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Ahbstract

In this paper, an evolutionary clustering technique is described that uses a new point symmetry-based distance measure. The algorithm is
therefore able to detect both convex and non-convex clusters. Kd-tree based nearest neighbor search is used to reduce the complexity of finding
the closest symmetric point. Adaptive mutation and crossover probabilities are used. The proposed GA with point symmetry (GAPS) distance
based clustering algorithm is able to detect any type of clusters, irespective of their geometrical shape and overlapping nature, as long as they
possess the characteristic of symmetry, GAPS is compared with existing symmetry-based clustering technique SBEKM, its modifed version, and
the well-known K-means algorithm. Sixteen data sets with widely varying characteristics are used to demonstrate its superiority. For real-life

data sets, ANOVA and MANOVA statistical analyses are performed.
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1. Introduction

Clustering is a core problem in dati-mining with innumer-
able applications spanning many fields. There are several ap-
plications of cluster analysis. When the data set available is
unlabelled the classification problem is known as unsupervised
classification. Cluslering 15 an important unsupervised classi-
fication technigque where a set of patterns, wsually vectors in
a multi-dimensional space, are grouped into clusters nosuch a
way that patterns in the same cluster are similar in some sense
and patterns in different clusters are dissimilar i the same
sense. Cluster analysis is a difficult problem due 1o a varety
of ways of measuring the similanty and dissimilarity concepts,
which do not have a universal definition. Therefore, cluster
seeking s experiment-oriented in the sense that clustenng algo-
rithms that can deal with all situations equally well are not yet
available. A good review of clustering can be found in Ref. [1].

Many types of clustering algorithms have been developed,
the prominent among them being the partitional methods,

hiecrarchical and graph theoretic methods. Typical examples
of the three methods are the well-known K -means algonthm,
single linkage and the minimal spaming tree (MST )-hased
algorithms, respectively [2-6]. In order to improve the perfor-
mance of the K-means algorithm, several improved K -means
algorithms have been developed o the past several years. In
Ref. [7], Kiovesi et al. presented a stochastic K-means algo-
rthm to improve the clustenng result of K -means. Based on
the Kd-tree data structure [8], Kanungo et al. [9] presented an
mnproved K-means algorithm which can speed up the time
perdformance while preserving the same clustering result as
in the K-means algorithm, In Refl [10], the global K-means
algorithm 1s presented which s an ineremental approach o
clustenng that dynamically adds one cluster center at a tme
through a deterministic global search procedure consisting of
N (N is the size of the data set) executions of the K -means al-
gorithm. In Ref. [11], an algonthm based on K -means, namely,
SMCK-means, is proposed for circular invarant clustering of
vectors, Fueey C-shells clustering (BCS) methods have been
proposed in Refs. [12,13] which are well established for de-
lecting and representing hypersphencal (specially ellipsoidal)
clusters, Some more clustering algonthms have been found in
Refs. [14-16]. Other algorithms have been developed that are
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appropriate for large data sets [17,18]. In Ref. [19], a fueey
clustening algorithm is proposed for the extmetion of a smooth
curve from the unordered noisy data. An algorithm for extract-
ing high gquality polygonal contours from connected objects in
binary images i described in Ref. [20]. In Ref. [21], some level
set methods are introduced o identify density peaks and val-
leys in density landscape for data clusterimg. The method relies
on advancing contours to form cluster cores. A genenc itera-
tive clustenng scheme is proposed in Ref. [22] that, coupled
with some particular reweighting scheme, may indeed bring
improvements over “classical"clustenng from the theoretical
standpoint. A new overlapping clustering algorithm, which par-
itions i objects into & non-ecxhavstive clusters that may over-
lap with each other is intoduced in Ref. [23]. A modification
of fuzzy c-means algorithm [24] i proposed in Refl [25], in
which distances between cluster centers and the data are de-
termined by the density of the data itself. A few typical exam-
ples of non-convex clusters are shown to be comectly identified
by this algorithm. However, this method is unable to identify
highly overlapping clusters.

Neural networks, for example, competitive learning netw orks
[26]. self-organizing feature maps (SOFM) [27] and adaptive
resonance theory (ART) networks [28,29] have also oflen been
used to cluster data. Both SOFM and ART are suitable for de-
lecting only hyper-sphencal clusters [30]. A two-layer network
that employs regulanzed Mahalanobis distance o extract hy-
perellipsowdal clusters was proposed in Ref. [31]. In Ref. [32], a
clustenng method s proposed based on SOFM with quadratic
neurons. The network 1s updated inan unsupervised manner
W cluster data mto hy perellipsoidal-shaped or hypersphencal-
shaped clusters based on the underlying structure of the data
set. But it will fail for straight line or shell type of clusters.
In Ref. [33], ART based clustering algorithm s used o clus-
ter well-separated and non-overlapping clusters with arbitrary
shapes. But it wall fail for data sets where clusters are not at all
well separated. All the algorithms mentioned above have their
own mernts and disadvantages.

Several clustenng algorithms with different distance mea-
sures have been developed for clustenng data sets with differ-
ent geometric shapes [34-38]. These algonthms were used to
detect compact clusters [34], straight lines [34,36], ring-shaped
clusters [37], or contours with polygonal boundaries [12.38].
Howewver, the performance of these algorithms were poor when
the data had clusters of other shapes. In Ref. [39] a cluster-
g technigue 15 proposed which can automatically detect any
number of well-separated clusters which may be of any shape,
convex andfor non-convex. But it fails for overlapping clusters.

In order to mathematically identfy clusters in a data set, it s
usually necessary to first define a measure of similarity or prox-
ity which will establish a rule for assigning patterns o the
domain of a particular ¢luster centroid. The measure of similar-
ity 15 usually data dependent. One commonly used measure of
similarity 15 the Euclidean distance D between two patlerns X
and T defined by D=|x—Z||. Smaller Euclidean distance means
better similarity and vice versa. This measure has been used in
the K-means clustering algorithm [6]. By this algorithm hyper-
sphercal clusters of almost equal size can be easily wentified.

M3l

This measure fails when clusters wnd to develop along principal
axes. Totake care of hyperellipsoidal-shaped clusters the Maha-
lanobis distance from x tom, DNx, mi=i{x—m ,'ITZ_I (x—m),
is one of the popular choices. Here X represents an input pat-
tern, the matrix ¥ is the covariance matrix of a pattern popu-
lation constituting a particular cluster, i is the mean vector of
the vectors which are in the same cluster. One of the difficultes
associated with Mahalanobis distance as a similarity measure
15 that one has o recompute the imverse of the sample covan-
ance matrix every time a pattern changes its cluster domain;
this 15 computationally expensive. The Mahalanobis distance
was used in Ref. [31] to extract hyperellipsoidal clusters.

It may be noted that one of the basic feature of shapes and ob-
jects 15 symmetry. Symmetry is considered a pre-atientive fea-
ture which enhances recognition and reconstruction of shapes
and objects [40]. Almost every imteresting area around us con-
sists of some generalized fomm of symmetry. As symmelry 15 5o
common m the natural world, it can be assumed that some kind
of symmetry exists in the clusters also. Based on this, Su and
Chou have proposed a symmetry-based clustering technigue
[41]. Here they have assigned points to a particular cluster if
they present a symmetrical structure with respect to the cluster
center. A new Lype of non-metric distance, based on point sym-
metry, 15 proposed which is used in a K -means based clusienng
algorithm, meferred w0 as symmetry-based K-means (SBKM)
algorithm. SBKM is found to provide good pedommance on
different types of data sets where the clusters have iternal
symmetry. However, it can be shown that SBKM will fail for
some data sets where the clusters themselves are symmetrical
with espect o some intermediate point since the point sym-
metry distance ignores the Euclidean distance in its computa-
tion. Though this has been mentioned in a subsequent paper by
Chou et al. [42] where they have suggested a modification, the
modified measure has the same himitation of the previous one
[41]. Mo expenimental results have been provided in Ref. [42].

