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A bstraci—Auntomatic identification of genes has been an actively
researched area of bicinformatics. Compared to earlier attempts
for finding genes, the recent technigues are significantly more ac-
curate and reliable. Many of the current gene-finding methods
employ computational intelligence techniques that are known to
he more robust when dealing with uncertainty and imprecision. In
this paper, a detailed survey on the existing classical and computa-
tional intelligence hased methods for gene identification is carried
out. This includes a brief description of the classical and compu-
tational intelligence methods hefore discussing their applications
to gene finding. In addition, a long list of available gene finders is
compiled. For the convenience of the readers, the list is enhanced by
mentioning their corresponding Web sites and commenting on the
general approach adopted. An extensive hibliography is provided.
Finally, some limitations of the current approaches and future di-
rections are discussed.

Index Terns—Bioinformatics, case-based reasoning, decision
tree, gene finding, genetic algorithms (G As), neural networks.

[. INTRODUCTION

DENTIFYING genes from DNA sequences 15 an mmportant

problem i bioinformatics [1], [2]. As the human genome
project came toan end i 2003, all the human chromosomes have
been sequenced [3], pegzing the estimated number of genes 0o
2000025 (00 [4]. Thus, the deve lopment of meliable automated
technigues for interpreting long anonymous genomic sequences
(1.e., partiioning them imto genes, promolers, regulatory ele-
menls, intergenic region, ¢le.) became mperative. As a conse-
quence, compulational approaches to gene finding have atracted
alotmore attention in the molecular biology and genomics com-
munity [5]-[7]. Significant advances in gene-finding methodol-
ogy have taken place, and the current methods are consider-
ably more accurate, reliable, and useful than those available in
the past. Hidden Markov model (HMM), decision trees, and
dynamic-programming-based approaches for gene finding are
discussed in [B]. A summary of the available programs for gene
finding 15 also reported in [B]. A comparative study of the gene
structure prediction methods is available in [9]. Gelfand [10]
provides an extensive review of several methods for prediction
of functional sites, IRNA, and prowein-coding genes. A brief
overview of some of the computational methods for gene find-

ing is available in [11]. A review of the existing approaches to
predict genes in eukaryolic genomes and the limitations of these
methods are given in [ 12]. An extensive bibliography and many
more related resources on computational gene recognilion are
available in [ 13] and [ 14].

In addition to the conventional gene-finding methods like
those based on HMM and dynamic programming, approaches
based on computatonal intelligence technigues have gained
populanty in recent times. Computational mtelligence methods
are known o be more robust, and they provide greater approsx-
imation of the resulis of the problem under consideration. For
example, a neural-network-based protein secondary structure
predicion method (PHDsec, a component of a suile of pro-
grams called PHD for predicting the one-dimensional structure
of proteins [15]) was the first 1o surpass a level of 70% over-
all three-state per-residue accuracy. Moreover, even if some of
the links fail, the performance of the network degrades gradu-
ally. Computational intelligence technigues also work well for
the gene-finding problem because they can handle approximate
nature, incompleteness, and uncertaimty of data.

In this paper, the problem of gene identification, along with
the issues involved in it, are first described. Thereafier, the clas-
sical approaches based on HMM, Bayesian networks, and dy-
namic programming are discussed. Finally, a review of some
of the computational mtelligence technigues for this problem
15 provided. Most of the previous reviews on the topic have
concentrated on a few conventional gene-finding methods. Sub-
sequently, several sophisticated technigues like those based on
computational intelligence approaches have been developed.
However, no review of such approaches has been presented
in the last few years. The recent developments in various gene-
flinding methods, especially using computatonal intelligence
technigues ke neuml networks and genetic algorithms, have
been summartzed in the present paper. A brnel history, as well
as a description of these methods, is provided. Web addresses
for most of the gene-finding software and a fairly extensive
bibliography are also included. Some of the limitations of the
current methods have been mentioned.

II. BACKGROUND AND PROBLEM DEFINITION

In this section, some basic tenminology related o the problem
of gene identification are given lirst. The problem is then stated
formally.

A, Basic Termmology

This section provides a brel overview of the basic concepls
and terminologies in genetics, as well as some of the issues
involved in finding genes in DNA sequences.
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Proteins are considered the building blocks of life and are the
most abundant type of organic molecules in living organisms.
A protein is made up of one or more polypeptide chains. A
polypeptide chain 15 a cham of amino acds. An aming acid
is an organic molecule consisting of a carbon atom bound to
one hydmogen atom, a carboxyl group, an amino group, and a
side group that varies from amino acid 1o amino acid. When an
organism reproduces, it is imperative that the instructions for
building its proteins are reproduced accurately and completely.
These instructions are largely maintained by another type of
organic molecule called nucleotides.

Nucleotides are joined wgether to form large molec ules called
nucleic acids. The two most common Lypes of nucleic acids are
deoxyribonuc ke acid (DNA) and nbonuocleic acid (RNA). DNA
15 made up of four nocleotides: adenine, guanmge, cytosine, and
thymine, abbreviated A, G, C, and T, respectively. In DNA,
A pairs with T and G pairs with C, because of the presence
of hydrogen bonds. A molecule of DNA is organized in the
form of two complementary chains of nucleotides wound in
a double helix. One of these chains (or strands) 1s called the
sense strand, and other the antsense strand or the wemplate
strand. The antisense strand 15 the one that contains the genetic
code of a gene, and is transcribed. Note that, in general, at any
place i a DNA molecule, either of the wo strands may be
serving as the antisense strand. A gene 15 a segment of DNA
that codes for a specific functional product {e.g., a protein or
noncoding RNA molecule). Though genes he linearly along
chromosomes, they are nol necessanily contiguous. frtergenic
regions are the regions of DNA in between genes. These regions
contain a few or no genes, and parts of il sometimes control
senes that are close by, However, most of the intergenic region
has no currently known function. fatrons are segments of DNA
found within genes. Introns are transcribed into RNA along
with the rest of the gene bul must be removed from the RNA
before the mature RNA product 1s complete. Fig. 1 illustrates
the organization of a gene on a DNA strand. Afier the introns
are spliced out, the remainmg segments of RNA are evons.
The ntron exon boundary 15 often called the sphce sie. Exons
are joined together to become the mature RNA product that 1s
usually changed 1o the comresponding protein via the process of
ranslation. Though most of the gene-finding software use the
erm exon o denote only the coding parts, in reality, there are
some exons (or parts of them) that are noncoding. In this review,
howewer, we have referred to the comrect biological definiion
of exons and explicitly mention when only their coding pant
5 concemed. The basic principle by which cellular DNA 15
converted 1o its functional component, the protein, is known as
the central dogma of molecular biology [ 16], depicted in Fig. 2.
The process is described, in some detail, in Section [1- C. For
more details, the readers may refer 1o [16] and [17].

