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Abstrace—The present article describes a image segmenta-
tion technigque using Af-band wavelet packet frames features.
Those wavelet features are evaluated and selected using an
efficient neuro-fuzzy feature evaluation techniqu. Both the feature
extraction and neuro-fuzzy feature evaluation processes are
of unsupervised type. They do not reguire the knowledge of
number and distribution of classes corresponding to various
landcovers in remotely sensed images. The effectiveness of the
methodology is demonstrated on IRS-1A and SPOT images.

Index Terms— M -band wavelet packet frames, adaptive basis
selection, fuzzy feature evaluation index, neural networks, re-
motely sensed image

l. INTRODUCTION

WAVELET means small wave (oscillation), which has s

energy concentraled in timelspace). Wavelel tansform
is a tool for the analysis of transient, non-stationary, or lime
varying event. I 1s a two-dimensional expansion set for any
one-dimensional signal. The wavelel expansion gives bime-
frequency localization, which means most of the energy of
the signal is well represented by a few expansion coefficients.
Wavelel system also satisfies the multiresolution conditions.
This means that the lower resolution (coarser) representation
of a signal can be calculated from its higher resolution
information. Typically, the wavelet transform maps an image
onto a low-resolution image and a series of detail images. The
lowver resolution image s obtained by iteratively bluming the
original image; the detal images contain the mfommation lost
during this operation. The energy or mean deviation of the
detail images are most commonly used features for texture
based image analysis.

The major aim of the image processing fanalysis research is
to develop better tools, that may extract different perspectives
on the same image, 0 understand not only 1ts content, but also
its meaning and significance. However, no image processing
system can compete with the human visual system in lerms
of accuracy, bul it can easily outpedform the latter on the
observational consistency, and ability o carry out detaled
mathematical operations. With the passage of lime, image
processing research has broadened its approach from basic

pixel based low-level operation w high-level analysis, to have
a better semantic understanding of images. This is based on
the melationship between image components and their context.
What comprises an image, must be identified clearly before
any further attempt is made for its detail analysis.

Segmentation is the technigue for partitioning an image
space into a finite number of non-overlapping and meaningful
regions. The segmentation of different landcover regions pre-
cisely, in a remotely sensed image. This has been recognized
as a complex problem for a long time. Remotely sensed images
usually have inferior illumination quality and are mainly due to
different type of environmental distributions. Spatial resolution
of these images are also comparatively low. The natural scene
mostly containg many objects (regions), e.g., vegelation, waler
bodies, habitation, concrete structures, open spaces ele., but
these regions are not very well separated because of low
spatial resolution (spatial ambiguities). Momover, generlly
the gray value assigned o a pixel s due o the average
reflectance of different types of landcovers present in an area
that corresponds to a pixel. Assigning unigue class levels with
cerainty for all the pixel is thus a genuine problem of remotely
sensed images. Furey set theory provides a way of handling
this uncertainbes ina betler way.

Texture is a concept used o indicate some spatial propertics
of image regions. Most naturally occurring patterns and natural
surfaces exhibit texture. 1tis a fundamental charactenstic of an
mmage and plays an important role o the human visual system
for recognition and interpretation of images. Despite of its
pivotal role in the analysis of image data, there exist neither a
formal fprecise definition of texture nor an obvious quantitative
measure o characterize it Image texture can be gqualitatively
expressed in terms of coarseness, fineness, granularity, lin-
cation, randomness and smoothness. The analysis of image
texture content is extremely imporant in image analysis.
It requires the under-standing of how humans discriminate
between different wexture types and how to model algorithms
to perform image analysis task in a best possible way. An-
other important aspect of lexture is scale. The importance
of scale in texwre descripions is clear from the fact there
15 4 change in appearance of most extures when viewed at
different resolutions, and also during the empircal division
from macro 1o micro textures. Texture can also be defined as
a local statistical distribution of pixel pattern (micro region) in

server's domam. Psychovisual studies reveal that the human
visual system processes images in muluple scales The visual
cortex has separate cells that decomposes images into filtered
images of various band of frequencies and ordentation. Texture
is especially suited for this type of multiresolution analysis,



using both frequency and spatial information, because of its
inherent characteristics. During the past two decades, wavelet
analysis has become an important paradigm for multresolution
analysis, and have found important applications in vardous real
life applications, mnging from seismology o image analysis
and compression.

Remotely sensed images may contain imfomation over a
large range of scales and the spatial frequency structure also
changes over different regions (i.e, non-periodic signal). In
remole sensing perspective, the resolution of the imagery
may be different in many cases, and so il is imporant o
understand how information changes over different scales of
imagery. These reasons justify the use of multiresolution type
analysis for this purpose and is most effective using wavelets.
Moreover, wavelel theory is well suited in this area of study
where signals are complex and non-penodic. Furthermore,
wavelels are particularly good in describing a scene in Lerms
of the scale of the textures in iL

Texture is an important property of all reflective natural
surfaces which helps human visual perception system Lo
segment and classify different objects in a digital image.
In a remotely sensed imagetexture is considered to be the
visual impression of coarseness or smoothness caused by
the vardability or uniformity of image tone. These textural
properties of a remotely sensed image are likely to provide
valuable information for analysis (classification/segmentation),
where different object regions are treated as different texture
classes, e, a multlexture segmentation problem. Note that
segmentation of these images is necessary in order w identify
regions of vegetation, habitation, water bodies, city area ete.

Effective classification and segmentation of images based
on textural features is of key importance o many applications
like image analysis, remote sensing, obol vision, query by
content in large image data bases and many others. The wide
vardety of texture analysis methods that have been developed
over the past two decades are reviewed in [42], [52]. Eardier
approaches focused on first-order and second-order statistics
of texwres [21], [12], description using texture primitives and
system rules [20]. There has been an extensive study on model
based approaches like Markov random fields [13], [19], [24]
and local linear tansforms [27].