Based on the above observations, a new poinl symmetry-
based distance (PS-distance) is proposed in this article which
incorporates both the Euchidean distance as well as a mea-
sure of symmetry. For reducing the complexity of computing
the PS-distance, use of Kd-tree [8] 15 proposed in this arti-
cle. As already mentoned, K-means is a widely used cluster-
ing algorithm that has also been wsed in comjunction with the
point-symmetry-based distance measure in Refl [41 ], However,
K-means 18 known to get stuck at sub-optimal solutions de-
pending on the choice of the imitial cluster centers. In order o
overcome this limitation, genetic algonthms (GAs) have been
used for solving the undulying optimization algonthm [43].
GAs [44] are randomized search and optimization technigues
guided by the pranciples of evolution and natural genetics, and
having a large amount of implicit parallelism. GAs perform
search in complex, large and multimodal landscapes, and pro-
vide near-optimal solutions for objective or fitness function of
an optimization problem. In view of the advantages of the GA-
based clustering method [43] over the standard K -means, the
fommer has been used in this article. In the proposed GA with
point symmelry (GAPS) distance clustering technigue, the as-
signment of points to different clusters are done based on the
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newly proposed pomt symmetry distance rather the Ewclidean
distance. This enables the proposed algorithm to detect both
convex and non-conves clusters of any shape and sizes as long
as the clusters do have some symmetry properny.

Expenmental results comparing the performance of the
GAPS clustening algorithm, SBKM algorithm, SBKM with
modified PS distance as suggested in Ref. [42] (which
is subsequentdy referred to as Mod-SBKM) and K-means
algorithm are provided for several artificial and real-life
data sets. For the purpose of comparison, analysis of vari-
ance (ANOVA) [45] and mulovariate analysis of  var-
ance (MANOVA) [46] technigues have been uwsed. Ex-
permental results demonstrate the effectiveness of GAPS
clustenng for different types of data sets, both where
K-means pedforms well while SBEM fails and vice versa.
Additionally, GAPS is also able to detect the proper clustenng
from the data sets having clusters of significantly different
sizes where all the other three algonthms fal o do this. The
supenority of the proposed GAPS clusterning technigue is also
demonstrated on seven higher dimensional real-life data sets of
varying chameteristics. Results on 16 antificially generated and
real-life data sets establish the fact that GAPS i well-suited
to deteet clusters with symmetrical shapes irrespective of any
peometric structure, size and overlapping.

This paperis orgamzed as follows. Section 2 describes in de-
tail the existing point symmetry distance and the SBKM cluster-
ing algonthm. Section 3 describes in detail the proposed point
symmetry distance. Section 4 descnbes the use of Kd-tree based
approximate nearest neighbor (ANN) search. A desenption of
the newly proposed GA with point symmetry distance based
{GAPS) clustering lechnigue 15 given in Section 5. In Section 6
complexity analysis of both the existing SBKM and the newly
proposed GAPS clustenng technigue 1s given. Sections 7 and 8
provide the expenmental results. Section 9 concludes the paper.

2. Symmetry-based distance measures

As already discussed, a point symmetry distance was pro-
posed by Su and Chou in Ref. [41]. This is defined as follows:
given N patterns, ¥;, j=1,.... N, and a reference vector
C (eg.. a cluster centroid), the point symmetry distance (PS-
distance) between a pattern ¥ and the reference vector © s
defined as

x; —e)+(xi — o)
min
i=l,... N ad ij ||(x; —)| + |1(x; =)l

di(xj. 0)= (1
where the denominator term 15 used to nomaalize the distance so
4% 1o make it nsensible W the Euchdean distanees |37 —¢| and
[[7; —¢]|. Itmay be noted that the numerator of Eg. (1) is actually
the distance between the miror image point of ;7 with respect
to ¢ and its nearest neighbor in the data sel If the nght hand
term of the above equation s minimized when x; =X, then
the patlem X j+ s denoted as the symmetrical pattem relative to
x; with mespect to ©. Here it can be easily seen that the above
equation is minimized when the pattern ¥; =(26 — X ) exisls in
the data set (ie., d, (x;. € =0). This idea of point symmetry is
very simple and intuitive. Based on this point symmelry-based

distance, Su and Chou have proposed a clustering algorithm
which mimics the K-means algorthm but assigns the patterns
w g particular cluster depending on the symmetry-based dis-
tance o, rather than the Ewclidean distance [41], only when
dy is greater than some user specified threshold (1 Otherwise,
assignment is done according o the Euclidean distance, as in
normal K-means. The algorithm is discussed in detail in Fg. 1.

It is evident from Eq. (1) that this similarity measure can be
useful o detect clusters which have symmetneal shapes. Bul
this clustering algonthm will fail for data sets where clusters
themselves are symmetnical with respect o some intermediate
point. Note that mimmization of d,(X ;. £) means minimization
of its numerator and maximization of its denominator. In effect,
if a point ¥ 15 almost equally symmetrical with respect o two
centroids £y and oz, it will be assigned o that cluster that s the
farthest. This 1s intwtively unappealing. In the example shown
in Fig. 2, there are three clusters which are well separated. The
centers of the clusters are denoted by €, 2 and ©3, respectively.
Let us take the point x. After application of K -means algorithm
point ¥ is being assigned to the cluster 1. But when SBKM s
applied on the result given by K-means algorithm, the following
will happen. The symmetrical point of X with respect tocis x.
Since itis the first nearest neighbor of the point ff:{? ®O|—X).
Let the Euchidean distance between IT and x| be dy. Therefore,
the symmetncal distance of ¥ with respect o o) 18

d
d. (%, T1) +do (@1, T1)’

de(x,c1) = (2)
where d.(x, 1) and &.(x . c1) are the Euchidean distances of
x and x| from ©p, respectively. Similarly symmetrical point of
x with respect to o2 15 2. And the symmetrical distance of X
with respect to ¢z becomes
P R B— 3)
dy(x, €1) +d.(x2. C2)
Let dz < dy; and obviously (da(X, c2)+d. (X2, c2) ) 2 (de (X, €1)
+d.(x,c1)). Therefore dy (X, €1 ) 3 de (X, ©2) and T 15 assigned
o &3. This will happen for the other points also, finally resulung
in merging of the three clusters after application of SBEM.
Chou et al. have noted the above-mentioned limitation of the
measure proposed in Ref. [41], and have suggested a modified
measure o, in Ref. [42] that is defined as follows:

de (%7, ©) = dy (%}, E)e(X . B, )

where dy(x ;. ©) 15 the PS-distance of x; with respect to c, and
dy (X 7, €) denotes the Euclidean distance between X and ©. No
experimental results are provided in Refl [42] corresponding
w this new measure. A litdle thought will show that even this
modification will not work for the sitwation shown in Fig, 2.
Moreover, if the term dy(x ;. ©) becomes 0 then there will be
no effect of the Euclidean distance. We refer to the clustering
algorithm based on this modified measure as Mod-5BEM al-
gorithm. Let f;‘ be the symmetncal point of ¥; with respect o
¢. Therefore from Eqg. (4) we obtain

if.-._'.um_r.- i-?_,l : C)

(3,0 = d(%;.0) +de {1._:: , )

do(%;, ©), (5)
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Step 1 : Initialization : Randomly choose K data points from the data set

to initialize K cluster centroids, 7, &, ..Ty.

