described in the next section.
In Section IV-B, the belief functions are combined based on
which key mme 15 determined.

A, Mapping Randomness Measwre to a Belief Function

We have referred each set of mter-related features as a
module. Each module generates g %) which is the degree of
support given by the particular module for selecting &th frame
as key frame. Naturally (1 — (k)5 is the lack of confidence
in declaring kth frame as key frame. The possibilistic vector
representing decision altematives for selecting a video frame
as a key frame is {p (&Y 00K where (kY = [1—w(k))
is complement of g (&), This possibilistic vector will be used
to assign a belief or probability o an event where evenls are
generated due to the uncertamnty associated with declaring a
frame as a key frame. Note that this uncertainty is due to the
performance of a particular randomness measure module.

Let # be thissetof events, often referred as a frame of discem-
ment. In this context § consists of two events { oy, eu } where
and oo represent that a particular frame 1s a key frame or nol,

respectvely. While assigning a beliel or probability o these
events as noled in the Tast paragraph, three situations can happen
due to the uncertainty associated with the result of the random-
ness measure module. A probability can be assigned to the oc-
currence of event {r }, or {m b, or {ry, 00, the last one being
the degree of 1gnorance as from this partcular assignment, be-
lief or evidence inindividual assignment of (o] or {cz} cannot
be inferred determinmstically. All these three possibilites can be
defined using the power set ' [ of @, So, the belief or basic
probability assignment function y can be given by [3]

¥ PO — 0] (9

where 3 [ = 0, 3 -, w2 =1, 4 © '8} The probability
assignment y () signifies the degree of evidence supporting the
claim that the true hypothesis belongs o the set 3.

To consider &th frame as key frame, given & — ] and
possibilistic vector {p (&), p &0k, the algorithm for belief or
probability assignment is given by the following.

I ip (h) =700, v (dm by = pll v#) = Bk and
widl =098 e P e et

Note, 3 (91 = 7k signifies the extent of ignorance and to
mintmize this ignorance, we take the help ol another expert or
feature module for the key frame estimation problem. Similarly,
if{pik) < pilil oy Hret) = pikloy (8 = piljand 3 (51 =
s Pl J0 et

For the situation, p (&) = ity ({n )] =
and 5 4% L

Obviously, the last situation points o most confusing state.
Onee the beliefs are assigned from different independent mod-
ules, the behiels need o be combined together as discossed in
the next section.

X}y =0

B. Combination of Belief Functions

In Section 1V-A, the belief or probability assignment function
x¢ is evaluated from possibilistic vector {p (&) ik} of the
ith featwre module. For different feare modules, the integrated
joint probability assignment function %*7 is defined combining
results from independent feature modukes [3]

¥ =ateesyt

=S ' = {0 ) ™ o
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Fig. 4. {n)4bip k) and = (e poare plotted against image frames of Billiard and
Mews Video Sequence.

where, joint probability assignment function of ' and +* is
given by

Fe, oy 2iny
3ot

)L_ :: JI_,_‘.' — -:.lr.—.‘.’__}r |I-_.i'l J."II |:'IJ [11}
k. if 3= ¢,
Sets e i, and v are the members of PO and w7 v =

Mote that in (11), '{_1 ek and ;-;2 i~ are known from random-
ness measure modobes 1 and 2, respectively. Integration of prob-
ability assignment does not anse in case J = . The nommaliza-
tion parameter is definedas & =37 . ' ol x® (v} This
mformation aggregation rule is commutatve and associative.

Given the integrated probability assignment **, the ask s
to recaleulate the probability of each event, & and ¢ for the
problem of key frame estumation. This s achieved through pig-
mistic probability assignment [3]

s

= ¥ N0

NI =N

(12}

The o ':;f'{] 15 the probability assigned o element 2, 4 member
of the frame of discernment from integrated body of evidence
3% Note that as detailed in Section IV-A, the frame of dis-
cernment contains two evenls ) and o3 representing a framge
as key frame or not, respectively. A frame is declared key frame
i) =@ o) Incase =i )
siom can be taken and we have considered such situation o be
same as T (o] < w (e

e ) no conclusive deci-

The result of integration of randomness measures is shown in
Fig. 4(a) for billiard video sequence. The randomness measure
from spatial domain and frequency domain feature modules
as calculated in Sections 11-D and E are combined in this

example. The @ axis of Fig. $a) represents (mame numbers
whereas p(l) (for individual feature module) or = ) (after
combining two featre modules) values are plotted along y
axis. The star-marked and circle-marked curves of Fig. 4ia)
represent g4 values for average-busyness module and wavelet
based feature module, respectively. Both the spatial and fre-
quency domain features are evaluated on difference images in
the consecutive frames. The video frames are numbered from 1
and (&0 valves are evaluated starting from frame 2.