Haralick et al. [21] have used gray level co-occurmence
features 1o analyze remolely sensed images. They have com-
puted pray level co-occurrence matrices for a distance of
one with four directions(0", 45", 900" and 135"). For a seven
class problem they have achieved 80% classification accuracy.
Rignot and Kwok [45] have analyzed SAR (Synthetic Aperture
Radar) images using texture features computed from gray
level co-occurrence matnces. However, they supplement these
features with knowledge about the properties of SAR images.
The use of varous exture features have been swdied for
analyzing SAR images by Du [17]. He used the Gabor filters
for extracting texture features and successfully segmented
SAR images into categories of water, new forming ice, older
e and muolti-year wce.

All these approaches are restricted to the analysis of spatial
mteractions over relatively small neighborhoods, and are best
suited for analysis of micro textures. In general, natural

phenomena do not have a simple mathematical representation
and do not even obey the restnctions imposed by seweral
methods in order o use them suitably.

Psychovisual studies reveals that the human visual system
processes images by decomposing them into fillered images
of varous frequencies and orentation at different scales that
is capable of preserving both local and global information.
This multiscale processing of the human visual system is the
strong motivation for using methods based on these concepts
for texture analysis [23], [11], [9], [33]. An extensive study
has been made which certainly reveals the superiorty of these
multiscale processing over the more traditional ones.

Multiresolution techniques intend 1o wansform images into
representation in which both frequency and spatial information
are present. Wavelet theory provides a more formal, precise
and unified approach o multiresolution representations [15],
[30]. The importance of scale in texture descriptions is clear
from the change in appearance of most textures when viewed
in different resolutions, and from the empirical division into
micro and macro textures. These recent findings have moti-
vated several important studies for exture analysis [32], [43],
[T [10], [55]. [534].

The work of Mecocci ef al. [33] have presented a wavelet-
based algorithim combined with a fuzzy c-means classifier.
Lindsay ef al. [28] have used the 1D discrete wavelel transfonm
(DWT) based on Daubechies wavelet filter. A wavelet-based
texture feature set is derived in [ 18] It consists of the energy
of subimages obtained by the overcomplete wavelel decompo-
sition of local areas in SAR images, where the downsampling
between wavelet levels 1s omitted.

Simard et al [47] studied the uwse of a decision tree
classifier and muliscale texture measures 0 extract thematic
information on the tropical vegetation cover from the Global
Rain Forest Mapping (GRFEM). The aim of the work by [35]
is 0 show how coastine can be derdved from SAR images
by using wavelet and active contour methods. In a first step
an edge detection method suggested by Mallat e all [31] 15
applied w0 SAR images o detect all edges above a certan
threshold, A block-tracing algonthm (BA) then determines
the boundary area between land and water. Several other
wavelet-based segmentation for geoscience and remote sensing
applications have also been reported m the Titerawre [51], [49].

Other approaches o segmentation of remotely sensed 1m-
ages include various fuzzy thresholding techniques reported
in [38]. Genetic algordthm as a classifier has been inves-
tigated in the domain of satellite imagery for partitioning
different land cover regions from satellite images, having
complexfoverlapping class boundaries in [6]. Muchoney and
Williamson [34] have shown neural network classifiers o pro-
vide supervised classification results that significantly improve
on traditional classification algorithms such as the Bayesian
{maximum likelihood [ML]classifier.

All of these above methods use supervised classification
where a priovi knowledge aboul the images are essential. We
apply a methodology o carry out this segmentation where no
a prient knowledge about the image 15 available.

Applications of octave band wavelet decomposition scheme
for exture segmentation o remotely sensed images have been



studied in [33], [28], [18], [47], [35] as mentioned carlier.
The octave band wavelet decomposition [30], [34] provides
a logardthmic frequency resolution and are not suoitable for
the analysis of high frequency signals with relatvely narrow
bandwidth. Therefore, the main motivation of the present work
is to utlize the decomposition scheme based on M -band
(M = 2) wavelets, which, unlike the standard wavelel, pro-
vides a mixture of logarithmic and linear frequency resolution
[48] [5] and bence can characterize a lexture more efficienty.
We conjecture that M-band wavelet decomposition would give
mproved segmentation mesults than the methods mentioned
carlier. But the use of M-band wavelet decomposition gives
rise to a large number of features, which incurs redundancy
and confusion. Therefore, selection of the appropriate features
using somé feature selection algorithms 15 required.

The proposed methodology for segmenting a remotely
sensed satellite image has two parts. The first part deals with
extraction of exture features using M-band wavelet packet
frame, followed by their neuro-fuzey evaluation for selecting
an optimal set of features. Note that the M-band (M = 2)
wavelel transform is a tool for viewing signals at different
scales and decomposes g signal by projecting it onto a family
of functions generated from a single wavelet basis via ils
dilations and translations [48] [5]. Neuro-fuzey computing
[39] [37] which integrates the merits of fuzzy set theory
and artificial newural networks (ANN's), enables the feature
selection process adificially more intelligent. Incorporation of
fuzey set theory, as described above, helps one o deal with
uncertainties in remotely sensed images in an efficient manner.
ANN is used here for the wsk of optimization in an adaptive
MANNET.

It may be noted that neuro-fueey hybndization s a widely
used tool of soft computing paradigm. Soft computing is a
consortium of methodologies which work synergistically and
provides, in one form or another, flexible information process-
ing capabilities for handling real life ambiguous situations. Iis
aim 15 W okemte the mmprecision, uncertainly, approximate
reasoning and partial truth in order o achieve tractabality,
robustness, low soluton cost and close msemblance with
human like decision making. At this juncture, fuzey logic (FL)
and artificial neural networks {ANN'S) and genetic algorithm
(GA) are the three principal components where FL provides
algonthms dealing with imprecision and uncertainty, ANN 1s
used as the machinery for leaming and adaptation, and GA is
used for optimization and searching [57] [37].