Step 2 @ Cosrse-Tuning : Use K-means algorithm to update the K cluster centraids.

After the K cluster centroids converge or some terminating critenion is satised,

go o nextstep.

Step 3 ¢ Fine-Tuning : For data point T compute,

k* = argming_y_gd; (x, T

where d (%, T)) is computed using Equation 1.

IF d_ (X, £a) = B/*8 is 2 user specied parameter®!

assign X to the k* th cluster.

else, compute &% = argming_; pd, (X, 0

where d_ (X, ) is the Euclidean distinee between X and the cluster centroid ¢,

assign X to k¥ cluster

Step 4 : Updation : Compute the new centroids of the K clusters as follows:

¥l
. i TR T

Wy

o+l =

where 8,1t ) is the set of elements that are assigned to the kth cluster at time ¢

and Ny, = 15,1

Step 5 @ Continuation : If no point changes category, or the mimber of iterations

has reached a prespecified maximum mimber then stop

else o to step 3.

Fig. 1. Steps of SBEKM algorithm.
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Fig. 2. Example where point symmetry distance proposed by Su and Chou
fails.

where diymm (X 7, ) =|(xX; —C)+ (T T —c)l. It can be also noted
that d.(x;.¢) = d, {.r_‘;- s el Therefore from Eq. (3), we obtain

ey {E_,l . ) d.-.'_'.'.lram L?_,l .C). (6)

As a result there 15 no impact of Euelidean distance, only
symmetrical distance plays an important role in assignment of
points to different elusters. It has been shown experimentally
that Mod-SBEM with this measure will also fail for several
data sets considered in Section T

The most limiting aspect of the measures suggested in Refs.
[41.42] is that in cases where K-means provides reasonably
good clusters, application of the fine-wning phase (see algo-
rnthm in Fig. 1) will destroy this structure. Another limita-
tion of the SBKM is that it requires a prior specification of a

parameter 1, based on which assignment of points to clusters
15 done either on the basis of the PS distance or the Euclidean
distance. Su and Chou have chosen @ equals o 0,18, However,
we have observed that clustenng performance 1s significantly
affected by the choice of 1, and its best value is dependent on
the data characterstics. No guidelines for the choice of  is
prowided in Ref. [41].

In the following section we propose a new definition of the
PS-based distance that can overcome the limitations of both the
measures o, and 4.

3. A new definition of the poini symmetry distance

A discussed in Section 2, both the PS-based distances, o, and
., will fail when the clusters themselves are symmetrical with
respect to some intermediate point. It has been shown, in such
cases the points are assigned to the farthest cluster. In order 1o
overcomde this himitation, we propose a new PS distance n this
article which 1s called dp (. 0) associated with point x with
respect o acenter © The proposed point symmetry distance s
defined as follows: let a point be ¥, The symmetrical {reflected)
point of T with respect o a particular center © 15 2% 0 — X .
Let us denote this by T, Let the first and the second unigue
nearest neighbors of T be at Euclidean distances of &) and o3,
respectively. Then

d +d
dpe (%, B) = @ x do(X, D), 0
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where de(x, ©) 1§ the Euchdean distance between the point ¥
and ¢.

The baske differences between the PS-based distances in
Refs. [41.42], and the proposed point symmewry distance,
dpg (X, ©), are as follows:

(1) Instead of computing Euclidean distance between the orig-
inal reflected point ¥ =2 % — and its first nearest neigh-
bor as in Refs. [41.42], here the average distance between
T and its first and the second unique nearest neighbors
have been taken. Consequently the term, (d) + d2)/2 will
never be equal to 0, and the effect of 4,(%, €), the Evclidean
distance, will always be considered. This will reduce the
problems discussed in Fig. 2.

(2} Considering both &) and 42 in the computation of dp;,
makes the PS-distance more mobust and noise resistant.
From an intuitive point of view, if both &) and ¢ of X with
respect to © 15 less, then the likelihood that X s symmetri-
cal with respect o © increases. This is not the case when
only the first pearest neighbor is considered which could
mislead the method in noisy situations.

(3) We also provide a rough guideline of the choice of {1, the
threshold value on the PS-distance. It 1s w0 be noted that if
a point 5 indeed symmetne with respect to some cluster
center then the symmetncal distance computed in the above
way will be small, and can be bounded as follows. Let dy'y
be the maximum nearest neighbor distance in the data set.
That 1s
dyy = max dyy(xi). (8]

=T N
where dpy (3 ) 18 the nearest neighbor distance of 1. As-
suming that ¥ lies within the data space, it may be noted
that

LY

NN
dy = - (9

Ideally, a point ¥ 1s exactly symmetrical with respect Lo
some © il d] = (. However, considering the uncertainty of
the location of a point as the sphere of radius 437" around
T, we have kept the threshold  equals o dy 5

It is evident that the symmetncal distance computation i very
time consuming. Computation of dp, (x5, €) is of complexity
({N). Henee for &V points and K clusters, the complexity of
assigning the points to the different clusters is @(N?K). In
order to reduce the computational complexity, an ANN search
using the Kd-tree approach s adopted in this article.

4. Kd-tree based nearest neighbor computation

A K-dimensional tree or Kd-tree 15 a space-parlitioning
data strueture for organizing points in a K-dimensional space.
A Kd-tree uses only those spliting planes that are perpendic u-
Lar to one of coordinate axes. In the nearest neighbor problem a
set of data points in d-dimensional space s given. These points

are preprocessed into a data strocture, so that given any query
point g, the nearest or generally k& nearest points of p o g
can be reported efficiently. ANN is a library written in C4-+4
[47]. which supports data structures and algorithms for both
exactand ANN searching in arbitranly high dimensions. In this
article ANN 15 used to find & and &b in Eq (7) efficiently.
The ANN librury implements a number of different data strue-
tures, based on Kd-trees and box-decomposition rees, and em-
ploys a couple of different search strategies. The Kd-tree data
structure has been used in this article. ANN allows the user to
spectfy a4 maximum approximation error bound, thus allowing
the user to control the tradeofl between accuracy and running
md.

The function performing the k-nearest neighbor search in
ANN is given a query poinl g, 4 non-negative integer k. an
wrray of point indices, nnjg,, and an army of distances, dists.
Both armays are assumed to contain at least & clements. This
procedure computes the k-nearest neighbors of g in the point
set, and stores the indices of the nearest neighbors i the array
nn g - Optionally a real value & 20 may be supplied. If so, then
ith nearest neighbor is (1 4 &) approximation to the true ith
nearest neighbor, That is, the true distance to this point may
excecd the true distance w the real ith nearest neighbor of g by
a factor of (1 4+ ). If £ 15 omitted then the nearest neighbors
will be computed exactly.

For computing dp.(x. €) in Eq. {7), dy and d7 need 1o be
computed. This 1s a computation intensive task that can be
specded up by using the Kd-tree based nearest neighbor search.
This approach s wsed m the proposed algorithm, GAPS. For the
purpose of this article, the exact nearest neighbor i1s computed;
so the & 15 set equal to 0. Inorder to find symmetric distance of a
particular point ¥ with respect to the center ©, we have to find the
first two nearest neighbors of T (where 7 =240 —3). Therefore
the query point g 1% set equal o0 ©* and £ is set o 2. After
getting the k-nearest neighbors of ¥, the symmetrical distance
of ¥ with respect to a centre © 15 caleulated using Eg. (7).