B. Tasks in Bioinformatics and Their Applications

The different biological tasks considered within the scope
of bioinformatics that are within the purview of computational
molecular biology can be broadly classified into two categories:
genomics and proteomics, which involve the study of genes,
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Fig. 2. Centml dogma of molecular biology.

proteins, nucleie acid strucure prediction, and molecular design
with docking. For raw DNA sequences, imvestigations include,
among others, the following:

1y separating coding and noncoding regions;

2y wentification of introns, exons, and promoter regions for

annotating genomic DNA;

3 gene product prediction;

4) analysis of genomic sequences of simple organisms sim-

plifies the problem of understanding complex genomes
(its apphcations are manly in gene product prediction
and forensic analysis).

Besides these, phylogenetics, microamay analysis, gene reg-
ulatory networks, and metabolic pathways are other fields that
are much studied in this domain. Some other areas of mmense
interest within bioinformatics, which are well above the afore-
mentoned level, melude the optimization of drug administration
schedule based on drug response data, automatic detemmination
of cancer types fmom mmage data (e.g.. skin cancer, breast can-
cer), and determining the stage of cancer from cellular images
of the infected areas (e.g., cervical cancer).

Since the purpose of this paper is to provide an overview of
the different techniques for gene identification, this is described
later in more detail. Note that the present review deals with only
protein-coding gene-finding echnigues. A completely different
class of algorithms are used for noncoding RNA gene finding,
which is outside the purview of this paper.

C. Problem of Finding Protein-Coding Genes

The general problem of finding protein-coding genes is as
follows. Given a sequence of DNA, how does one determine the
location of protein-coding genes, which are the regions contain-
ing information that code for proteins. Al a very general level,
nucleotrdes can be classified as belonging to:

® coding regions in a gene, 1.e., CXons;

* poncoding regions in g gene, Le., inrons;

® Olergenic megions.

The problem can then be formally stated as follows.

fnpur: A sequence of DNA

X =(z1,...,2a) €T, where Y= {4, T, C, G}

Cuipue: Correct labeling of each element in X as belonging
to 4 coding region, noncoding region, or INErgenic reglon.
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As shown in Fig. 1, on a very high level, genes i human
DNA and many other orgamsms have a relatively regolar struc-
wre. The beginning of a gene is al the ranscription star sile
{TSS). This is followed by an exon, which is a sequence of DNA
that s mostly expressed in the final protein product (oran RNA
product). A series of intron—exon pairs may then follow, where
mirons sepamte the exons, Al the intron—exon boundaries, thene
are sphice junctions (or acceptor/donor sites) that aid the pro-
cess of RNA splicing. Transcription initiation of protein-coding
zenes in cukaryotic cells is a complex process. The different
steps of gene transcrption, on a general level, can be summa-
rzed as follows. 1L stas with the binding of several transcription
factors (TFs) on the “upstream”™ promoter that could be as far
as 1 Kilo base pairs (kb) upstream of the start site [6]. This,
in conjunction with enhancers, silencers and insulators (all of
which are stretches of DNA that could be several thousand base
pairs away from the genes they control), controls the binding of
a preinitiation complex, usually composed of RNA polymerase
11, ranscrption factor 11D and other general transerption fac-
tors, on the core promoter that lies approximately 100 base pairs
ibp) on either side of the TSS [6]. These help in opening up the
double helix, which is followed by a movement of the RNA
polymerase from the 3-end to the 5'-end on the antisense strand
of the DNA. As the RNA polymerase proceeds, it assembles
rbonucleotides into a strand of pre-mRNA, following certain
rules of base pairing. These rules are: 1) a C on the DNA strnd
results moa G bemg imserted o the RNA strand, 2) a G on the
DMNA strand results in a C being inserted into the RNA strand,
3y a T on the DNA strand results inoan A being inserted into
the RNA strand., and 4) an A on the DNA strand results mma U
(uracil) being mserted nto the RNA stmand. The BRNA s synthe-
sized ina 5 1o 3 direction. The pre-mRNA undergoes a series
of processing steps to be converted into an mRNA. These are the
capping of the 3-end of the pre-mBENA, the removal of inrons
and splicing of exons, and finally the attachment of a polyade-
nme Lail at a special site, called the polyadenylation site, of the
pre-mBENA. The transcript 1s cut at this point, and forms the
mBNA that undergoes translation o be converted into a protein.
A protein is composed of 4 number of amino acids. There are
20 amino acids in practice. A set of three consecutive nucleotides
m an mRNA, called a codon, codes for an amino acid. As there
are a total of 64 possible codons, but only 20 different amino
acids, coding redundancy exists. Moreover, some of the codons
do not code for any amino acid, they just signal some special
evenl. For example, stan and swop codons signal the beginnmg
and end of ranslation.

It may be noted that our knowledge about the genomic
ranscoption process 15 hmited. For example, in vertebrates,
the mtemal exons are small (ypically about 140 nocleotides
long), while the introns are much larger (some being more than
100 kb long) [6]. The mechanism by which the splcmg machin-
ery recognizes the exons from within vast stretches of introns
is still not fully clear. Accurate information regarding the pro-
moters of most genes 15 severely limited. There 15 no strong
consensus sequence at the splice junctions. We sull do not know
how many genes are there in the human genome, and the es-
timate of this value is getting revised frequenty. These, and
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several other, 1ssues make the task of dentifying genes ex-
trermiely challengng.

1. GEMERAL OVERVIEW OF THE CLASSICAL
GENE-FINDING APPROACHES

Asshown in Fig. 3, the classical approaches for gene finding
can be roughly divided into finding the evidence for a gene and
combining several evidences of genes in order o better predict
the structure of a gene [12]. (As shown by dashed arrow in
Fig. 3, the latter may use lechnigques in the former.) These are
now discussed briefly.