The article is organized as follows. Section 11 presents
the mathematical framework of M-band wavelets. Section 111
gives a brief overview of neuro-fuzzy hybridization. Section
IV discusses about fillerdng technique used in our investiga-
tion and the extraction of featwres. Section WV provides the
neuro-fuzey feature selection algorithm. Segmentation and the
quality measure 15 discussed in Section VI while Section VII
analyzes experimental results and the article concludes with
Section VIIL

II. M-BAND WAVELET TRANSFORM

A. M-band wavelets

The standard dyadic (2-band) wavelets are not suitable for
the analysis of high-frequency signals with relatively narrow
bandwidth. To resolve this problem, AM-band orthonommal
wavelets [48] were developed as a direct generalization of
the 2-band orthogonal wavelets of Daubechies [14] These
M-band wavelets are able to zoom in onto narrowband high
frequency components of a signal and have been found to
provide better energy compaction than 2-band wavelets [22

The scaling function ¢(x) is given by [48]

(x) =3 h(k)VM(Mz — k). (1)
A.
Additionally there are{ M — 1) wavelets which are given by

[48]
> o) VMy(Mz — k). (2)
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In discrete form, these functions can be indexed by scale
parameter § and translation parameter &, and is wriltten as [48]

Ginl(z) =Y MIPG(Miz — k) (3)
k

and

Zw i (Miz —k),1=1,..., M-1. @

Wy kalz)

The subspaces spanned by the functions o, . (z) and 1 4 (x)
be respectively defined as, V; = spangg ¥k € Z, and
Wi = spangad; Wk € 2 [48] It follows from equation (1)
that the subspaces V; have a nested property. If the scaling and
the wavelet functions satisfy the orthonormality condition, the
subspaces {W,;} form an orthogonal decomposition of the [
function space and are related to the nested subspaces V) by

T Wit ] (5)

Thus a function f{x)
sum of projections onto subspaces V; and W, as
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k

£ I¢ can be expressed in terms of the
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ZZ&;M bi k() (6)

where & is the orthogonal plus. This is the discrete AM-band
wavelel transform (DABWT). The expansion coefficients can
be expressed as of k) = { f, o) and di( k) = { f, :1_5"'3} I =
... M — 1, where {n, 3) represents the inner product of o
and 3.

We can further extend our discussion in defining wavelet
packets as a generalization of orthonommal and compactly
supported wavelets [14]. From the subband fillering point
of view, the difference between wavelet packet transform
(DW PT) and standard wavelet transform (DWT) is that the for-
mer recursively decomposes the high fequency components
as well, unlike the other, thus resulling in a tree structured
multiband extension of the wavelet transfonm.

flz) =
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[II. NEURO-FUZZY HYBRIDIZATION

The theory of fuzzy set has been introduced in 1965
by Zadeh [56] as a new way of represenling uncerlainties
in everyday life. This theory provides an approximate and
yel effective means for describing the characlerstics of a
system which is too complex or ill-defined w admit precise
mathematical analysis. It 1s reputed to handle, to a reasonable
extent, uncertainties (adsing from deficiencies of information)
in vanous applications particulardy in decision making models
under different kinds of risks, subjective judgment, uncertain-
ties and ambiguity. The deficiencies may result from various
reasons, wz., incomplele, imprecise, not fully reliable, vague
or contradictory information depending on the problem. Smee
this theory is a generalization of the classical set theory, it has
greater flexibility o capture various aspects of incompleteness
or imperfection in information about a siwation.

Antificial neural networks (ANN) [16], [29] are signal pro-
cessing systems that try to emulate the behavior of biological
nervous systems, by providing a mathematical model of com-
bination of numerous neurons connected in a network. These
can be formally defined as massively paralfel interconne ctions
aof simple (usuwally adaptive) processing elements {called new-
rons) that interact with objects of the real world in a manner
similar to biofogical svstems. The benefit of neural nets
lies in the high computation mte provided by their inherent
massive parallelism. This allows real-time processing of huge
data sets with proper hardware backing. All information is
stored distributed among the various connection weights, The
redundancy of interconnections produces a high degree of
robustness resulting in a gracefil degradation of perfformance
in case of noise or damage o a few nodesflinks. Newral
network models have been studied for many years particularly
in the field of pattern recognition and image processing.

We see that fuzzy set theoretic models try to mimic human
reasoning and the capability of handling uncertainty, whereas
the neural network models atiempt o emulate the architecture
and information representation schemes of the human brain.
Integration of the merits of fuzey set theory and neural network
theory therefore promises 1o provide, o a great extent, more
intelligent systems (in terms of parallelism, fault wlerance,
adaptivity and uncertainly management) o handle real life
decision making problems. For the last ten years or so, there
have been several attempts [39] [37] by mesearchers over the
world in making a fusion of the merits of these theones
under the heading newro-fuzzy computing for improving the
performance in decision making systems.

IV, WAVELET FEATURE EXTRACTION

The noton of M -band wavelel, as desenbed in Sectuon 11-A,
is used here o extract multiscale wavelel features of remotely
sensed images. The methodology involves M -band wavelet
packet filtering of an input image followed by adaptive basis
selection. Subsequently, features are computed from this set
of selected basis by using a nonlinear operator and smoothing
filier. These features are then evaluated and selected using a
neuro-fuzey algorithm (described in Section V).

A. M-band wavelet packet filters and adaptive basis selection

The objective of filtering is to transform the edges in a
texture image into detectable discontinuities. The filter bank in
essence 15 a set of bandpass filters which select frequency and
orientation. In the filtering stage, we make use of orthogonal
and linear phase M-band ( M=4) wavelet following [5].

The motivation for a larger M(M = 2) comes from the
desire 10 have a more flexible tdling of the time-frequency
iscale-space) plane than that resulting form 2-band wavelet.
It also enables to have some regions of uniform bandwidths
rather than the logarithmic spacing of the frequency responses.
Although the M -band wavelet decomposition results in a com-
bination of lnear and logarithmic frequency (scale) resolution,
we conjecture that a further recursive decomposition of the
high frequency regions would characterize lextures beter.