5. GAPS: the genetic clustering scheme with the proposed
PS distance

As mentioned carlier, the GA-based clustering algonthm [43]
15 used in this aticle since itis known o provide good clusters
when K 1s known, However, instead of the Eschidean distance,
0w dpe (. ©) 18 used as the distance measure for computing
the clustering_metric (M) defined in Fig. 4. The task of the GA
15 1o search for the approprate cluster centers 21,22 ... Zx such
that M 15 maximized.

A1, String representation and population initialization

The basic steps of GAPS, that closely follow those of the
conventional GA, are shown in Fig. 3. Here centre based en-
coding of the chromosome is used. Each string is a sequence of
real numbers epresenting the K cluster centers. The K cluster
centers encoded n ecach chromosome are imtialized o K mn-
domly chosen points fromm the data set. This proeess 15 repeated
for cach of the Popsize chromosomes in the populaton, where
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FPopsize 15 the size of the population. Thereafter five ilerations
of the K-means algorithm is executed with the set of centers
encoded in cach chromosome. The resultant centers are used
o replace the centers in the corres ponding chromosomes. This
makes the centers separated inibally.

Begin
1.t =0
2. initialize population Pir) /% Popsize = [P1%
3 Fori=1to Popsize

call clustering_ PS() procedure for P{i) and
stares the inverse of the nesult in M| §]
£% M[i] stores the fitness of chmomosome P{i */
4.r=r+1
5. If termination eriterion achieved go to step 10
6. Select (F)
7. cromsover ( F)
B, mutate {F)
9. poto step 3
11, Chutpat best chromosome and stop

End

Fig. 3. Basic steps of GA based clustering.

Procedure : clustering PS()

+ Assipnment of data points :

I. Forall data points X, 1 =1 = n, compute

k* = Argming.y_gdy; (%, 5

2AE A 3, Tt A, 50 < E)

M35
5.2, Fimess computation

In order to compute the fitness of the chromosomes, the
clustering procedure clustenng-PS() (as shown in Fig. 4)
15 called. Here a point 35, 1=i=n, 15 assigned to clus-
ter k iff dps(X;, Tl Sdpe(xi T f=1,000, KE.j # k and
(dps(Xi, Ce)fde (X, €x)) £ 0. For (dpe(Xi, € fde(Xi, T )) = 0,
point X; is assigned to some cluster m iff.ﬁ’t.{?;,Fm]lid,.{.?,-fj},
F=12,.... K. j # m Inother words, point X; 15 assigned
to that cluster with respect to whose centers its PS-distance
15 the minimum, provided the total “symmetneity”™ with re-
spect to it is less than some threshold &, Otherwise assignment
15 done based on the minimum Euclidean distance crilerion
as normally wvsed in Ref. [43] or the K-means algonthm.
The value of @ is kept equal to the maximum nearest neigh-
bor distance among all the points in the data set. Thus the
computation of  is automatic and does not require user in-
tervention. After the assignments are done, the cluster centers
encoded in the chromosome are replaced by the mean points
of the respective clusters. Subsequently for each chromo-
some clustering_metric, M, is caleulaled as defined below:

M=0
Fork=1to K do
For all data points ;.0 =1 to r and x; £ kth cluster, do

M =M+ dp(x;, T ). (10}

f*d AT, Tp*) is the Euclidean distance between the point X and cluster centroid £ %

assign the data point % to the &*th cluster.

3. Othenwise, the data point is assigned to the ©* cluster where

k* = Argming_, d, (T, &)
+»  Clustering metric caleulation :
1. Clustering_metric = {1

2 Fork=1t Kdo

For all data points X, i=1 tonand X; ekth cluster, do

Clustering_metric+ =f'l,m X, 5 {12

+  Updation of centres | Compute the new centmids of the K clusters as follows:

Eu:.'\'k".'rf"

Ct+l) =
Ny

(13)

whem k =1,...K and 5,(t) is the set of elements that are assigned to the fth cluster ot

generation ¢ and &) = 15,1

Fig. 4. Main steps of clustering_PS() procedumn
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Then the fitness function of that chromosome, fir, s defined as
the mverse of M, i.e.,

1
= —. 11
1=y (1)
This fitness function, fir, will be maximized by using GA.
{Note that there could be other ways of defining the fimess
function. )

5.3. Selection

Roulette wheel selecton is used to implement the propor-
tional selection strategy.

34, Cmssover

Here, we have used the nommal single point crossover [44].
Crossover probability 15 selected adaptively as m Ref. [48].
The expressions for crossover probabilities are computed as
follows. Let fluqe be the maximum fitness value of the cur-
rent population, f be the average fitness value of the popu-
lation and f* be the larger of the fitness values of the solu-
tions o be crossed. Then the probability of crossover, p., 18
calculated as

% ‘._f:l:ﬂn:n'.l' - .f_r::l
i.hmm‘ = _.f}

if f'<f.

L if £ > ,IF=

pe=k3,

Here, as in Ref. [48], the values of &y and k3 are kept equal
to 1AL Note that, when fae =?, then f' = fiuge and g
will be equal to k3. The aim behind this adaptation s 1o
achieve a trade-off between exploration and exploitation in
a different manner. The value of g, is increased when the
better of the two chromosomes o be crossed is itsell quite
poor. In contrast when it is a good solution, p. 15 low so
as to reduce the likelibood of disrupting a good solution by
CTOSSOVET,

5.5, Mutation

Euch chromosome undergoes mutation with a probability
i, - The mutation probability is also selected adaptively for
cuch chromosome as in Ref. [48]. The expression for mutation
probability, p,. 15 given below:

w _‘..Jan'.-: _i.:' if _f - If,

{f.;rm.-: = _.f::'

if f<f.

fy = k2

Hy, = ky

Here, values of &2 and &y are kept equal to 0.5, This adaptive
mutation helps GA to come out of local optimum. When GA
converges o a local opimum, i.e., when fig. — } decreases,
it and p,, both will be inereased. As aresult GA will come out
of local optimum. It will also happen for the global optimum

and may result in disruption of the near-optimal solutions. As a
result GA will never converge to the global opimum. But as g,
and g, will get lower values for high fitness solutions and get
higher values for low fitness solutions, while the high fitness
solutions aid in the convergence of the GA, the low fitness so-
lutions prevent the GA from getting stuck at a local opimum.
The wse of eliism will also keep the best solution intact. For a
solution with the maximum fimess value, p, and g, are both
zem. The best solution in a population is transferred undis-
rupted into the next generation. Together with the sekecton
mechanism, this may kead w an exponential growth of the so-
lution in the population and may cause premature convergence.
To overcome the above stated problem, a default mutation rate
(of 0.02) 15 kept for every solution in the GAPS.

We have used the mutation operation similar to that used in

computation, selection, crossover, and mutation are executed
for a maximum number of generations. The best string seen
up Lo the last generation provides the solution to the clustering
problem. Elitism has been implemented at each generauon by
preserving the best string seen up W that generation in a loca-
ton outside the population. Thus on terminaton, this locaton
contains the centers of the final clusters.

6. Complexity analysis

This section contains a complexity analysis of SBKM and
GAPS clustenng methods.

.. Complexity analvsis of SBKM

The complexity of the SBEKM clustering algorithm is as fol-
bows (refer to Fig. 1):

(1} Step 1 of the algonthm peeds constant tme.

(2) Each teration of the K-means algonthm needs (VK 4
K) time. S0 if K-means algonthm needs maximum max-
iter_kmeans number of iterations then total complexity due
to K-means algorithm is ((NK +K) < maxiter_kmeans).