A. Finding the Evidence

Essentially, two different types of information, viz., content
sensors and signal sensors are currently used to try o identify
BENES N A ZIVEN Zenomic Sequence.

1) Content Sensors: Conlent sensors are those measures that
try to classify a DNA region into different types, e.g., coding
versus noncoding [12]. The existence of sufficient similarity
with a biologically characterized sequence has been the main
means of obtaining such a classification. Content sensors can be
further classified as extninsic and intrinsic conlent sensors.

a) Extringic content sensors: Exirmsic contenl sensors
consider a genomic sequence region and compute its similarity
to a prowem or DNA sequence present moa database m order
to determmine whether the region 15 transeribed andfor coding.
The baske tools for detecting this similanty between sequences
are local alignment methods, mnging from the optimal Smith—
Waterman algorithm [18] o fast heurstic approaches such as
FASTA [19] and BLAST [20]. The obvious weakness of such
extrinsic approaches is that nothing will be found if the database
does not contain a sufficiently similar sequence. Even when a
zood similarity is found, the expansion of the regions of simi-
larity, which should mdicate exons, are not always very precise
and do not enable an accurate identification of the strocure of
the gene. Small exons are also easily missed. Moreover, some
databases may contain information of poor guality that could
easily mislead these approaches. Finally, the choice of the sim-
ilarity measure(s) is an important consideration itself’.

B Intrinsic content sensors: Intnnsic conlent sensors
were basically defined for prokaryotic genomes where only
protein codmg mregions and inmtergenic regions are usually



considered. Here, genes define (long) uninterrupted coding re-
gions with no-stop codons; hence, the simplest approach for
finding potential coding sequences is to look for sufficiently
long open reading frames (ORFs). In contrast, in cukaryolic
sequences, the translated regions may be very short, and the ab-
sence of stop codons becomes meaningless [21]. In these cases,
other measures based on the content of the sequences are com-
puted for identifying whether it is coding or not. Some typical
measures are the GC content, frequency of k-mers, especially
hexamers, base occurrence penodicines.

2) Signal Sensors: Signal sensors are measures that try to
detect the presence of the functional sites specific o a gene [12].
The basic and natral approach to finding a signal that may rep-
resent the presence of a functional site s to search for a match
with a consensus sequence (with possible vanations allowed),
the consensus being determined from a multple alignment of
functionally related documented sequences. This type of method
is used for splice site prediction in SPLICEVIEW [22] and a
logithinear-model-based approach [23]. Positional weight ma-
trices { PW Ms) offer another representation of signals. PW Ms
capture the probability of appearance of a base in a particular
locaton. In order to capture the possible dependencies between
adjacent positions of a signal, one may use higher order Markov
miodels. The so-called weight amay model (WAM) 15 essentially
an mhomogeneous higher order Markov model. It was first pro-
posed by Zhang and Marr [24], and later, vsed by Saleberg [25],
who applied it in the VEIL [26] and MORGAN [27] software.
Genscan [28] also vses a modilied WAM 1o model acceplor
splice siles and a second-order WAM Lo represent branch pomnt
miomation.

B. Combining the Evidence to Predict Gene Structures

Fora given sequence, different types of signal sensors and/or
similarity-based methods can be vsed to predict the occumrence
of genes. The most important evidences of the presence of genes
are undoubtedly translation starts and stops, and splice sites
since they define the boundaries of coding regions. All such
evidences can be combined for predicting the complicated gene
structures; this contrasts with the earlier approaches for identify-
mg mdividual exons. In theory, each consistent pair of detected
signals defines a potential gene region (intron, exon, or cod-
ing part of an exon). If one considers that all these potential
sene regions can be used o build a gene model, the number of
potential gene models grows exponentially with the number of
predicted exons. In practice, this is slightly reduced by the fact
that “cormrect”™ gene structures must satisfy the following set of
propertes [12]: there are no overdapping exons, coding exons
must be frame compatible, and merging two successive coding
exons will not generate an in-frame stop at the junction. This
approach can further be classified into three categories, namely,
extrinsic, intrinsic, and miegrated approaches.

a) Extrinsic approaches: Pioneered by Gelfand er af. with
PROCRUSTES [29], many programs based on similarity
searches have emerged dunng the last decade. The principle
of most of these programs 15 10 combine similarity informa-
tion with signal information obtained by signal sensors. This

information will be used 1o refine the region boundaries. These
programs inhent all the strengths and weaknesses of the sensors
used and may, for example, fail when noncanonical splice sites
are present.

Bidntrinsic approaches: Intrinsic gene finders aim at locating
all the gene elements that occur ina genomic sequence, includ-
ing possible partial gene structures at the border of the sequence.
To efficiently deal with the exponential number of possible gene
structures defined by potential signals, almost all mirinsic gene
finders use dynamic programming (DP) to dentify the most
likely gene structures according to the evidence defined by both
content and signal sensors. All such gene-modeling strtegies
can be formulated with a graph language [30], [31]. Such ap-
proaches are sad w0 be exon based or signal based depending
on whether a gene structure 15 considered 1o be an assembly of
segments defining the coding part of the exons or by the pres-
ence of a succession of signals separated by “homogeneous™
regions, respectively [32]. Intheory at least, the segment assem-
bly process can be defined as the search for an optimal path in a
directed acyelic graph where vertices represent exons and edges
represent compatibility between exons. The search 1s done us-
ing the famous Viterbi algorithm [33], which produces a most
likely gene structure and can be considered as a specific instance
of the older Bellman shortest path algorithm [34]. This is the
approach adopted in Geneld [35], GenView [36], GAP 111 [37],
FGENES [38], and DAGGER [39] programs.

o) Integrated approaches: In view of the added value pro-
vided by database similanties, authors are now combining
both intrinsic and extrinsic appmaches in recent gene predic-
tors; in older software, updates are made 1w add information
from homology. An important work in this regard is TWIN-
SCAN [440], [41] program. Yeh er al. have extended Genscan
to yield GenomeScan [42] that incorporates similarity with a
protein rwetrieved by BLASTX or BLASTE. Genes predicted by
GenomeScan have a maximum probability conditional on such
similarty information. GenomeScan is, thus, able 1o accurately
predict coding regions missed by both Genscan and BLASTX
used alone. A highly integrmtive approach 1s used m the EuGene
program reported i [43]. Very recently, a techmigue 15 proposed
i [44] that uses sansucal methods w combine the gene pre-
dictions of ab initio gene finders, protein sequence alignments,
expressed sequence lag and cDNA alignments, splice site pre-
dictions, and other evidences.