The M-band wavelet decomposition can be interpreted as
signal decomposition in a set of independent, spatially ordented
frequency channels, The discrete nomalized scaling (o )
and wavelet (17 4 1) basis functions are defined in terms of
their filter responses as,

dirlz) = MIPh(Miz—k)
and (7
biwalz) = Mg (Miz—k)

where j and & are the dilation and translation parameters and
..... M — 1 is the number of wavelet functions. h; and
g1 are respectively the sequence of lowpass and bandpass
filters of increasing width indexed by j, which are expanded
by inserting an appropriale number of zeros between taps and
satisfy the quadrature miror filter (QMF) condition and are
called the analysis (synthesis filters).

The standard wavelet decomposition method require a
downsampling by a factor M at each scale. But this de-
composition 15 nol ranslanon mvanant which s desirable
for image analysis tasks. A possible solution is achieved by
using an overcomplete wavelet decomposition called a discrete
wavelet frame (DWEF). In the following we give a discrete
M-band wavelet frame (DAMBWEF) decomposition, which is
similar to discrete M-band wavelet transform (DAMBWT),
except that no downsampling is done between scales (levels
of decomposition). It is mention worthy that there are other
alternatives to alleviate this problem of shift (translation)
variance by using complex wavelets [25].

Let I{z.y) € [*(R) be an image in 2-D. Its DMbWF
decomposition 1§ given by,

cilz, ) = [hjx* by *ci=a]l(z )
wl P P —_
digf(z.y) = [hjie* g1y * i ll(z,y)

dh(z,y)

‘fj.ir{ﬂ-lﬂ =

lgigc * [y * cimaf{z,9)

lgiax * 951y * cima]l{z,9) for [=1,23

where, # denotes the convolution operator, and oy = Iz, y)
the orginal 2D signal. h, . (g0.) and by, (g0, are
the lowpass (bandpass) filtering along » and y directions,
respectively, comesponding o different scales. The number
of subbands or frequency channels resulting from such de-
composition (8) is found w be 16 (considering all possible
combinations of [ and the subband corresponding to o).

(&)
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ejlz, y) corresponds o the lower frequencies, the u"f_'rl. are
obtained by bandpass filtering in a specific direction and thus
contain the detail information at scale j.

We extend our discussion in defining discrete M -band
wavelel packet transform (DABWPT) as a generalization of
DAMBWT [14). As mentoned earlier the difference between
DABWPT and DM BWT as described above, 1s that the fomer
recursively decomposes the high frequency components as
well, unlike the other, thus resulting mnoa tree structured
multiband extension of the wavelet transfomm. At scale j = J,
the image is first decomposed into M = M channels using all
the filters i, and g;; with [ = 1,2.3, and without downsam-
pling. The process is repeated for each of the subbands for
subsequent scales.

For extraction of textral features of a remolely sensed
image, il is appropriate to detect the most significant frequency
bands contained i the mmage. This leads naturally w oa
tree structured wavelet transform of the image. An M -band
wavelet packet decomposition gives M~ number of bases,
for & decomposition depth of k. It is uwsually redundant to
decompose all the subbands m oeach scale w achieve the
full tree of decomposition. Also it is guite evident that an
exhaustive search 1o determinge the opumal basis from this
large set s computationally expensive.

In order 1o find out a suitable basis without going for a full
decomposition, we make use of an adaptive decomposition
algorithm uwsing a maximum critedon of texural measures
extracled from each of the subbands [3] [1]. Then the most
significant subbands are identified and it is decided whether
further decomposition of the particular channel would gener-
ate more information or not. This search s computationally
efficient and enables one 1o zoom into any desired frequency
channel for further decomposition [4] [2] [26].

After decomposition of the image into M = M channels, as
descnbed above energy for each subband 1s evaluated. Among
these subbands, those for which energy values exceed €% of
the energy of the parent band, are considered and decomposed
further. We have further decomposed a subband if its energy
value is more than some e,% of the total energy of all the
subbands at the current scale. This step results in a set of
d-band wavelel packet bases. These bases corresponding 1o
different resolutions are assumed 1o capture and characterize
effectively different scales of texture of the input image.
Empirically we have seen that a value of ¢ = 2% and
ea = 10% are good choice for the images we have considered
here.

B. Computation of features

After selection of the significant bases, a local estimator
which constitutes a nonlinear operator followed by a smooth-
ing filter, is applied to each subbands. This estimates a textural
feature of a subband image in a local region around each pixel.
A nonlinearity 15 needed in order o discnminate Lexture pairs
with identical mean brightness and second-order statistics.
There are a wide variety of textural measures. In this study we
have used energy as the textural measures available. Since the
magnitude of the correlation between the wavelel function and

the tmage 15 all that 1s important, we have used absolute values
of the wavelet coefficients as a generalized energy definition.

For a subband image F.{z.y) of subband number s, where
O=<z=< M-1, 0<y< N—1, the local energy Eng.(z.y)
around the (z,4)'" pixel can be formally defined as

Eng (z.y) =| (F.{m,n) |, i)

This step is succeeded by a Gaussian low pass (smoothing)
filter hp(z,y) 1o get a feature image. Formally, the feature
image Feat, (. y) corresponding to subband image F.(z. y)
15 given by

Feat (z.4) = Z Ui Faa ol —a,y— b)),

(e b el .,

where I'(-) gives the energy measure and Gy is a G x G
window centered at pixel with coordinates (z,y). This step
results in a set of feature images Feat, (x,y), from which a
set of feature vectors are derived. These feature vectors cor-
responding to the decomposed images at different resolutions
are assumed to capture and characterize effectively different
scales of exture of the remotely sensed image.

