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Multi-objective genctic algorithms (MOGAs} are finding increasing popularity as
researchers realize thelr potenttal for obtaining good solutions to minlng prablems in
large databases. Parallel multi-objective genetic algorlthms [pMOGAs) altempts to reduce
the processing time needed for computing the fitness functions and fo reach an acceptable
solution. YWe propose two differcnt master slave medels of pMOGA. Qur proposed medels
exploit both data parallelism by distributing the data being mined across varlous processors,
and control parallelism by distributing the population of Individuals across all avallable
processors. These models are implemented through a gluster computing environment and
wut measure the speed up of pMOGA over its scquential counferpart.

Indexing terms: Rule mining, MultFobjective gonefic algoritivng, Parallel multi-objective
genefic algorithms, Clusfer-compuling.

1. INFRODUCTICN

ATA mining (DM) and knowledge discovery in

databases (KD} community 18 (rying 10 address
the problem of scaling up the mining algorithms with
tespect to the size of the databases being minad (1]
Anctherissue that needs wrzenlt altention s that mining
problems arc often  maolti-objective  problems
tather than single objective ones. There can be
several objectives that muy huve o be optimized.
However, measures such as predictive accurucy;
comptehensibility  and  interestingness  used for
cvaloating a rule can be thought of as imporiant
objectives of any mining scheme [2]. Parailel
processing can be reparded an attractive way to both
the problem of scalability and simultinecusly
optimizing all the objectives invohved in the mining
problém [3]. In this paper we address the well-known
classification task of data mining in a cluster

caovironmment. Since MOGA tend to be slow, compared
to most elassical rule generation methods, the destgn of
paralle! MOGA flor data mining is an important
rescacch area [4,5]. MOGA for data mining tasks and
its parallelization is o recent field of research. Since a
great deal of literature exists describing generic paralled
concepts, we focus only on exploring and analyzing
possiblz berefits of pMOGA for our mining scheme. Tn
the clagsifrcation rule mining, the extructad rules are
often cxpressed as a set of rules of the form:

IF « Predictive attribute> THEN < Prediction of
the Goal attrifnde>

In our work, 2 pMOGA that uses Messape Passing
Interface (MPL [6-9] 1s used to discover rules from a
database. MOGA associates all individuals of o
population with the same predicted class, which is
nzver modilied during the maoning of the alrorithm (2]
Hence, if we want ta discover a set of classification
rules, predicting k different classes, we need torun the
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MOGA at least & times, so that in the fthun, § = 1,2,
3 ..., & the algorithm discovers only the rules
pertaining to the ah class [10]. This particular
characteristic allows us to exploit a ground level
parallelism in rule mining scheme.

The organization of this paper is as follows. Section
2, briefly describes M{OGA for rule mining. Section 3,
preseats an averview of ph10OGAL Scetion 4, describes
- PMOGA for classification rule mining. Scction 5
covers experimentul mesulis and theie analysis. Section
6, provides the concluding remarks and future
directions of our research.

2. MOGAFOR RULE MINING

As alrecady mentioned the rule mining problem
can be considered 2s a multi-objective problem.
The predictive accuracy, comprehensibility and
interestingness used [or evaluating a mule capn be
considered as important objectives of classification
rule mining. Thiz makes it an optimization problem
that is very dillicuit to solve efficicntly. Intuitively,
MOGA appears to be the best-suggested techniques
for this problem. The details of the MOGA based rule
mining are available in 2], The MOGA algorithm can
be explained in pseudocode form as follows [9).

Algorithm

1. Seleetaninitial popuiation randamly.

2. Bvaluate the comprehensibility, predictive
accuracy  and  interestingness of  all  the
individuals.

3. Rank the chromosomes depending on the non-
dominince properly.

4. Assign fitness to the chromosomes using the
ranks.

3. Select the chromosomes for next generation, by
roulette wheel selection scheme using the fitness
calculated in Step 4.

6. Perform multi-point crossover and mutation on
these individuals.

7. If the performance is satisfactory, then stop;
otherwise, soto Step-2.

3. Decodde the chromosomes in the final stored
population and get the penerated rules.

The MOGA for rule mitning differs from the singlz
objective GA in respect of the way the selection
operaler works. The next subsection briefly discusses

the individual representafion, fitness funcitions and
genetic operaters used [or  classification mle
discovery.

2.1, Individual Reprosentation

Each individual in the population represents 2
candidate rule of the form if A then C. Suppose there
are N attributes in our dataset (including the class
attribute). The antecedent of the rule can be formed by
conjunction of -at most ‘N — 1" attributes. Each
condition is of the form g; = d; where g; is the ith
attribute and d;; is the fth value of the ith attribute’s
domain. The consequent consists of a single condition
of the form € =4, where, Cis the goal atiribute and |
the Ith value of the goal atiribute’s domain. Since we
are considering variable length chromosomes, if an
attribute is not present in the rule antecedent the
corresponding value in pene is '#°'. This value is
represented as a Mag to indicate that the atiribute is
absent in the rule antecedent.