IV, S0ME CLASSICAL APPROACHES

In this section, we present a brief overview of some classical
gene-finding techniques.

A. Hidden Markov Models

A Markov model 15 a stochastic model, which assumes that
the probability of appearance of a given base (AT, G,or Clata
given position depends only on the & previous nocleotides (F 15
called the order of the Markov model). Such a model 1s defined
by the conditonal probabilities PIX/E previous nucleotides),
where X = A, T, G, or C. Inorder to build a Markov model, a
learning set of sequences on which these probabilities will be
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Fig. 4. Macroscopic view of the model of human genomic DNA. Moncicular
nodes indicate regions of more details that have been omitted.
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estimated 15 required. Given a sequence and a Markov model,
one can then simply compute the probability that this sequence
has been genermled according o this model, Le., the hikelihood
of the sequence, given the model [45].

Since HMMs are designed 1o process sequences of informa-
ton, researchers in computational biology use them extensively
for the analysis of DNA and protein sequences. For example,
they have already been used for motil finding [46], multiple
sequence alignment [47], and protein structure prediction [48]-
[50]. Al the present time, there s no publicly available HMM
system (either commercially or public domain) that can handle
the size and topological complexity of the model in its entirety
needed for gene finding. Presently, the full model is decom-
posed into three submodels, vie., for detecting exons, introns,
and mtergenic regions [26]. A macroscopic view of the model’s
wpology 15 shown in Fig. 4.

T train the HMM models, the exons, introns, and other non-
coding regions in the traimng set are separated oul, and three
smaller models are trmined separately. The mtergenic model 1s
very simple, containing two disconnected wen-state chains (rep-
resenting the upstream and downstream miergenic pieces) with
loops on the ends to absorb extra bases. The exon model containg
89 states, and the intron model contains only 10 states.

1) HMM Algorithms: The Viterbi and expectation maxi-
mization (EM) algorithms are used for computing with HMM
during its trining and testing [33], [531], [52].

a) Training the models: The EM algorthm is used w
solve what 15 known as the lkeaming problem i HMMs, 1e.,
o determine reasonable values for all the probabilites in an
HMM. The model topology is fixed, and all of the output proba-
bilities and ransition probabilities [ 53] are mitialized w0 random
vitlues. (1f any prior estimates of these probabilities are avail-
able, itis usually beneficial to initialize them 1o these estimates.)
Upon being presented with a set of DNA sequences, the EM al-
gorithm reestimates all of these probabilities. Briefly, it runs
each trammng sequence through the model & and computes the
posterior probability Pis/3) for each sequence s. These values
are then multuplied together to produce PUS/L), where § repre-
sents the set of all the sequences. The reestimation procedure
then adjusts all the probabilities m order to increase PU5 L) The
data are then run through the model again and the probabilities
are further refined. The process is ilerated unul PUS5/L) is maxi-
mized. The EM algorithm is guaranteed to converge Lo a locally
optimal estimate of all the probabilities in the model. Usually, it
15 assumed that the multiple observations m the trmining dataane
independent of each other. However, the assumption of indepen-

dence may not always hold in practice. A formal treatment of
HMM tramming without imposing the independence assumption
15 provided in [54].

) Testing the models: Alertraming, the model is ready 1o
be used o mterprel new sequences where the Viterba algonthm
is often used. It is a dynamic programming algorithm that effi-
ciently aligns any sequence toan HMM. Given asequence and a
tramed HMM, the Viterbn algorithm will find the most likely se-
quence of states through the model for that particular sequence.
i In addition, the Viterbi algorithm computes the probability of
the model producing the sequence via that path. ) Although there
are an exponential number of distinet paths through the model,
the Viterbi algonthm finds the best one in O(ne) ime, where n
is the length of one sequence and e is the number of edges in the
path. In order 1o efficiently search for the best path, the Viterba
algonthm builds a data structure called a trellis, which requires
N ne) slomage space.

B. Dynamic Programming

The use of dynamic programming in gene finding is briefly
reviewed in [8]. The dynamic programming algorithm [35] 15
a well-established recursive procedure for finding the optimal
(e.g., mimimal cost or wp scormg) pathway among a senes
of weighted steps. GeneParser [36] that employs dynamic pro-
gramming lechnigues vses coding measures and signal strengths
to compute scores For all subintervals in the est sequence. A neu-
ral network s first used o combine the vanous measures into the
log-likelihood rmtio for each subinterval 1o exactly represent an
mtron or exon. A dynamic programming approach is then used
to find the optimal combination of introns and exons. Ranked
suboptimal solutions can also be generated by the progrm.
Gelfand and Roytberg [37] have reviewed the use of dynamic
programming in gene prediction, and suggested “vector dy-
namic programming” o combine multiple exon quality indices
without the time-consuming training of a neural network. These
ideas have been implemented in CASSANDRA [58], a program
to predict proem-coding segments, and the experimental gene
structure prediction program GREAT [59]. The GenView sys-
term [36] 1 again based on the prediction of sphicable ORFs
ranked by the strength of their sphice signal and their coding po-
tential (“m phase™ hexamer measure). The best gene stroctune
is then constructed using dynamic programming to sift through
the numerous possible exon assemblies. Dynamic programming
methods are also used in GRAIL 11 [60], GeneParser [36], FGE-
NESH [38], and recent versions of Geneld [ 35]. Finally, the gene
assembly program GAP L[ 37 | also vses dynamic programming
(as well as heunstes) o construct optimal gene models from
the candidate exons predicted by GRAIL 11.

C. Bavesian Networks

A Bayesian network [61] 15 a graphical model that encodes
probabilistic relationships among vanables of interest. When
used in conjunction with statistical technigques, the graphical
model has several advantages for data analysis.
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1y Since the model encodes dependencies among all vari-
ables, itreadily handles sitvations where some dataentries
are missing.

2y A Bayesian network can be used to keam cansal relation-

ships, and hence, can be used 1o gain understanding about
a problem domain and to predict the consequences of
mtervention.