(3) In order o find the symmetnceal distance of one point in
step 3, the time needed s (NK). So lor a total of N
points, the complexity is (N> K ). If this fine-tuning proce-
dure s repeated for maxiter _symmetry number of limes
then total complexity due to this procedure is (N7K x
maxiter_symmetry).

(4) Step 4 of the algorithm ie., updating of centers, neceds
CHE) time.

S0, in general total time complexity becomes

((NK + K)+maxiter_kmeans + N ‘K

¥ maxiter_svmmetrv + K). (14}

As Nemaxiter_kmeans, so, the complexity of SBEKM be-
COMmes G{NIK ¥ Maxiter_symmetry).
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6.2, Complexity analysis of GAPS

Below we have analyzed the complexity of the proposed
GAPS clustering.

(1) As discussed above Kd-tree data structure has been used
in order w find the pearest neighbor of a particular point.
The construction of Kd-tree requires G{N log N') time and
(N} space [8].

(2) Inmitalization of GA needs Popsize x siringlength time
where Popsize and stringlength indicate the population size
and the length of each chromosome in the GA, respec-
tively. Note that for K clusters in d-dimensional space,
stringlength will become K x d.

(3) Fitness is computed by calling the clustering_ PS proce-
dure.

(1) In order to assign each point o a cluster we have
caleulate the mimimum symmetrical distance of that
pomnt with respect W all clusters. For this purpose the
Kd-tree based nearest neighbor search is used. If the
pomts are roughly uniformly distributed, then the ex-
pected case complexity is O(c +log N), where ¢ is a
constant depending on dimension and the point distri-
bution. This s O{log &) if the dimension d 15 a con-
stant [49]. Fniedman et al. [50] also reported O(log V)
expected time for finding the nearest neighbor. So in
order to find minimal symmetrical distance of a partic-
ular point, O(K log N time 15 needed.

For N points total complexity becomes O (KN log N,

(b) For updatng the centers total complexity 15 O(K ).
S0 the fitness evaluation has total complexity = 0
(Popsize » KNlog N).

(4) Selection step of the GA  requires
stringlength) ime.

(5) Mutation and crossover require O{Popsizexsiringlength)
time each.

O({Popsize x

S0 n general total ime complexity becomes O(ENlog N =
Popsize) per generaton. For maximum maxgen number
of generations total complexity becomes O(KNlogN x
Popsize = maxgen). As Popsize 15 constant, total complexity
of GAPS clustenng 15 O(NKlog N % maxgen). S0 1L 15 ev-
ient that the use of Kd-tree makes GAPS clustenng method
more efficient as compared to SBKM.

7. Implementation results

The expenmental results companng the performance of
GAPS, SBEM [41], Mod-5BEM [42] and K -means algorithm
are provided for nine artificial data sets and seven real-life data
sets. For SBEKM algorithm, @ is set equal 1o 0.18 as suggested
in Ref. [41]. For Mod-SBKM, (1 is chosen as 0.5, For the newly
developed GAPS-clustering, value of (f is determined from the
data set as discussed in Secton 3.

Initially expenments were camied out with fixed mutation
probability, u,, and fixed crossover probability, p.. Good re-
sults were obtaned with p. = 0.8 and p, = 0L02, keeping

Ma7

A A AR

] . ]

Fig. 5. fharal.

number of generations = 3. Keeping the wvalue of p, = 0.8
fixed and changing n 0 0,05, GAPS got stuck at a local opti-
mum for Data?, bul for all the other data sets its performance
was good. Again, keeping the value of g fixed and decreasing
the value of p,, to (L008, GAPS got stuck at a local optimum
for Daral but for the other data sets its performance was good.
For p, = 0.02 and g, =099, GAPS was not able to find out
the proper clustenng for Dara? and Datra6. For p, = 0.7 and
o, =002, again GAPS could not find oul the proper clustenng
for Daras, Datat and Dara?. The expenmental mesults show
that good pedformance of GAPS depends on the mitial choke
of g, and p,. Hence the crossover probability, g, and muta-
tion probability, p, . are determined adaptively as desenbed in
Sections 5.4 and 5.5. The population size, P is set equal o 100,
The total number of generations 1s kept equal to 20, Executing
it further did not improve the perdformance.

The 16 data sets used for companson are divided into four
FTOUPS.

(1) Group 1: The three data sets in this group (Datal, Data2
and Dara?) are similar to those used in Refs [41.42]
(these were generated by us, bul by keeping the structure
of the clusters as close as possible o that desenbed in
Refs. [41.42]). The clusters present in these data sets are
intemally  symmetncal but clusters themselves are not
symmetneal with respect to any intermediate point. For
these data sets, SBEKM and GAPS can easily find the true
clustering but K-means fails to find this.

(a) Damal: This data set consists of two bands as shown in
Fig. 5, where cach band consists of 200 data points, The
final clustenng results obtaimed by K-means, SBKM,
Mod-SBEKM and GAPS are given in Figs. 6a), (b),
(c) and (d), respectively. All the above-mentioned al-
gonthms except the K-means are able o find out the
proper clustering for this data. As expected K-means
shows poor performance for this data since the clusters
are not hypersphercal in nature.

(b Data2: This data set 15 a combination of nng-shaped,
compact and linear clusters shown in Fig. 7. The total
number of points in it is 400. The final results obtained
after application of K-means, SBKM, Mod-5BKM und
GAPS are shown in Figs. 8(a), (b), () and (d), respec-
tively, where K-means is found to fail in providing the
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2 400} and three clusters. The final resulls cormespond-
15 R ing o K-means algorithm, SBKM., Mod-5BEM and
; é::"" % GAPS are shown in Figs. 10(a), (b), (¢) and (d), re-
" spectively. As evident from Fig. 10{a), K-means fails
¢ A -",5,‘ in comectly detecting the hinear cluster; it includes
] :.'-‘:2}_,-'_'-- P S points from the rectangular eluster in the linear cluster.
05 _-r":_*_': "e:-,: 2 s As expected, the ring s properly detected. The other
i h".-ﬁ: ‘_t' -.f-“"-': "t_n three methods yield the cormect partiboning for this
b T 3 data.
-3 T : It 1% to be noted that for each of the above three data sets,
-15 -1 405 0 05 1 15 2 25

Fig. 7. Dafa?.

proper clusters. For SBKM (Fg. 8(b)) poruons of the
upper ring have gone into the elongated elliptic clus-
ter (denoted by 7). But Mod-SBEM is able to find
oul the proper clustering from the data set. In contrast,
the proposed GAPS (Fig. 8(d)) groups the points in-
side the ring, but part of the elongated, elliptic cluster,
with those of the ring. In absence of any class infor-
mation about the points, such a grouping is not meally
surprising.

Dara3: This data set 1s a combination of a ring-shaped
cluster, a rectangular cluster and a linear eluster as
shown in Fig. 9, with total number of points equal to

the K-means is unable to provide the comect clustering.

However, the PS-distance based cluster assignments, per-

formed in the fine-tuning phase of SBEKM, rectifies the

wrong cluster assignments provided by the K -means.

(2) Group 2: The four data sets in this category are those used
in Ref. [51]. The clusters present in these data sets are
intemnally symmetneal and clusters are also symmetrical
with respect to some ntermediale point.