V. NEURO-FUZZY FEATURE EVALUATION
The wavelet features extracted in Section IV are now
evaluated in a newro-fuzey framework under unsupervised
learning. The method is a modification of an earlier one [36].
This modification enables one 1o handle large data sets in an
efficient manner. Note that for an image a large number of
pattern vectors are generated as deseribed in Section 1V, These
selected features are then used for the purpose of segmenting
the different regions in remolely sensed images.

A. Fuzzy feature evaluation index and membership function

The feature evaluaton index for a set of transformed fea-
tures is defined as

2 1. T . o ' T 1
iz (s — ljZZ-JU"MU — g +J";wi-1 — fipg)]- (10)

P ogFEp
Here j.lj[,i, and p;’:f are the degree that both the pth and gth

patterns belong o the same cluster in the n-dimensional
original feature space, and in the n'-dimensional (n" < n)
transfommed featre space respectively. p values determine
how similar a pair of patterns are in the respective features
spaces. s is the number of samples on which the feature
evaluation index 15 computed.

The feature evaluation index decreases as the membership
value representing the degree of belonging of pth and qth
patterns to the same cluster in the transformed feature space
tends to either 0 (when p® < 0.5) or 1 (when p® = 0.5).
In other words, the mdex decreases as the decision on the
stmilarity between a pair of patterns (e, whether they hie in
the same cluster or not) becomes more and more crisp. This
means., i the interclusterintracluster distances i the trans-
formed space increase/decrease, the feature evaluation index
of the corresponding set of features decreases. Therefore, our
objective is 1o select those features for which the evaluation
index becomes minmmum; thereby optimizing the decision



on the similarity of a pair of patterns with respect to their
belonging o a cluster.

The membership function i, in a feature space, satisfying
the characterstics of E (10), may be defined as [36]

if dpg = D,

ot ferri se,

ey
Hpg e

i (11

where the distance dy, between the pth and gth patterns can
be wnllen as

d, = ;:Zu:f{_rw - _r:wjli%'i.
— 4 L . (12)
= E_Z“:flfi‘- xi = (Zp — Tgi),
P

The term wy € [0, 1] represents weighting coefficient corre-
sponding o dth feature, and x,; and @, are values of ith
feature (in the corresponding feature space) of pth and gth
patterns, respectively, Note that, the higher the value of d,,
the lower s the similarity between pth and gth patterns, and
vice versa. D) is a parameter which reflects the minimum
separation between a pair of patterns belonging w two different
clusters. When dp, = 0 and d,,, = D, we have pp, = 1 and
1. respectively. If dy, = L ftpy = (LG5, That is, when the
distance between the patterns is just half the value of D, the
difficulty in making a decision, whether both the patiems are in
the same cluster or not, becomes maximum; thereby making
the situation most ambiguous. Note that the computation of
fpg i (11) does not require the information on class label of
the patlems.

The term D in (11) may be expressed as D = ooy,
where o, 15 the maximum separation between a pair of
patterns in the entire feature space, and 0 < o < 1 is 8 user
defined constant. o determines the degree of flattening of the
membership function (11). The higher the value of o, more
will be the degree, and vice-versa. d,, . 15 defined as

E : a3
ol | ':,J'rruaz'.i - J.-”,;,i,.”j ] 5

P

;RHI'HJ'

(13}

where 7,00 and .0 are the maximum and minimuom
values of the dth feature in the corresponding feature space.

The membership value g, is dependent on ;. The values
of awy (< 1) make the g, function of (11) fattened along the
axis of d,,. The lower the value of w;, the higher is extent
of flattening. In the extreme case, when w; = {1, ¥4, dy, =0
and pu,. = 1 for all pair of pattems, ie., all the patterns lie
on the same pomt making them indiscriminable.

The weight 1w in (12) reflects the relative importance of
the feature x; in measuring the similarity of a pair of patterns.
The higher the value of w;, the more is the importance of o,
in charctenzing a cluster or discnminating vanous clusters.
w; = 1 (1) indicates most (keast) importance of ;.

As mentioned earber, our objective 15 o mimimize the
evaluation index E (10) which involves the terms % and 7.
The computation of p” requires (11}(13), while p® needs
these equations with w; = 1, %i. Therefore, the evaluation
index £ (10} is a funcion of w, if we consider ranking of n
features in a set. The problem of feature selection/ranking thus
reduces W finding a set of w;s for which E becomes minimum;

' pe
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selection.

A schematic dingmm of the neural network model for feature

wuys indicating the relative imporance of xs. The task of
minimizalion, as in [36], is performed using gradient-descent
technigue in a connectionist framework under unsupervised
mode. This is described below.

B. Connectionist model

The network (Figure 1) consists of an input, a hidden and
an output layer [36]. The input layer consists of a pair of
nodes comresponding to each feature, e, the number of nodes
in the input layer is 2n, for n-dimensional (original) feature
space. The hidden layer consists of n number of nodes which
compute the part 7 of Egn. (12) for each pair of pattems.
The output layer consists of two nodes. One of them compules
1%, and the other p”. The feare evaluation index E (10) is
computed from these p-values off the network.

Input nodes receive activations corresponding o feature
values of each pair of patterns. A jth node in the hidden
layer is connected only to an dth and (¢ + »)th input nodes
via connection weights +1 and —1, respectvely, where j, i =
Yy n and j = . The output node computing g7 -values
15 connected o a jth node in the lidden layer via connection
weight W (= 1::_:3}, whereas that computing g -values is
connected 1o all the nodes in the hidden layer via connection
weights +1 each.

During leaming, each pair of patterns are presented at the
mput layer and the evaluation index 15 computed. The weights
W;s are updated in order to minimize the index E. The task of
minimization of £ (10) with respect 10 W is performed using
gradient-descent technigue, where the change in W, (AW)
15 computed as

AW = —g E

g W

1 is the learning rate. Note that, d,,,,, is directly computed

from the unlabeled training set. The values of d,,,. and o are

stared in both the output nodes for the computation of D). For

details conceming the operation of the network, one may refer
Lo [36].