3y Since the model has both cavsal and probabihste se-

mantics, it is an ideal representation for combining prior
knowledge ( which oflen comes in causal form) and data.

43 Bayesian statistical methods inconjunction with Bayesian

networks offer an efficient and principled approach for
avoiding the overditting of data.

A Bayesian network fora set of variables V' = {7, .., Vil
consists of: 1) a network structure § that encodes a set of condi-
tonal independence assertions about vanables in Voand 2) a set
P of local probability distributions associated with each vari-
able. Together, these components deline the joint probability
distribution for V. The network structure § is a directed acyclic
graph. The nodes in & are m one-wo-one comrespondence with the
variables V. V) denotes both the variable and its corresponding
node, and Pa; denote the parents of node V) in § as well as
the variables comesponding o those parents. The lack of possi-
ble arcs in & encodes conditional independencies. In particular,
given structure &, the joint probability distribution for Vs given
by

plV) = I, p(Vi | Pa;).

The local probability distnbutions P oare the distributions corme-
sponding w the terms in the product of the previous equation.
Consequently, the pair (5,F) encodes the joint distnbution p( V).
Methods of learning probabilities in a Bayesian network, and
techniques for leaming with incomplete data, are studied in de-
tail in [62]. A Bayesian network framework for combining gene
predictions from multiple systems is given in [63], where the
approach adopted is that of combining the advice of muliple
experts.

V. COMPUTATIONAL INTELLIGENCE TECHNIQUES
FOR GENE IDENTIFIC ATION

Computational intelligence 15 a faidy new name with no
consensus (yel) on what computational intelligence exactly 1s.
There 15 a widely accepted view on which areas belong o it
evolutionary computing, fuzzy computing, and neurocomput-
mg. While some technigues within computational mielligence
are often counted as anificial mielligence technigues (e.g., ge-
netic algorithms or neural networks), there is a clear difference
between these technigues and traditional, logic-based artificial
mielligence techniques. In general, typical antificial mielligence
technigues are top-to-bottom, where the structure of models, so-
lutions, ete., 15 imposed from above . Computational mielligence
lechmgues are genemlly bottom-up, where order and structure
emerges from an unstructured beginning. Here, we present not
only some of the computational intelligence technigues but also
some other computational methods that are frequently used for
sene identification.

A, Cave-Based Reasoning (CBR)

Case-based reasoning (CBR) [64], [65] is & model of reason-
ing where the systems’ expertise is embodied in a library of past
cases (stored as a case base) already expenenced by the sys-
temm, mther than being encoded explicitly as rules, or implicitly
as decision boundaries. In CBR, a problem s solved by first
matching it to problems that were encountered i the past, and
then retrieving one or a small set of similar cases. The retrieved
cases are used o suggest a solution o the present problem,
which is tested, and if necessary, revised. The present problem
and its solution are updated in the case base as o new case.

An application of CBR 1o the gene-finding problem has been
investigated in [66]. 1L employs a case library of nucleotide seg-
ments that have previously been categorized as coding (exon)
or noncoding (intron), in order o locate the coding regions of
anew DNA strand. A similanty metrie for nucleotide segments
15 established, and the results of muluple cases are combined
Lo categonze entire new DNA stmnds. For a CBR system 1o
work effectively, it is necessary to be able to compare the case
ie.z., a known exon), with the query strand of DNA in which
we wanl exons 1o be wentified. Costello and Wilson [67] have
investigated a number of possible approaches 1o similarity, in-
cluding longest common subsequence [68] and sequence align-
ment methods, but chose an edit distance method for the initial
work. Given a measure of sequence similarity, it is needed to
employ the case library segments in a way that will enable one
to isolate regions of 8 sequence of DNA and point w them as
potental proeim-coding regions. Sinee hbrary exons are ikely
to be much shorter than a new strand, an approach that com-
bines many retrieved cases in order to armve at the new solution
wis adopted in [69]. The CBR frumework has been applied 1o
the problem of annotating genes and the regulatory elements in
their proximal promoter regions. CBR was chosen for several
reasons: the problem with sparse data 15 nowhere more evi-
dent than in the study of pattems in DNA, such as those in the
proximal promoter region, necessary for the regulation of gene
expression; and it is the goal of such research o discover these
mechanisms.

A database called EpoDB s desenbed m [70], where a large
amount of information available for the genes that are expressed
i vertebrate red blood cells are collected and curated 1o provide
high-quality data for sequence analysis. The goal is to create an
informatics system for the study of gene expression in and func-
tional analysis of red blood cell differentiation, a process termed
erythropowesis. Here, the genes and the database can be consid-
ered to be analogous 1o the cases and the case-base in CBR.
More details on EpoDB can be found in [71]. A detailed survey
of the applications of CBR in molecular biology, including gene
identification, is provided in [72].

B. Neuwral Networks

Anificial neural networks (ANNs) [73] are computer algo-
rithms based loosely on modeling the neuronal structure of nat-
ural organisms. They are stomulus-response transfer funcuons
that accept some input and yield some output. They are typically
used Lo learn an input-output mapping over a set of examples. In
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general, if given sufficient complexity, there exists an ANN that
will map every inpul patlern Lo 1S appropriate outpul patiern,
so long as the input outpul mapping 1s not one-to-many. ANNs
are, therefore, well suited for use as detectors and classifiers.

Multifayer perceprrons, also sometimes described as feedfor-
witrd networks, are the most common architecture used in super-
vised keaming applications (where exemplar patterns are avail-
able for training). Each computational node sums N weighted
mputs, subtracts a threshold valoe, and passes the result through
a logistic (sigmoid) function. Single perceptrons form decision
regions separated by a hyperplane. If the different data classes
being mput are linearly separble, a hyperplane can be posi-
toned between the classes by adjusting the weights and bias
terms. If the input data are not linearly separable, a least mean
square (LMS) solution is typically generated to minimize the
mean square eror (MSE) between the calculated output of the
network and the actual desired output.