2.2. Fitness Function

As disenssed in Section 1, the discovered rules
should have the following desirable features: {q) high
predictive accuracy, (&) high comprehensibility, and
{c}interestingness. Inthis subscction, we discuss each
of these measures as a fitness eriterion and how these
can he meaning fully measured quantitatively.

2.2.1. Comprehensibility Metric

There are various ways to quantitatively measure
rule comprehensibility {11]. The standard way of
measuring comprehensibility is to count the number
of rules and the number of conditions in these rules.
As the number of miles increases then the
comprehensibility decreases,

If a rule has at most ‘M, condilions, the
comprehensibility *5" of a rule 90 ¢un be defined as:

S(RYy= 1= (N (T M) ()

where ‘N ()" is the number of conditions in the
rule 9. '

2.2.2, Predictive Accuracy

Like cemprehensibility, there are also various ways
to measure rule predictive accuracy [12]. As already
mentioned, our rules are of the form IF A, A 4, THEN
C. The antecedent part of the rufe is a conjunction of
conditions. A very simple way to measurc the
prediclive accuracy of a mule *P{3) is
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where | A | is the number of examples satisfying all the
condilions in the antecedent A and | A & C | is the
number of examples that satisfy both the antecedent A
and the consequent C. Intuitively this metric measures
predictive aceuracy in terms of how many caszes both
the antecedent and the consequent attributcs are
present.

2.2.3. Inferestingness

The computation of the depree of interestingness of
arule, inmm, consists of two terms. One of theni refers
to the untecedent of (he tule and 1he other o the
consequent. The degree ol interestingness of the rule
antecedent is calculated by an information-theoreiic
measure, whichisanormalized version of the measure
proposed in [13). Initially, the algorithrnczleulates the
information gain of cach attribute {(InfoGain)| 14]. The
degree ol interestingness of the rule antecedent {RIne)
is computed by using the following expression:

=l

Y. InfoGain {A;)
i=1

_ |
log, (| dem (G) )

Rinr=1 (3)

where s 1s the number of attributes in tha antecedent
and lag, (| dem () ) is the domatn cardinality (i.e. the
number of possible values) of the goal atinbue G
occurming in the consequent. The log term is included in
the formula (3) ta normalize the value of BInt, so that
this mzasure takes on a value in [0, 1). The InfoGain is
given by:

. infoGain(A)=Info (G)—Info (G | A))

whera

g
IJJﬁJ{G}=—§ (Pl log, (F{g))

nrk

info(Ga)=3 (pp (-2 plai|viloma (o] v,))
= i- 5

where my the number of possible values of the gaal
altribute Gy, #; the number of possible values of the
aitribute A, p(X} denotes the probabitity of X and
(X | ¥) dznotes the conditional probability of X
'griven V.
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2.3. Genetic Operators

The ¢crossover operatar we consider here is based
on uniform molti-point  crossover. There 15 2
prohability for applying crossover to 2 pair of
individuals and another probability for swapping each
rene attribute’s value in the genome (rule anteccdent)
of two individuals. Afler crossover is complete, the
algorithin anulyses if any invalid individeal is created.
If 5a, a repair operator is used to preduce wvalid-
penotype individuals,

The mutation operator randomly transforms the
value of an attribute into another valee belonginz tathe
same domain of the attribute.,

Besides crossover and mulation, the insert and
remaove operitors directly try to control the size of the
riles bheing evolved; and thus  influence the
coroprehensibility of the roles. These 1wo aperators
randomly insert and remove, respectively, 2 conditian
in the rule antecedent. These operators are not part of a
repular GA. However, we have intreduced them here
because of their suitability in our rule mining scheme.

3. AN OVERVIEWOF p MOGA

MOGA is suitable for parallelization as crossover,
mutation and (in particular the timeconsuming) litncss
evaluation can be performed independently on
dilferenl processars. The mxin problem is the selection
gperitor, where global information is required to
determing the relative performanee of an individual
with respect to ail others in the current population. The
three-main parallel models are Master-slave, Island
and diffusion models [15].

(1) Muaster slave model: Tn this model the obrective
functien evaluattons are distributed among slave
processors while a master processar executes ths
cther MOGA operations o educe the overall
cxecUlion time. The scarch spuce cxploration is
conceptually identical to that of a serial MOGA.

{2) fstand model: Inthis model, every processor runs
an independent GA, using a separate sub-
populatton. The processors co-operate by
repularly  exchanging  migrants  (good
individoals). The island model is particularly
suitable for computerelusters, as communicition

is costly and therefore needs 10 be Hmired.