Wi, (14)
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C. Modified newm-fuzzy algovithm for handling large data

As we have seen in Section IV, the number of pattems
generated for an N = N image is N2, ie, 5 = N2, Each
of these pattems corresponds o a pixel and has all the
multscale wavelet feature extracted m Section 1V, Therefore,
for selecting an optimal set of features out of them, the number
of patterns to be presented o the connectionist system in one
epoch, during its training, is 'fr"f,,_l] = ‘\r_r"'\_r:_l]~ which is
a very large quantty. This incurs a VEery higﬂ computational
time. In order o avoild this situation, e, in order to make the
neuro-fuzey algorithm computationally more efficient, we, first
of all, apply a clustering algorithm (e.g., t-means clustering
algorithm) on the entire feature space, for grouping the data,
and the cluster centers eemny’s are noled. Then two sels of

samples, namely, § = {@y,®0,--- ,@p,--- , &2} and 5. =
{een,, cens, ---  cen.}t are formed. That is, 5 is the entire

training set, and 5. is the set of ¢ cluster centers (for ¢ clusters)
obtained by the clustering algorithm. Now the similarity
between the pattiems and these cluster centers are computed,
instead of computing it for every pair of patterns. These cluster
centers are considered as representatives (prototypes) of all the
points belonging o the respective clusters. Thus, the number of

patterns 1o be presented o the network m one epoch becomes
slege—1) _ .'\"zl'r—l]
R

i , where 5 = |5 and 5. = |5, << 5

Note that the clustenng algonthm at this stage provides
a first hand knowledge sbout the wvarous landeovers in a
remotely sensed image. Based on this knowledge, neuro-
fuzey feature selection algorithm is applied, for removing the
redundant and confusing features, and thereby improving the
segmentation result. Thus the algorithm for finding optimal
W ois as follows.

Algorithm for leaming W

« Cluster the pattems using an appropnate algorithm (e.g.
k-means clustering algonthm) and the cluster centers
cern, s are noted.

« Calculate . from the unlabeled training set and store
it in both the output nodes. Store 3 (user specified) in
both the outpul nodes.

e Initialize W; with small mndom values in [0, 1].

« Repeat until convergence, ie., until the valwe of E
becomes less than or equal o cenain predefined small
quantity, or number of ilerations attains cedain predefined
number of iterations:

- For each pair of patterns @, and cen,, Vp, g
# Present the pattem pair o the inputl layer.
# Compute SW; for each § using the updating rule
m {14}
- Update W; for each j with AW, averaged over all
the pattern pairs.

E (10, after convergence, attains a local minimum and then
the weights (W, = Jf:f}l of the links connecting hidden nodes
and the output node computing 7 -values, indicate the order of
importance of the features. Note that this unsupervised method
performs the sk of feature selection without clustering the
feature space explicitly and does not need to know the number
of clusters present in the fealure space.

VI. SEGMENTATION AND QUALITY MEASURE
Having selected the features, the main sk is o inlegrate
these features to produce a segmentation. We define a scale-
space signature as the vector of features at different scales
Laken at a single pieel in an image,

Feat(i,j) = [Featy(1,j), Feati (i, 3), Feata (i, j),. .., Featy(i, 7))

These scale-space signatures are considered as feature vectors
in a feature space.
Let us assume that there are M texture categores,

'y, oo O, present in the image. IF our texture features that
have already been obtained are capable of discriminating these
categories then the pattems belonging o each category will
form a cluster in the feature space which is compact and iso-
lated from clusters corresponding to other lexture calegories.
Segmentation algorithm accept as input a set of features and
put a class labeling for each pixel. Fundamentally this can be
considered a multidimensional data clusienng problem. We
have used a traditional k-means clustering algorithm [50].

Quantitative performance measure :

A quantitative index 3 [38] is used to evaluate the segmen-
tation results. 7 s defined as the mtio of the total vanation
and within class variation. Let n; be the number of pixels in
the dth (i = 1,2,...¢) region. X;; is the gray value of the jth
pixel (7 = 1.2,...n;) in the ith region, and T 15 the mean
of n; gray values in the dth region. Then 3 is defined as

o e g = 2
_ Z.-:L Z_,.:L':.-'{u - 1{:'
o r i 2
E-lg:]_ Z_.':l l:."(.'_,l - "(ajl

where, n is the size of the image and X is the mean gray
value of the image.

The numerator is constant for a given image and number
of classes present in the image. Therefore, the value of 7 is
dependent only on the denominator. The denominator, on the
other hand, decreases with homogeneity of a region. So higher
the value of 3, betier is the segmentation.

3

(15)

VII. SEGMENTATION OF IRS AND SPOT IMAGES
In this section, the results on implementation of our algo-
rithm on several emotely sensed images are provided. The
images considered are two IRS-1A images and one SPOT
Hmnage.

A. Dara sets

IRS images :

The IRS-1A images (Figures 2 and 6) were obtained from
Indian Remote Sensing Satellite which 15 a circular sun-
synchronous satellite, rotating around the earth at the rate of
14 orbits per day, at an alotude of 904 km and a repetition
cycle of 22 days (NRSA 1986). This satellite is equipped with
two different sensors LISS (Linear lmaging Self Scanner)-
I and LISS-IL. LISS-1 has a spatial resolution of 72.5m =
72.5m while that for LISS-11 is 36.25m »x 36.25m. The IRS-
1A images used for this work were taken vsing the scanner
LISS-11 in the wavelength range 0.450m - 086G, The whole
spectrum range is decomposed into four speciral bands namely,
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band 1 - blue band of wavelength 0.45um - 0.52 pm,
band 2 - green band of wavelength 0.52pm - 0059 pm,
band 3 - red band of wavelength 0.62pm - (0,68 pm and
band 4 - near infra red wavelength 0.77pm - 0.86 pm.