An earlier attempt at computer-aided gene recognition, such
as the well-known GRAIL software, used an ANN 1o combine a
number of coding indicators caleulated within a fixed sequence
window [74]. Fickett and Tung [75] noted that at the core of
most gene recognition algonthm are one or more coding mea-
sures: functions that caleulate, for any window of the sequence,
a number or vector intended 1o measure the “codingness™ of
the sequence. Common examples of these measures melude
codon wsage, base composition vector, elc. Anexon-recognition
method includes both a coding measure and a method of decid-
mg between “coding™ or “noncodmg”™ regions for each vector,
Such an approach to evolve ANNs capable of identifying cod-
ing and noncoding regions is available in [ 76]. The classification
process using evolved ANNs proceeded as follows. A sequence
of DNA was interrogated using a window of 99 nucleotides.
The ANN was used to classify the nucleotide in the center of
the window as either coding or noncoding. For this analysis, the
neural network architecture was fixed and consisted of nine in-
put nodes (corresponding to nine features ), 14 hidden nodes, and
one outpul node. The output decision was normalized from —1
inoncoding) to +1 {coding) for cach position in the sequence. 1F
the output value was less than —0.5 (or +0.5), it was classified
as codmmg (or, noncoding). In evolved ANN, genetic algorithms
(GAs) have been used for detenmining the appropriate network
architecture. “Offspring™ ANN architectures are created from
the parent networks through random mutation. The number of
layers, nodes, and the values for the associated parameters (e.g.,
weights and biases of a MLP, weights, biases, means, and stan-
dard deviations of a radial basis function network) are encoded
mn the chromosomes, and their appropoate values are evolved
using GAs. The architecture 15 fixed o nine mput nodes, 14
hidden nodes, and one output node, while the imlerconnections
welghts and the biases are evolved using GAs. The coding indi-
cators of this system, used as the setof input features, are Frame
hias matrix, Fickett feature, coding sextuple word preferences,
word preferences in frame 1, word preferences in frame 2, word
preferences in frame 3, maximum word preferences in frames,
sextuple word commonality, and repetitive sextuple word [76].
A flowchan of the entire gene identification procedure is given
n Fig. 5. In the postprocessing step, spikes in the output vector
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Flowchan of gene identification technigue by evolved neural net-

are first removed by replacing the value of a central nucleotide
to the minimum over its own value and those of its left and right
neighbors (the Min3 processing step). In the exon-identification
step, a sel of continuous coding nucleotides was predicted as
a putative exon, and 1ts start and end posibons were noted.
Across each such exon, a window of 50 nucleotides was con-
sidered, and statistical measures for intron filtering (based on
the frequency of occurrence of nucleotides at the intron/exon
boundaries) was used 1o adjust the location of the putative exon
Lo g more appropriate location withn the window. Finally, the
domain knowledge that a majority of exons in human DNA was
more than 15 nucleotides long was used o reject all predicted
exons of length kess than 15,

ANNs combined with a rule-based system has been vsed
for splice site prediction in human Arabidopsis thafiana by us-
ing a joint prediction scheme where the prediction of transition
regions between introns and exons regulates a cutofT level for lo-
cal splice site assignment [77]. This is followed by a rule-based
refinement that uses splice site confidence values, prediction
scores, coding context, and distances between potential splice
sites. This has been further improved by the incorporation of in-
formation regarding the branch pomt consensus sequence found
by a noncircular approach wsimg HMM [75].

The apphication of a tme-delay-architecture-based  feed-
forward neural network for anmalysis of the Drosophifia
melanogaster genome has been presented i [79]. It was tested
on the Adh region of 2.9 Mbases of the Drosophila genome,
where it was found 0 provide a recognition rate of 753% with a
false positive rate of 1/547 bases. Recently, a neural-network-
based multiclassifier system has been proposed for gene identi-
fication in £. cofi by locating the promoters of the genes [80]. A
setof 324 known E. cofi promoters and 429 known nonpromot-
ers was coded using four different coding technigues, and four
different neural classifiers were trained on each set. The final
classification was an aggregate of the individual classifications
obtained using a variant of the logarithmic opinion pool method.
Some other applications of neural networks for gene finding are
also discussed in [81].

An atlempt o employ ANNs 1o predict the regions that
overlap with the first exon of a gene or lies in its close



proximity was reported in [82] and [83]. Dragon gene stan
finder (DGSF) [82], [83] combines three systems to achieve
this goal. First, it uses a promoter finder system 0 esimate
the transcription start site (TS5) Another system estimates the
presence of CpG islands (which are stretches of DNA contain-
ing a significantly high frequency of CG sequence, often located
around the promoters of genes that perfform general cell func-
tions) on the DNA strand. Several signals are extracted from
the predicted TS5 and CpG islands. The data are then nor-
malized and transformed vsing poncipal component analysis.
Thereafter, a four-layer neural network is used 1o make pre-
dictions whether the combination of the CpG island and the
predicted transcription start site indicates the presence of gene
starts.

. Decision Trees

Decision tree algonthms are important, well-established ma-
chine learning techniques that have been used for a wide range
of applications, especially for classification problems [84]|-[87].
Decision trees have been found to accurately disunguish be-
tween coding and noncoding DNA for sequences as short as
54 bp [88]. In that study, the task of distinguishing between sub-
sequences that are either entirely encoding or entirely noncoding
was addressed. MORGAN [27], an integrated system for find-
ing genes, uses a variety of techniques, the most distinetive of
which 15 a decision tree algorithm. It uses an OC 1 decision tree
system developed in [86] for solving the problem of discrimi-
nating coding and noncoding DNA. The optimal segmentation
15 dependent on a separate scoring function that takes a subse-
quence and assigns 1o it a score reflecting the probability that
the sequence is an exon. The scoring functions in MORGAN are
sels of decision trees that are combined to give a probability es-
timate. The internal nodes of a decision tree are property values
that are tested for each subsequence passed o the tree. Proper-
tics can be varous coding measures (e.g., hexamer frequency)
or signal strengths. The bottom nodes (leaves ) of the tree contain
class labels to be finally associated with the subsequence. Onee
classified, the various components are assembled into an optimal
gene model using a dynamic programming approach. Another
well-known gene finder, developed specifically for eukaryotes,
which uses decision trees hybndized with interpolated Markov
model (IMM) and dynamic programming, is GlimmerM [89].
It wses dynamic programming o consider all possible exons for
inclusion in a gene model, and chooses the best of all these
combinations. The decision about what gene model 15 best 1s a
combination of the strength of the splice sites and the scores of
the exons produced by IMM. A scoring function based on deci-
stom trees 15 builtin order o estimate the probability that a DNA
subsequence 15 coding or not. Five types of subsequences are
evaluated: introns, initial exons, intemal exons, final exons, and
singhe exons. The probabilities obtamed with the decision trees
are averaged to produce a smoothed estimate of the probability
that the given subsequence is of a certain type. A gene model
is only accepted if the IMM score over all coding sequences
exceeds a fixed threshold.