(a) Datad: This data set consists of 250 data points dis-
tributed over five sphercally shaped clusters as shown
in Fig. 11. The clusters present here are highly over-
lapping, each consisting of 50 data points. Figs. 12(a),
(hi. (¢ and (d) show the results for K -means, SBEM,
Mod-5BEM and GAPS, respectively. As is evident, K-
means performs the best for this data. Although GAPS
15 also able w detect the clusters reasonably well, it
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i

15 found to somewhat over-approximate the central
cluster (which extends to the left). The reason is as fol-
lovws. Let us take a point p which actoally belongs o
left cluster but after applicaton of GAPS it is included
in the central cluster (it 1 shown in Fig. 120d)). It can

(b)

be seen from the figure that the point p s more sym-
meetrical with respect w the central cluster, ¢1. Here
even though &, (p, cl) 1s slightly greater than d.( p. £2)
but due to the absence of symmetry with respect 1o c2,
15 assigned to the central cluster.

Both SBKM and Mod-5BKM fail in detecting the
proper clustenng here because data points are more
symmetrical with respect to some other cluster center
than the actual cluster center (because of the limita-
tions in the definitions of d; and d.). The point to
be noted here s that the SBEM method destroys the
proper clustering achieved by the K-means method.
This 15 demonstrated in Figs. 13(a)—(d) that show how
the cluster centres move with iterations dunng the
application of SBKM. Evidenty SBKM is trying Lo
bring all the cluster centres at the center of the whole
data set thereby providing very poor performmance.
Daia5: This data set consists of 76 data points dis-
tnbuted over three clusters. Some points of one
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cluster are symmetrical with respect o the other
clustercentre. This data set is shown in Fig. 14,
Figs.15 (a), (b), (c) and (d) show the clusters obtained
by K-means, SBKM, Mod-SBKM and GAPS, respec-

()

tively. As is evident, both K-means and GAPS succeed
in providing the proper partitioning while SB KM and
Mod-5BEM fail in doing so.

Datag: This data set consists of 400 data points in
three-dimensional space distributed over four hyper-
spherical digjoint clusters where each cluster containg
100 data points. This data set 15 shown m Fg. 16
Figs. 17(a), (b), () and (d) show the clusters obtained
by K-means, SBKM, Mod-SBKM and GAPS, respec-
tively. As s evident, both K-means and GAPS again
succeed i providing the proper clusters while SBKM
and Mod-SBEM fail miserably in doing so. As is evi-
dent from Fig. 17(b), SBKM provides just three clus-
ters for this data, which are denoted by s+, “4A°, o'
Note that the cluster shown by ‘o has just two points
in i, which appears among the points in the lower-
maost group. Although Mod-5BKM is able to identify
four clusters (Fig. 17(c)), the clusters themselves are
HTProper
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(d) Data7: This data set consists of 300 data points that
are distrbuted over six different clusters with 50 points
in each cluster. This data set is shown in Fig. 18,
Figs. 190a), (b). (c) and (d) show the clusters obtained
by K-means, SBEKM, Mod-SBKM and GAPS, respec-
tively., As in the previous cases, both K-means and
GAPS succeed in providing the proper clusters while
SBEM and Mod-SBKM provide only four clusters for
this data (see Figs. 19(b) and (¢)) by merging two pairs
of clusters. This observation s nol surprising given
the problem that exists in the definitions of the PS-
distances as proposed in Refs. [41.42].

(3) Group 3: This group consists of two data sets which are
used in Ref, [52]. These two data sets are taken in order to
show that the proposed GAPS-clustering algonthm is able
to find the proper clustering from a data set where clus-
ters are of significantly different sizes. (Note that clusters
of widely varying sizes may be present in several real-life
domains, e.g., medical images, satellite images, fraud de-
lection.)

()

(b

Daia&: This data set consists of 43 points that are dis-
tnbuted over 2 different clusters of sigmficantly dif-
ferent sizes as shown in Fig, 20. Figs. 21(a), (b), (c)
and (d) show the partitionings obtained by K-means,
SBEKM, Mod-SBKM and GAPS, respectively. Asisev-
wdent, only GAPS is able to find out the proper partition-
ing. Since K-means is able to detect clusters of almost
equal stees, 1t merges several points from the larger
cluster to the smaller one. SBEKM and Mod-SBKM are
also misled in clustering because of the aforementioned
problems in the definiions of the PS-distance. Only
the proposed GAPS is successful for this data since it
not only tries o minimize the symmetry distance but
also the Euclidean distance.

Daia9: This s a two-dimensional data set consisting
of 49 points distributed in three clusters as shown in
Fig. 22, This data set consists of two small elusters (one
has six elements and the other has three ) separated by
a large (40 element) cluster. Figs. 23(a), (b). (¢) and (d)
show the partitionings obtained by K-means, SBEKM,
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Mod-5BKM and GAPS, respectively. As carlier, only
GAPS 15 able o find out the proper partiioning, while
the other three algorithms fail.

(4) Group 4: This category consists of seven real life data sets:

Iris, Cancer, Newthyroid, Wine, Glass, LungCancer and
Liverdizorder data sets obtained from Ref. [53]. For these
data sets, the Minkowski Scores [34] are reported for each
algorithm. This is & measure of the guality of a solution
given the true clustering. Let T be the “true” solution and 5
the solution we wish 1o measure. Denote by iy the number
of pairs of elements that are in the same cluster in both 5
and T. Denote by ngp the number of pairs that are in the
same cluster only in 5, and by nyg the number of pairs that
are in the same cluster in T, Minkowski Score (MS) s then

4

4 L] ] 10 12 14 1]

centers obtained by SBEKM on Dkered after (a) application of the & -mems algonthm (b) 1 itemtion {e) 10 iterations (d) 20

defined as

oL+ R

MSI(T, S) = | :
o) Y ony +ng

(15)
For M5, the optimum score 15 0, with lower scomes being
“better”. The MS scores and their varniances are reported
in Table 1 for all the data sets. Statstcal ANOVA [45] s
performed for the meal-life data sets on the combined MS
values of the four algorithms when cach 15 executed ten
tmes. ANOVA mesults are reported in detail for fris
(Table 2), Newthyroid (Table 3) and Glass (Table 4) only
to restrict the size of the article.

(a) fris: Ins data set consists of 150 data points distributed

over three clusters. Each cluster has 50 points. This
data set represents dif ferent categories of irises charme-
terized by four feature values [55]. It has three classes
Setosa, Versicolor and Virgmica. It is known that two
classes (Versicolor and Virginica) have a large amount
of overlap while the class Setosa 1s lincarly separable
from the other two.
As seen from Table 1, the MS-scores of Mod-SBEM
15 the best for fris, while the pedomance of GAPS
15 second. However, it can be seen from Table 2 that
the difference in the means of the MS scores of GAPS
and K -means is not significant indicating their similar
performance. The pedformance of SBKM algorithm is
found to be poor.

(c) Cancer: Here we use the Wisconsin Breast cancer
data set consistng of 683 sample points. Each pattern
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Fig. 15. Clustering of Dara’ obtained by (1) K-means (b1 SBKM (c) Mod-SBKM (d) GAPS.

Fig. 16, Dharaé,

has nine features comesponding to clump thickness,
cell size uniformity, cell shape uniformity, marginal
adhesion, single epithelial cell size, bare nuclei, bland
chromatin, normal nucleoli and mitoses. There are
two categories in the data: malignant and benign. The
two classes are known o be linearly separable. As can

be seen from Table 1, the performance of K-means,
SBEM and Mod-SBEM are similar, while that of
GAPS s better than them. ANOWA tests show that the
differences in mean MS scores of GAPS with respect
to cach of the other three algorithms are significant.
The results indicate that the two clusters are convex as
well as highly symmetncal.