The images in Figures 2(a)-2(d) cover an area around the
city of Calcutta in these four bands. In all these figures the
prominent black stretch across them s the river Hoogly. There
15 4 prominent light patch on the bottom right corner, which
15 the Salt Lake stadivm and the black patches nearby are
the fisheries. In the upper rght part of the images, there is
a distinct hine structure corresponding o the atrport mnway.
In total there are five major classes in which the regions of
Caleutta IRS images can be classified. These are water bodies
(WB), vegetation (NEG), habitation (HAB), city area (CA)
and open spaces (08).

Figures 6(a)-6(d) show a part of the city of Bombay in the
four aforesaid bands respectively. The elongated city area is
surrounded by the Arabian sea. There 18 a concrete structure
(on the right side top comer) comecting Bombay o New
Bombay. On the southem pan of the city, there are several
islands including the famous Elephanta islands. The dockyvard
is situated on the south-eastern part of Bombay, which can
be seen as a set of three finger like structure. On the upper
part of the images, wowards left, there is a distinel crisscrossed
structure, which comesponds o the Santa Cruz atrport. In total
the regions of Bombay images can be classified into six major
classes, viz., morbid warer T (TW1), mrbid warer 2 (TW2),
concrete (CONCR), fabitation (HAB), vegetation (VEG) and
open spaces (0O5). The sea water 15 decomposed inlo two
classes TW1 and TW?2 for better classification since they have
somewhat different reflectance properties due o variation in
sea waler density (as seen in Figure 6(d)).

SPOT image :

The SPOT image was taken by the French Satellites SPOT
[ Systems Probataire d” Observation de la Terre) [44], launched
i 1986 and 1990, They carry two mmaging devices that consist
of a linear array of charge coupled device (CCD). Two imaging
modes are possible, the muoltspectral and panchromatic modes.
The image considered here has three bands in the multspectral
mode. These are:
band 1 - green band of wavelength 0.50pm - 0,59 pm,
band 2 - red band of wavelength 0.61pm - 0,68 pm and
band 3 - near infra red band of wavelength 0.79um - 0.89
TR

Figures 10ia)-10ic) are SPOT images of Caleutta and were
taken in these three bands with a spatial resolution of 200w =
20 e, In all these figures the prominent black streich across
them comresponds 1o the river Hoogly. There are two distinet
black, elongated patches below the rver, on the left side
of the images. These are water bodies, the one to the left
being Garden Reach Lake and the one o the nght being the
Khiderpore dockvard. Just to the right of these water bodies,
there is a thin line starting from the right bank of the river and
zoing to the bottom edge of the images, which corresponds to
Talis nala. On the right side of the images, there is a tdangular
patch which is the race couwrse. On the wp dght hand side of
the images, there is a thin line, stretching from the op edge
and ending in the middle of the image, which comesponds

o the Beleghata canal. A bridge called the Rabindra setu,
cuts the dver near the top of the images. This image has
seven major classes, which are turbid water (TW). pond
water (PW), concrete (CONCR), vegetation (NEG), habitation
(HAB), open space (08) and madsdridges (B/R).

All the images considered in this investigation are of size
012 = 512, Due o poor illumination, the actual object classes
present in the imput images are not visible clearly. So o we
have presented the histogram equahzed images in Figures 2(a)-
2(d), 6{a)-6(d) and 10(a)-100c), which highlight the different
landeover regions. But the algonthms were implemented on
the actual inpults.

B. Results

Here we demonsirate the effectiveness of our methodology
over several remotely sensed images as described in Section
VII-A. In order to validate the importance of neuro-fuzey
feature evaluation, we show how the feature dimensionality
can be greatly reduced after feature evaluation. The test images
have several fine (line) structures (roads and bridges). In order
Lo detect these structures the window size has been kept small
(3 = 3

The total number of features considering all the bands
are found to be 10 wsing the proposed feature extraction
methodology described in Section IV, Figure 3 shows the
segmented output of the IRS-1A image using all these 10
features considering the number of classes o be ¢ = 5.
The 7 index is found o be 3.65887. The neuro-fuzzy feature
evaluation algorithm reduces the number of features 1o only
one for which the segmentation result is given in Figure
4. The value of 3 index is found to be 3.83431 signifying
an improvement in segmentation guality. The stadinm and
Jisheries as well as the airport unway are quite distnetly
discemible in the segmented output (Figure 4) as compared 1o
Figure 3. We can comment on this finding that since we have
considered all the 4 bands for feature extraction, most of the
features so extracted contain very less informaton and hence
can be discarded. It can also be inferred that out of these 4
bands only one band is significant and contains most of the
image information. It is also evident from the Figures 2(a)-2(d)
that the image corresponding 1o the near infra red band ( Figure
2(d)) is the most significant band. The feature with which we
have obtained the above segmentation resull afier neuro-fuzey
evaluation corresponds o band-4 and vahidates our comment.
S0 we can easily disregard all the other bands and keep only
the band-4 image for feature extraction. Comparing Figures
3 and 4 we find that we gel betler segmentation oulput in
the saltlake stadinm area, also the compactness of the various
classes present in the IRS-1A Caleutta image increases afier
the feature evaluation step. For a comparative study we present
the segmentation result (Figure 5) obtained by using k-means
clustering algorithm with average and busyness computed over
3 = 3 neighborhood [46] incorporating local information, as
features. The figure shows clear improvement m segmentation
output using our methodology both quantitatively (3 value)
and qualitatively (structural detals).

The segmentation result of the IRS-1A image of Bombay
is shown in Figure 7 considering number of classes 1o be
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(c)
IRS-1A image of Caleutta a) hand-1 by band-2 ¢) bund-3 d) hand-4

Fig. 2.