1. Genetic Algorithms

A genetic or evolutionary algorithm, first proposed by 1. H.
Holland, applies the principles of evolution found in nature
o finding an optimal solutton 1o an opimization probkem [90],
[91]. In aGA the problem s encoded in a seresol bit stnngs that
are manipulated by the algorithm; in an evolutionary algorithm,
the decision variables and problem functions are used directly.
The basic GA can be outhined in a very simple way.

1y Start: Generate random population of # chromosomes

isuitable solutions for the problem).

2) Fitness: Evaluate the fitness fix) of each chromosome x in

the population.

3y New population: Create a new population by repeating

following steps until the new population is complete.

a) Selection: Select two parent chromosomes accord-
mg o their litness.

by Crossover: With a probability crossover, the parents
to form new offspring (children).

¢) Mutation: With a probability mutate new offspring
at each position.

dy Fitness: Evaluate the fitness fix) of cach chromo-
some xin the new population.

4) Tesr If the end condition is satisfied, then stop and return

the best solution in the current population.

5) Loop: Go to step 3.

For the gene-mapping problem, Gunnels ef al. [92] compared
GA with simulated annealing (SA) [93], and found that the GA-
based method always converges o a good solution fast, since
it is able 1o take advantage of the extra information o con-
struct good local maps that can then be used o construct good
global maps. Using a GA, Kel ef al. [94] designed the sets of
appropriate oligonucleotide probes capable of identifying new
genes belonging o a defined gene family within a ¢cDNA or
genomic library. One of the major advantages of this approach
is the low homology requirement to identify functional families
of sequences with litle homology. A method for recognizing
promoter regions of eukaryotic genes using 8 GA with an ap-
plication on Drosophila melanogaster 1s desenbed m [95]. Iis
novelly lies inrealizing the genetic algonthm o search for an
optimal partition of a promoter region into local nonoverlapping
fragments and selection of the most significant dinucleotide fre-
quencies for the aforesaid fragments.

The evolved ANN soltware, mentioned in Secton V-B,
mainly uses neural network technigues for gene finding. It also
makes use of GAs o decide about the network architecture and
its other parameters. The fitness of the hidden layers is computed
using a GA. ANN architectures are created from the parent net-
works through random mutation, and vanations are apphed 1o
the number of layers and nodes and other associated parameters.
A comparative study between the performance of evolved ANN
and GRAIL, interms of correlation coefficient (CC), sensitivity,
specificity, fraction of exactly predicted exons (including start
and stop codons), and fraction of predicted exons that overlap
with actual exons, 1s shown in Table 1. Let TR, TN, FP, and FN de-
note the true positives (number of coding nucleotides detected
as coding), true negatives (number of noncoding nucleotides
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TABLE I
PERFORMANCE OF GRAIL EVALUATED RELATIVE TO THE BEST-EVOLVED
ANN on Two DNFFERENT DaTa SETS [74]

Teav el [ Tesisel 11
Praprram GRALL Lvulred ANN GRALL Evilves] ANN
A At vallivienl as i ’ L n4s
HEnmrivine LR 4 LR RS
Spect Rl Iy G55 3% a5k d42
Dowomis vommuie, 2.0 .00 2.0 0
Locanz vecrlappal 0. () [AH] 057

detected as noncoding), false positives (number of noncoding
nuc keotides detected as coding), and false negatives (number of
coding nucleotdes detected as noncoding ). Then
gpecificity =TPATP+FP)  semsitivity =TP/{TP+FN)
CC — (TPxTN)—(FP = FN)
? VITP+FN) = (TN+FP) = (TP +FP) < (TN+FN) -

All test sequences were taken from human genes and are avail-
able in [74]. Test set I contained sequences used in the testing
of GRAIL and GenelD, while test set 11 contained genes with
complete protein coding regions and at least two exons. These
sequences were without pseudogene s, multiple coding sequence
ficlds, putative coding sequence fields, or aliernative splicing
forms, and were first used in [96].

E. Comparative Performance of Some Gene Finders

A dewiled comparative study of a number of compuler pro-
grams for the prediction of gene structure in genomic sequences
5 provided in [8] and [9]. The programs were tested on a
set of 5324 vertebrate sequences ranging in length from abouw
420 to 21720 bp [97]. The sensitivity (in percent) and speci-
ficity (in percent) of GRAIL I1, a very popular program, were
found to be 51% and 37%, respectively [8]. An advancement of
GRAIL IJGAP was actually no better than GRAIL 11 in terms
of sensitivity, specificity, and missed exons (percentage of ac-
wal exons not overdapping any predicted exon). Bul i lemms
of wrong exons (percentage of predicted exons not overlap-
ping any actual exon), GRAIL IJGAP (10%) was better than
GRAIL (28%). The pedomances of GenelD and GeneParser
were not better than any other progrums in any respect. MOR-
GAN's performance was at par with GRAIL 11 and GAP. The
best overall performance was shown by GENSCAN (gene struc-
wre prediction) and MZEF (individual exon finder) [98]. Both
have high sensitivity (78%), but specificity of MZEF is slightly
betler (86%) than that of GENSCAN (81%). Scores, in terms of
missed exons and wrong exons, are slightly better in GENSCAN
than in MZEF. The companson of UNVEIL, a relatively recent
HMM-based gene finder, with some other methods including
GlimmerM and also GENSCAN on 300 Arabidopsis thaliana
full-length ¢cDNAS reveals that it performs well in terms of nu-
cleotide accuracy, exon accuracy, and whole-gene accuracy [99].
GRAIL and evolved ANN both are based on neural network
methodologies—sensitivity of evolved ANN program is found

to be much higher than that of GRAIL, but specificity and cor-
relation coefficient of GRAIL is greater than that of evolved
ANN (as can be observed from Table 1 for both the test sets).
Overall, GENSCAN and MZEF perform betier than any other
program. A more detailed study of the comparative performance
of different methods can be found in [8], though a caveat is also
added that test sets vary in size, and complexity or (G + C)
composition, thus making the results difficult w interpret. It
may be noted in this context that the predicted accuracies of the
gene finders have been found o vary in different investigations,
sometimes being substanually lower than those oblamed with
more limited test sets [8].