Newthymid (or, Thyroid gland data): Five laboratory
tests are vsed o predict whether a patient’s thyrod
belongs to the class euthyroidism, hypothyroidism or
hyperthyroidism. There are atotal of 215 instances. The
total number of attributes 15 five. From Tables 1 and 3,
itis evident that GAPS performs the best (providing the
lowest MS score), while K -means performs the worst.
The improvement in performance obtained by GAPS as
compared 1o the other three technigues s statistically
significant. SBKM is also found to provide improved
pedomuance over K-means and Mod-SBEM, and this
improvement is also significant.
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(dy Wire: This is the Wine recognition data consisting of

178 instances having 13 features resulting from a chem-
ical analysis of wines grown in the same region in Italy
but derived from three different cultivars. The analy-
sis determined the gquantities of 13 constituents found
in each of the three types of wines. From Table 1, it
15 evident that GAPS performs the best (providing the
lowest MS score) for this data set. ANOVA statistical
analysis 15 also done here. The analysis shows that the

_5 =
0

20
10 ///l:-

g @

(b} SBEM (o) Mod-SBEKM (d) GAPS.

(e)

(f)

(g)

mean MS differences of all the algonthms are statist-
cally signmificant.

Crlass: This s the glass wentification data consisting
of 214 instances having nine features (an Id# feature
has been removed). The study of the classification of
the types of glass was motivated by enminological n-
vestigation. Al the scene of the cnme, the glass left
can be used as evidence, if it s correctly wdentified.
There are six calegories present in this data set. From
Tables 1 and 4 it is again evident that GAPS performs
much better than the other three algonthms (provid-
ing the lowest MS score). ANOVA results, provided
in Table 4, shows that this improvement 1% statnstcally
significant.

LingCancer: This data consists of 32 instances hav-
ing 56 features each. The data descenbes three types
of pathological lung cancers. The MS scores, reported
in Table 1, demonstrate the superior performance of
GAPS. ANOVA statstical analysis 1s also done here.
The analysis shows that the mean MS differences of
all the algorithms are statistically significant.
Liverdisorder: This 15 the Liver Disorder data consist-
ing of 345 instances having six features each. The data
has two categories. The MS scores of the partitions,
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reported in Table 1, again shows the superior perfor-
mance of GAPS. ANOVA statstical analysis again me-
viedls that the mean MS differences of all the algonthms
are statistically significant.

Note that the above implementation of GAPS used a Kd-tree
structure to reduce computational tme of identfying the near-
est neighbors. In order to actoally demonstmte this, GAPS
was also executed without wsing Kd-tree data structure for
the seven artificial data sets. The computational times (GAPS
is implemented in C and was executed in a machine having
linux platform, PIV processor, 1.6 GHz speed) are mentioned in
Table 5. As is evident, incorporation of Kd-tree significantly
redoces the computational burden of the process.

8. Comparing the individual clusters

MANOVA wechnigque [46] s used for assessing group dif-
ferences between the actual elusters and those obtained using
GAPS, SBEM, Mod-5BEM and K -means. Here results are
shown only for the first three data sets in Group 4 just for
an illustration. MANOVA is a powerdul statistical tool used
in actual or guasi-experimental situations. It provides infor-
mation on the nature and predictive power of the independent
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measures, as well as the relationships and differences seen in
the dependent measures. [Lis anextension of ANOWVA [45] used
to gecommodate more than one dependent vanable. MANOVA
measures the group differences between two or mome metne

dependent variables simultaneously, using a set of categorical
non-metric vanables (the cluster labels in this case). The mat-
lub statstcal toolbox, MANOVATL is used for this purpose. The
results are reported in Table 6. Here if d = 0 we cannol reject
the null hypothesis that the means are the same, while if d = 1,
we reject the hypothesis that the means are the same but we
cannol reject the hypothesis that they lie on a line. A larger p
vialue means the null hypothesis is more significant and vice
versa. If p = 0L05, then we will reject the null hypothesis. The
column gm in Table 6 represents the Mahalanobis distance be-
tween cach pair of group means.

It can be seen from Table 6 that for frs data set. GAPS
5 able 1o find the first cluster comectly (d =0, p =1 and
gm=0). This signifies that means of data items forming cluster
I after application of GAPS and that of the actal cluster are
the same. On the other hand GAPS could not find the other
two clusters accurately. It is reflected from the combined result
of d and p values where although the d values are 0 but this
result is not significant as the p values are quite small. This is
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Table 1
Mean and vanance of Minkowski score obtained by the four algorithms on seven real-life data sets
[Drata set K-means SBEM Mod-SBEKM GAPS
Irig 0.68266 & 0.002 0.9613 £ 0.0105 06481 £ 0.0149 067 1884 £ (0.001
Cancer 0367056 £+ 0.002 0367056 £ (.00 (L.367056 £ 0.00 046018 £ 0.00
Newthyrid 0940682 £ (.00 0.6272 £ 0.0014 07640 £ 00129 0.591140 £ 0,001
Wine 134996 £ (001 1.2505 4 0002 0973854 0.0 0912391 £0.002
Cilass L6EED £ 0.01 LOBTT £ 0.000766 LET74 2 00004 1154 08223 £ 0
LimgCancer 1.4558 £+ (1L.002 1R £ 00025 10904 £ (L0025 0892047 £ 0.02
Liverfisorder 09777 £ 0.0001 09894 £ 0.0021 049852 £0.0 09639 £ 0.01

also evident from the high gm values as shown in Table 6. For
SBEM., d =1 and p values are very low for all the three clusters
mdicating its extremely poor performance. Mod-SBEKM and
K-means perform similady overall.

For Cancer data set, GAPS provides higher comrespondence
to the actual clusters, for both cluster] and cluster2, as com-
pared to the other algonthms. This is evident from the p and
gm values in Table 6. For all the algorithms we get d =10, but

p value of GAPS is much better than p values of all the other
algorithms. This 1s also evident from the gm value. gm values
obtained by GAPS is smaller than the gm values obtlained by
all the other algonthms.

In the case of Newthyroid data, GAPS and SBEKM perform
well for cluster] (in both the cases d =10, p = 005 and gm s
also small). For cluster 2, though GAPS and SBKM provide
d =10 but pis very close to 0,05 This 1 also evident from
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Tahle 2

Estimated marginal means and pairwise comparisons of different algorithms
an Minkowski score obtained by ANMOVA testing for fris data (GAPS:GP,
K-means: KM, Mod-SBKM:MSB, SBEKM:5B)

Table 4

Estimated marginal means and pairwise comparisons of different algon thms
on Minkowski score obtained by ANOVA testing for Gilass data (GAPS:GP,
K-means: KM, Mod-5 BEM:MSB, SBEM:5B)

Algo. name (Il Comparing Mean difference (-1 Significance Algo. name (1) Comparing Mean difference (I-1) Significance
algarithm (1) vilue algarithm (1) vilue
GP KM —1E — 03 £ 0.00143 .74 0GP EM —(LE6S £ 0.01 .00
M5B 2AE — 02 £ 0.004 (1.0 M5B —.25] £0.05 1.1
5B —1. 28 0023 (.00} 5B 0. 27+ 0.03 .10
KM GP 1E — 03000163 .78 KM GP 0865 £ 0.1 0.000
M5B 3 TIE — (2 £ 0.004 0.(K) M5B 0.57 L 0.02 .10
5B —1.27T8 £+ 0,01 (1.1X] .
5B L6 £ 004 0.0
M5B GP —23E — (2 4+ 0.004 {1.(X) )
KM _3T3E — (02 &+ 0.004 .00 M5B GP (0.251 £0.05 1.4
SB —(0.3132 L 0.0012 (.00 '_(M __”'5? +0.02 by
s5B 29E — 12 4+ 0.004 .10
5B GP 02804 4+ 0.023 .00} SB GP 0.27+0.03 .10
EM 0. 27864 £ 0,01 {.(%)
MSE 0313200012 0.00 KM =060 oo
M5B —29E — (2 4+ 0.004 .10
Tahle 3