=6, and the 7 value 1s found o be 8.01462. The number
of extracted feawres from all the 4 bands is found w0 be
12 as obtained by Section 1V, The feature dimensionality is
reduced o one after neuro-fuzey feature evaluation. As in the
previous case, 3 index (821309) shows betler segmentation
quality. In the segmented output after the feature evaluation
step (Figure 8), it can be seen that the dockvard, the concrete
structwre connecling Bombay and New Bombay and Santa
Cruz airport are very well detected. Even for this image of
Bombay we can reiterale the above comments. Here also the
feature obtained after the feature evaluation step comesponds
to band-4 image and contains most of the image information.
Comparing Figures 7 and 8 we find that various objects and
regions (santa cruz airport, dockvard, roadys and bridges eic.)
are identified more prominently. Moreover, the feature eval-
uation step increases the compactness of the vardous classes
similar to the case of IRS-1A Caleutta image. In this case
also a comparative study is presented. The segmentation result
in Figure 9 as mentioned above obtained by wsing k-means
clustering algorthm with average and busyness as features.

Here also we can find an improvement in segmentation.

In the case of SPOT image of Caleutta (Figures 10ia)-10ic)),
we have initially considered all the 10 features extracted by
the wavelet based method. The segmentation result s given
in Figure 11 with =7 and a 3 value of 3.27832. Afier the
neuro-fuzey feature evaluation the number of feares reduces
to three. The segmentation result is given in Figure 12, and
3 value (3.45361) indicates better segmentation guality. It is
to be noted that not only the race course but also a triangular
outline (which is an open space) comesponding o the rrack
of the race course are also detected. Here the Rabindra Setu
has also been detected along with the Taliv nala and Beleghata
canal. Moreover, the Khiderpore dock and Garden Reach Lake
are quite discemible. In this case all the three bands are
important and fumish some information. The features obtained
after the feature evaluation step correspond to each of the three
bands. Comparing Figures 11 and 12, it can be seen that the
race course can be identified quite vividly (Figure 12). In this
case also the compactness of the various classes increases after
the feature evaluation step. The segmentation result along with
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Fig. 3. Segmented ouput of Caleutta IRS-1A image with c = 5 and 7 = 365887

Fig. 4. Segmented ouput of Caleutta IRS-1A image with c = 5 and 7 = 384578
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Fig. 5.

the 3 value obtmned by using k-means clusienng algonthm
with average and busyness as features (as mentioned above)
is given in Figure 13 for a comparative study validating that the
features extracted are characterize the remotely sensed images
n a beter way.

In order o prove the efficacy of our algorthm we have
tested it on a synthetic 10-texture mosaic of size 266 = 512
comprising of ten different Brodazt extures (Figure 140a). The
segmented output 1s presented in Fig, 140b). Note that although
the image contains 10 different Brodazt textures, some of
them are not distinetly identifiable visually as depicted in Fig.
ldia). Interestingly, the proposed methodology has been able
to identify more or kess all the classes. Here the percentage of
correctly classified pixels has been found to be 79.55%.

As part of the investigation, an extensive companson has
been made 1o show the superiorty of the proposed methodol-
ogy over various existing related algorithms. Note that several
approaches o multichannel filledng for exture segmentation
have been studied and a comparative pedformance evaluation
is presented by Randen and Husgy in [41].

VI CoONCLUSION

In this article, we have presented a scheme w show how
wavelel theory and neuro-fuzey hybrdization together can
be applied in the domain of remotely sensed imagery for
segmentation purpose. The use of wavelet theory via A -band
wavelet decomposition of remolely sensed images provides an
efficient representation of these images in terms of frequencies
in different directions and orientations at different resolutions.
This representation 15 oblained by segmenting some wavelet
features from multispectral remotely sensed images. This facil-
itates an improved segmentation of the different class regions.
The featre extraction method splits the lower as well as the

Segmented owput of Caleutta IRS-1A image using average and busyness as features with ¢ = 5 (F = 2.84578)

TABLE 1
PERFORMANCE EVALUATION OF Natlila
Mt s filse Clasailication | Mumber of
features
witheut feamse
Pooygrensed e theved evaluation .M 1%
M band wavele wilh Featune
evaluation 5% 7
Heuristie
Gahor filer bank {d) [40] a1 M 20
| A hrrannszed
| Oprimized representation Gabor filer [9] [8] 6. 1% 15
| Full renwe
QMF FIR filier f8a id) [40] 60.3% an
Crigeally sempled
QMF FIR [8a (d) [400 510 13

higher frequency bands, and results in a tree structure. This
enables the system o extract their charactenistic features in the
lower as well as the higher frequency bands of remotely sensed
images. The neuro-fuzzy feature evaluation method helps in
searching for important features efficiently from a remotely
sensed image where the various classes are overlapping in
nature. Both the feawre extraction and neuro-fuzzy feature
evaluation schemes are unsupervised and do nol require any
a priovi knowledge about the number of classes, and spatial
relationship of different regions in these images. Note that
the neuro-fuzzy feature evaluation method presented here is
a modified version of an existing one described in [36]. This
modification helps in dealing with large data set efficiently.
We have tested our algorithm on synthetic data comprising of
natural textures. The results validates that our methodology
is indeed superior o some of the related ones existing in
the literature. Also the results presented using average and
busyness as features and using k-means clustering algorithm
for a comparative study show that our methodology is indeed
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IRS -1A image of Bombay a) band-1 b) band-2 ¢) band-3 d) band-4

Fig. 6.

effective in characterizing remotely sensed images in a betler
waly.

The features obtained by the feature extraction method have
been able to segment the remotely sensed images satisfactorily.
It is been found that for the IRS-1A images that ultimately
one feature is selected which corresponds w the band 4 of
these images. However, for the SPOT image three features are
selected. Almost all the desired classes are obtained in the
segmented output satisfactorly. Moreover, the compactness
of the various classes increases after the neuro-fuzey feature
evaluation step.
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Fig. 1. Segmented output with ¢ = 7 and 7 = 327832
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Fig. 12, Segmented output with ¢ = 7 and 7 = 345631
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Fig. 13, Segmented output with ¢ = 7 using average and busyness as featumes (7 = 2.45631)

Fig. 14. () Natl(a, segmented output {h) after and {¢) before neuro-furzy featun: evaluation
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