(3) Diffusion model; Yere the individuals arc
spatially amanged, and mate with other

individuals fram the Iocal neighborhood. When
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parallelized, there is a lot of inter-processor
communication {as every individual has to
communicate with it neighbours in every
iteratinn}, but the communication is only [ocal.
Thus, this paradigm ts particularly suitable for
massively paralle]l computers with a fast local
intcroommunication natwork.

In our work, the following two models are
proposed and are implemented using a cluster-
computing envirenment. Though, originally the above
models were designed {or single objective genctic
algorithims, they can be used even for multi-objective
genetic algorithms for exploiting paraltelism in fitness
computation as well as distnbuting the objective
functions Lo different procezsors. These models ane
bised on master slaves and diffusion concepts and are
deseribed below.

Master slave Model 1 cxploits data parallelism.
Here, wu distribute the entire population and subsets of
the dataset amaong all the availablz processors. Let us
sce how this model works. Here, the processors send
their fitness values based on their local dura to the
master, and the master accumalates albl the [tness
values and proceeds for rest of the work. Kote that the
processors associated with this model are responsible
for calculating the fitness of all objective lunctions of
our mining scheme, This methed is mors scalable. The
problem ol this model is that when the master is doing
some work the slaves sit idle. In addition, the
pattitioning of the dataset alse requires careful
attenticn.

Tn Mol 2 both data and contro] parallelism is
cxploited. Here the dataset as well as population is
divided and distributed among different available
processors. In this model, the individuals compuote
their fitness based on the local data in which the
Indivaduals are assigoed the datasel available inrest of
the processors through a fdng structore. In addition, the
processors are divided into different growps. Each
group is responsible for computing different objeclive
functions, whichis highly data intensive.

" The structural representation of these models is
schematically shownin Figs 1 and 2.

4. p-MOGAFOR CLASSIFICATION RULE
MINING

There am two broad sources of parallelism in
+OGA. Onue can exploit parallelism inthe application
of genetie operstors - such as selaction, crossover,

Mication for this jou

mutation andfor in the computation of the fitness of the
individuals {(candidate rules). In the context of mining
vory large databases, the Inoter tends to be [ur more
important. The reason is that the genetic operators are
usually wvery simple and their application is
computationally cheap. Henee, the bottleneck of the
alporithm is the computation of the individual’s
fitness, whose processing time is propertional te the
size of the data being rined. :

‘Let us discuss how these proposed models work for
rule mining scheme. In Modzl 2, the data being mined
15 divided and distributed among the processors. The
populations that arc initiated by the master are also
replicated in different processors. The processors then
compute the fitness of ¢ach individual based on their
locul data in parallel. The most important advantage of
this model, in the context of data miniag, is that, it is
tnuch thore sealable with respect to the size ol the data
being mined than the control parallel approach.
Coneeptual {arger volume of data leads 1o a larger
derree of data parallelism to be exploited. -

The pseudocode represemtation of this model is as
follows:

1. Divide the given dalaset and distobule among
cachavailable processors including master,

2. Randomly initialize the population in master
processar and replicate these in all available
PIOCCSSUrS,

3. Compute the fitness of each individual based on
the local dataset in parallel und send the reselt o
“the master progessor.,

4. Accumulate the finess of cach individual
collected from the different processors.

5. Master processor selects the individuals for next
generation by propertionzl selection scheme
using the fitness value computed in Step-4.

6. Perform multi-point crossover and mutation on
these new individuals in the master processar.

1. Ifthe performunce criterion is satisfied, thon stop;
otherwise, poto Step-2.

Note that data and control parallclism address
different kinds preblems [16-18]. Data parallelism
addresscs the problem of very large databases. Control
parallelismaddresses the problem of very large search
spuce. Hence, it would be desirable to expleit both
kinds of parllelistn in a multi-chjeetive genciic
algorithm for data mining. Model 2 addresses these



SATCIIDANANDA DEHURI ¢f af; PARALLEL MULTFODBICCTIVE GENETIC ALGORITIM 474

Master

Population

Processors Papulation

Data Subset

;

Datasct

T ;
hE L_J' . Master

Fig 2 Master slave model based on daras and control parallelism
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two kinds of paraltclism. Tn addition, the proccssors
are divided into different groups based on the number
of objectives in the mining problem. In our
classilication rule mining problem, the number of
chjectives is three. So the processor groups are also
three. Both the data and control parallelism are
exploited throupb this modzl.

In this model, the fitness evaluation phase exploits
- bothdata parallzlism ard contrel parallelism by having
the individuals pussing through all the processorsing
kind of round-robin fashion. Tn this scheme, the
physical interconncction of processor nodes is mapped
into  logical ring of processor nodes, so that each
processors node has a ripght neichbour and left
neighbour.