Estimated marginal means and poirwise comparisons of different algo-
rithms on Minkowski score obtained by ANOVA testing for Newrhvroid data
(GAPS:GP, K-mens KM, Mod-SBEM:M5B, SBEM:SB)

Algo. name (I} Comparing Mean difference (1) Significance
algarithm (1) vitlue
Gpe KM —0.359 £ 0002 0.0
M5B —1.16 £ 002 0.0
5B —36E — (02 £ 0.0014 (.1}
EM Gp 0359 0002 (.1%)
MSB 0,196 £ 0.1 0.0
5B .34 £+ 000014 0.0
M5B GE (.16 =002 LRV
KM —0.196 = (0.0l 0.0
s5B 0136 £ 00129 LRV
5B GF J6E — 02200014 (.1}
KM =M 00014 (.0
MSB —0.130 £0.0129 0.0

the larger gm values. The other two algorithms yield very poor
approximations of cluster] and cluster2 since here d = 1. For
cluster3, K -means and Mod-SBEKM perform better than GAPS
and 5B KM as evident from the gm values in Table 6. Since 150
puoints (out of 215) of this data belong to cluster], which GAPS
is able to approximate well, the overall MS score is found to
be the best for it (Table 3).

9. Summary of resulis

It can be seen from the above results that proposed GAPS is
able to find out the proper clustering where SBKM and Mod-
SBEM succeed while K-means fails (data sets from Group 1)
as well as where K-means succeeds while SBEM and Mod-
SBEM fuil (data sets of Group 2). The results on data sets of
Group 3 show that GAPS is able w detect symmetric clusters
irespective of their sizes where SBEKM, Mod-SBEKM and K-
meians all fuil. The superiority of GAPS 1s also established on

Tabhle 5

Exccution time (GAPS is implemented in C and executed in Linux platform,
FIV processor, 1.66CGHz speed) in seconds by GAPS with and without
Kd-tree based search

Drata set GAPS with GAPS with
Kd-tree out Kd-tree
Dharal 30 1714
Data il 5280
Dara? al 5594
Dharad i) 2268
Datas 10 134
Datad 128 al 12
Data? o IRT0

seven real-life data sets. These real-life data sets are of different
charcteristics with the number of dimensions varying from 4
o 56. Results on 16 artificial and real-life data sets establish the
fact that GAPS 15 well-suited to detect clusters of widely vary-
mg charactenstcs. The improved pedormance of GAPS can be
attributed o the fact that in the newly proposed point symmetry-
based distance, d g, there is an impact of both the symmetrical
distance as well as the Euchidean distance. This was lacking
in the earlier definitions of the point symmetry-based distances
[41.42], which resulted in some senous problems as discussed
in Section 2 and displayed pictorially in Fig. 2.

The K-means, SBEM and Mod-SBEM are based on local
search and hence may often get stck at local optima depend-
ing on the choice of the initial cluster centers. The use of GA
in GAPS in order to minimiee the total symmetncal distance
overcomes this problem. Moreover, the use of adaptive muta-
ton and crossover probabilities also helps GAPS o converge
faster. The experimental results on a wide variety of data sels
show that GAPS is able to detect any type of clusters, irre-
spective of their geometneal shape and overlapping nature, as
long as they possess the characteristic of symmetry. Based on
this observation, and the fact that the property of symmetry is
widely evident in real-life situations, application of GAPS in
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Table &

M40

Result of MANOVA testing by different algorithms on real-life data sets (here g stands for Mahalanobis distance)

Drata =et GAPS SBEM Muod-5B KM K-means
o m fe] d n m d n g o ] o

Trix {clusterl) L] 1 i} | il 16.45 4] 0.20 0nx ] | ]
Iris {cluster?) i 1.0 .33 1 327 e — 009 1.65 i (1.33 .23 ] (.26 0.26
Trig {clusterd) ] .11 41 | 230 e — 009 148 ] (.20 0.2 ] (.09 (.31
Cancer {cluster] ) L] .94 (L0115 i a7 0.013 il .97 0.023 ] 098 00T
Cancer (cluster2) i .95 (L0104 i 098 L01E L] (1.9%8 .01 14 ] 9% 002
Newrfeymid {clusterl ) ] .54 0051 ] .56 0.052 | (0038 0.17 | 0.4 07
Newthymid {cluster2 ) 0 0073 10338 0 0093 e — 005 0.5 | 4.47 1.54 1 4.47 1.54
Newthymid {cluster3) ] 037 44 ] .55 .18 ] 057 .33 1] 0.57 .33

most clustering tasks seems justified and 15 therefore recom-
mended.

10, Discussion and conclusions

In this paper a new point symmetry-based distance 15 pro-
posed which incorporates both the Euclidean distance as well
as a measure of symmetry with respect to a point i its com-
putation. Kd-tree based nearest neighbor search s used o
reduce the complexity of symmetry-based distance computa-
ton. A genetic clustenng technigque (GAPS) s also proposed
here that meorporates the new point symmetry distance while
performing cluster assignments of the pomts and in the fitness
computation. The major advantages of GAPS are as follows.
In contrast to K-means, use of GA enables the algorithm to
come out of local optima, making it less sensitive o the choice
of the initial cluster centers. Again, the proposed GAPS 15
able to detect clusters that may be of widely varying sizes,
where K-means, SBEM and Mod-5SBEM fail. Such situations
may anse in several real-life domains, e.g., medical images,
satellite images, fraud detection. Incorporation of the proposed
PS-distance enables GAPS to detect symmetric clusters, both
convex and non-convex, even if the clusters are symmetrical
with respect to some intermediate point. This is i contrast
o SBEM and Mod-5SBEKM., which fail in such situations.
Moreover, use of Kd-tree makes the computation of the point
symmetry distance significantly faster than both SBKM and
Mod-SBEKM.

Experimental results on different data sets demonstrate the
superiorty of GAPS as compared to SBEM [41], its modified
version Mod-5BEM [42] and the K-means algornthm. GAPS
is found to provide satisfactory performance both where
K-means fails but SBEM succeeds as well as SBEM fails but
K-means suceeeds. Results on data sets of Group 3 demon-
strate that GAPS is able to detect symmetric clusters of any
size where all the other algonthms fail. The superionty of
GAPS 15 also established on seven real-life data sets. These
real-life data sets are of different chamcteristies, with the
number of dimensions varying from 4 o 56, Results on 16
artificial and real-life data sets establish the fact that GAPS is
will-suited to detect clusters of widely varying charactenstics.
Comparison of the obtained results by different algorithms
are performed by vardous statistical tests such as ANOVA and

MANOWVA, The present clustering algorithm based on the pro-
posed PS-distance does not reguire point and its symmetrical
point (or its nearest neighbor) to belong o the same clusier.
This may prove o be a disadvantage as was evident for Darad
where the central cluster got overestimated. Further rescarch
needs W be camied out to rectify this limitation. The authors
are currently working in this direction. Another area of future
rescarch is the development of new cluster validity indices as
well as automatic clustening methods based on the proposed
point symmetry distance.
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