The integrated probability 7 (e values supporting the frame
as key frame are plotied in broken-line. Notice that for frame
positions close to9 and 12, individual p} &} value obtained from
each feature module has reinforced the final decision and the
combined probability 15 enhanced increasing the confidence in
the hypothesis that the respective frames are indeed key frames.
For the frame positions sround 14, the decision however reflects
that combination of feature increases the confusion. This is be-
cause two modules are arriving at a conflicting decision when
treated individually. To declare a key frame we have taken the
strict condition 5 (- ) = = (e ). Note that as noted in Introduc-
tion, we do not need any explicit use of threshold w find a key
frame. The process is also repeated for News video sequence
and the imtegrated probability shown as broken-line graph in
Fig. 4(b) agrees with the ground truth observaton.

Next we ke examples from a number of video sequences
and demonstrate the overall performance of our system.

V. RESULTS

The proposed methodology is tested on a number of standard
video sequences as listed in Tables 1 and 11, Out of the six video
sequences whose results are presented in this paper, only the par-
ticle video sequence 15 a synthete video sequence. Ineach case,
spatil domain feature module comprising average mtensity and
busyness and wavelet based frequency domain feature modules
are used. Consecutive frame difference images are wsed 1o cal-
culate the features. The results shown i Table 1 are obtaimed
after combining g k) values using the DS theory as derived in
Section V. The process of declaring a frame as key frame from
mntegraled probability 15 detailed in Section 1V-B.

We have compared our approach with the PME based ap-
proach [6] where between frame motion is estimated from
optic flow. As noted in Section 1, PME is calculated multi-
plying dominant motion direction with motion magnitude. The
local maximums of PME values indicate potential key frame
[6]. The comparison of the proposed and PME based approach
is described in terms of accuracy of detection of key frames
with respect o ground truths. The accuracy 15 specified as
the number of correctly identified key frames and accuracy
in correctly identifying the spatal location of the respective
key frames within a video sequence. Number of key frames
incorrectly identified is categorized either as false positive or
false negative. False positives are those video frames, which
are erroneously marked as key frames. False negative counts
number of tue key frames missed by the detection technigue.
The companson shown in Table 1 clearly shows that the pro-
posed approach outperforms the PME based approach. The
proposed approach has both low false positive and false nega-
tive values than that of PME based approach. Also, wowal count
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TABLE 1
PERFORMANCE OF THE PROPOSED APPROACH V15-3-V15 GROUND TRUTH AND [6)
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of key frames using mndomness measure 15 more consistent 1o
ground truth than that using PME.

For further objective comparison, false positive and false neg-
ative counts are expressed in terms of percentage error with re-
spect o the total number of ground truth key frames. This 1s
shown in Table 11, In case of false positives, where additional
key frames detected ermomeously are absent in the ground truth
data, a spatial accuracy 15 measured. The spatial accuracy 15 in
terms of number of (rames by which the false positive frame 15
shifted with respect to nearest ground truth key frame. Naturally,
a low value in this accuracy measure shows that false positive
(rumes are comparatively better approximatons (that 1s lempo-
rally closer) to actual key frames. Tablke 11 further supports that
the integrated randomness measure has identified better sets of
key fmmes compared o PME based approach.

The proposed approach has the promise of real ume use. For
demonstrating the idea the feature detectuon moduke employed
in this paper is ¢ 5%} However, use and integration of random-
ness measure can take the help of more computatonally and
space efficient features having better discrimination power. The
generation of random numbers for simulated data can be imple-
mented offline and only once for a sernes of video frames.

VI. CONCLUSION

The randomness measure derived from spatial amangements
of point pattem 15 successfully used for key frame estimation
problem in video. The feature vectors derived from video se-
quence are vsed o generate the spatial point pattern. The ef-
ficacy of the approach 15 in integrmtng mandomness measure of
different feature modules. This is more akin to practical decision
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TABLE 11

ORECTIVE COMPARISON OF THE PROPOSED APPROACH V15-2-V15 [6)

Algorithms Video Boquences Acenrasy i dercering key frames Falsc detection )
Aoenrasy in Accuracy in [Falsc [alse
Mumbet (4] Mixgiricn pogitive nerate
PrAE. hased Hilltards vicleo SO0 2 ER IR 000
uppreach [i] S UETICE
Pariiele video w152 1.43 i 1515
LTI
Tenmis vigea S04 233 TEAIG F0L 0
LUEETICY
Harvey vider 0957 1.57 A3 RIS R
sa]URTIC
Meows videa sequengse | 4923 1 14,28 3077
Forcman vidoo AL o
SofUsleg
Pripsmesd THillurds video 100 i) . 1.0
appraach e 1T
Particle video S0 4] n.en 0.
SCUSICE
Tenmis video 10 ] . M.
SELUE T
Harvey videwo WS | Lo 155
SeulE
Mo vaksn soguence | 992,41 0 1l 764
lsareTmian vl 10 | 7. n
S

making process where robust inferencing is the outcome of com-
bination of evidences or beliefs. This is particularly relevant for
key frame estimation or similar such problems where no one set
of feature can always have the most discriminating power. Com-
parison of the proposal with similar approach shows promise.
We are now investigating this technigque for shot boundary and
fade in and fade out detection in a video. Also, we are exploring
the use of mandomness measure in identfying the most active
content in a scene 50 that region specific coding scheme can be
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