At first cach processor node computes a partial
measure of fitness for all the individuals (rules} tnits
local subpopulation, by accessing only its local datascr.
Then, each processor tramsfers its entire local
subpoputation of individuals, as well as the value of
their partially computed fitness function, to it's right
neighbour. As soon as a processor node receives o
subpopulation of individuals from its Ieft neighbaur, it
performs the following tasks: (¢) it computes the partial
fitness measure of the incoming individuals on its local
dutaset; (70 it combines this partial fitngss measure
with (he previous one of the incoming individeals (0
produce a new fitness measure; {{fi) it forwards the
incoming individuals, as well as their updated partial
fitness teasure, (o its right neighbour, This process is
repeated vatil all individeals have passed throupgh ail
the processors and relurned to their  original
processors, with their final fitnzss value duly
computed. The aforesaid scheme is applicable o all
processor groups Tor their fespective objective
functions. Note that what is being passed through the
processors are only individuals and their pactial fitness
value, not the data being mined. This minimizes inter-
process communication averhead.

5. EXPERIMEMNTAL RESULTS

This section discuses the results of curexperiments
using twa datascls oblained from the UCT maching
repository [ 199 called Nursery and Adultdatasets. The
nursery dutusct contains 12900 instances (reconds)
9 auributes and 5 classes. The class values are
not_recom, recommend, very_recom, priority, and
spec_prior. The odult dataset contains 43844 Instances
and 15 attributes. '

In 2ll cur experiments, the genetic algatithm had

200 individuals in each subpopulation, and it was run
for 100 geocrations. The experiments were performed
on a cluster of workstations using the following
protocols: MPI (Message Passing Interface) for
formulaling cluster, 330 MHz. Pentium ITL computers
cach with 128 MB RAM and 6 GB disk, with operating
system Linux Redhat 6.5. The interconnection
network was Ethemet at 10 Mbps. In our system, one
of the four processors nuns the master program, which
controls the slave programmes.

We have measured the speed up (Spd) of the
paralizl version of the algorithin over its sequential

counterpart, defined as: Spd = ——j‘i where T, is the
T
sequential processing time and 7, is the parallel

processing lime on p processors. Tables Land ITshows
the speed up value for the two different datasets
obtained from Model .

As shown in Tables 1 and 2, the parallel MOGA
{called pMOGA) achieved a reasonable speed up over
the sequential version, As expected the speed up was
greater in the case of Adult dataset. Tha reason is that
this dataset is larger than the Nursery datazet, sothere
is more opportenity for the cxploitation of data
parallelism than the (ormer. Of, course, real life
datasets would usually be significantly larger then the
two benchmarking datasets usced in our capendments.
Therefore, we expect that our mode!l will achieve
higher speed-ups for large real life dataset.

Tables 3 and 4 show the speed up of the two
different datasets obtained from Model 2. Figores 3
and 4 shows the speed up achicves by the two bench
mrking datascts. From the Fig 4 it has been cbserved
that if the dataset is too large then Model 2 is the best
suitable.

6, CONCLUSIONS

We have discussed two dilferent parallel models
for elassification rule mining wsing multi-ohjective
penstic algorithm. Mode! | exploits data parallelism
where as Model 2 exploits both data and control
parallelism. CQur experimerital results show that a good
speed upcan be achieved by Model 2 provided that the
databeing mined is of relatively large size. This is due
10 the fuct that the degree of data parallelisim is
proporticnal to the size of the data being mined. Qur
future work would concentrale on more extensive set
of experiments with a continuous and nominal
datasets, to further validate the resulis reported in this
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TABLE 2: Spevd up ohtained Mrom aduolt dataset

o, of S5PT Pit Speed Up Mo of SPT PrT Speed Up
Processor Frocessar
2 30 min. 17 min. 1.7647 2 ¢ nin. 45 min. L85
k) 30 min 12 min 2.5 3 a4} i, 32 min. 2E125
4 30 min. 10 min 3.0 4 & pert, 20 min. 3.0
5 30 min. 1% min 30 5 94 1nim. 3 min. 3.0
il 30 min L1 min 27272 & a0 min. - 32 min, 28125
" T T T T T T T ‘3 T T T T T
—4 Hy-=ery G- Rysery
- AfH —— Adull
E L
I8t 4
I',l' L
aad 1 .
grae 5 P/—\ Epeed U
. Br

% 4 5 5 55 €
Ma. of Processoty ——w

Fig 3 Number of processors v3 speed ug of Molbel-1 .

paper. In addition, a general Iramework is needed {or
any kind of rule mining problem with an integrated set
of objective functions.
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