VI DISCUSSION AND CONCLUSION

The identification of genes is an important problem in bioin-
formatics. Several methods of gene identification, eg., those
based on HMM and dynamic programming, have been de-
veloped in the past. Given the difficulty of the problem,
computational-intelligence-based methods have also been ap-
plied in recent times because of their robustness and ability 1o
handle noisy and mcomplete/uncertain data. This paper pro-
vides a comprehensive review of the different methods of gene
identification, with special emphasis on computational intelli-
gence lechnigues. An extensive bibliography along with a list
of important URLs are also provided in this regard. Table 11 lists
varous gene-finding programs and their references, and the kind
of approaches used by them.

In general, training sets used forvarious methods of gene find-
ing consists of almost an equal number of coding and noncoding
nucleotides. But, in reality, ithas been found that only about 2%
of human DNA is coding, and the remainder is noncoding. The
use of equal proportion of coding and noncoding data may lead
to 4 brased system resulting inoan imereased sensitivily toward
the coding data and decreased capability of classifying noncod-
ing data. As a result, the system might ofien classify noncoding
nucleotides incomrectly as coding ones, thereby leading 1w an in-
crease in the false positive count. Therefore, the ratio of coding
to noncoding data in the data set should be altered i order 1o
remove such bias,

Severalissues, both biological and database related, make the
problem of eukaryotic gene finding extremely difficult [12]. In
the current practice, the promoter s generally viewed as appear-
ing in the intergenic region, immediately upsiream of the gene,
and not overlapping with it. This is a simplification of reality.
Often, the genes are very long, e.g., the largest human gene,
the dystrophin gene, is composed of 79 exons spaming nearly
23 MB. Moreover, there may be situations where the introns
are very long, e.g., in the human dystrophin gene, some introns
are more than 100 kB long, and more than 99% of the gene
15 composed of introns. Some genes are characterized by very
short exons that may be easily missed, especially if bordered by
large introns. The more difficult cases are those where the length
of a coding exon is a multiple of three (typically 3, 6, or 9 bp
long), because missing such exons will not cause a problem in
the exon assembly, as they do not imtrodoce any change in the
frame. Moreover, ithas been found that a significant percentage
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(35%) of human genes are altematively spliced that makes the
problem further complicated [104]0 A recent related study on
human genome 15 reported [ 105] that states that many of the
splice variants could be a result of aberrant rather than regulated
splicing.

The armngement of genes in genomes 15 also prone Lo excep-
tons. Although vsually separated by an intergence region, there
are examples of genes nested within each other and overlapping
genes [ 106], [ 107]. The presence of pseudogenes (nonfunc ional
sequences resembling real genes), which are distributed in no-
merous copies throughout the genome, further complicates the
wentification of true protein-coding genes. A recent study on
the sequence and biological annotaton of human chromosome
1 shows that the mtio of the number of pseudogenes 1o the

number of tue genes 15 significantly high, and that the coding
sequences often overlap [ 108]. Polycstronic gene arrangement
presents an added level of complexity for gene linding. These
have been found for snoRNA genes i plants [109], as well as
in mammals [110].

Another major concem 15 that existing gene linders nearly
always rely on already known sequences, either in the form of
training sels or of databases against which homology searches
are performed, and are therefore, prone 1o emors in the databases.
As anexample, some sequences stored m databases may contain
either sequencing errors or simply emors made when editing the
sequence, resulting in the introduction of aificial frameshifts.
Such frameshifts greatly merease the difficulty of the compu-
tational gene-linding problem by producing ermoneous statistics
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and masking true solutions [12]. A gene-finding method de-
scribed in [111] can handle this situation. A way of tackling
this problem may be to adopt a hierarchical approach. In the
first level, one of these “conservative”™ methods can be adopled
o make a prediction. Thereafter, when an unusual situation oc-
curs, the possibility of noncanonical cases should be examined
in the second level, allowing a reconsideration of the prediction
proposed in the first level.

It has already been revealed in past mvestigations that there
may be more than one unigue gene model [112]. Moreover,
instead of using a single large data set for training a model,
it may be beneficial o consider several partitioned data sets.
Training & single model on the entire data may be confusing,
keading 1o poor generalization capabilities. In contrast, traimn-
ing several models on small, homogeneous paritions of the
data may provide better stability of the models. The issues
over here are how o parttion the data sets in homogeneous
groups, and how 1o combine the predictions of the several mod-
els for annotating unknown sequences. For partitioning, an ap-
proach like the one vsed m [113] can be adopted. For com-
bining the predictions, a possible approach could be 1o find
out the maximum scoring over all the models, and then, w0
make the corresponding hypothesis. Finally, there 15 a great
need for “clean™ sequence databases, ie., for databases that are
not medundant, contain reliable and relevant annotations, and
provide all necessary links to further data. For example, a clean
data set of verified splice sites for the human EST sequences,
and the standards used for the cleanup procedure are reported
m [114].

With the huge amount of expressed sequence tag (EST) and
cDNA sequences now available, progrums based on the exis-
tence of homology with such expressed sequences are playing
an ever mereasingly crucial mle in current genome annotations,
at least for genes for which expression can be shown. Even in the
case of genes that are scarcely or tissue specifically expressed,
complementary information can be provided by similarity be-
tween genomic sequences. Consequently, a great deal of effort
is now expended on trying to gather information from genome
comparisons. This is particulardy true in the case of the hu-
man genome annotation process, where the availability of other
complete vertebrate genomes, such as those of mouse and fish,
15 4 greal advantage. With many genome sequencing projects
currently under way, and although there are sull problems o
be solved, the comparmtive genome approach seems o be a
very promising approach not only in the field of gene predic-
tion but also for the identification of regulatory sequences and
the deciphering of the so-called junk DNA. The latter has been
largely ignored untl now; yet much may be expected to be learnt
from its analysis. AL present, more interest is devoted 1o non-
coding RNAs, and this probably stands among the main future
directions.
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