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ON THE HEWITT-SAVAGE ZERO ONE LAW
IN THE STRATEGIC SETUP
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SUMMARY. In the i.i.d. strategic setup it is shown that the symmetric σ field is either

trivial or nonatomic. Conditions are given for these to occur.

1. Introduction

In the countably additive theory of probability the Hewitt Savage 0− 1 law
states the following : In a product space with independent identical components,
every symmetric set has probability either zero or one. This theorem has diverse
applications, especially in Random Walks, Potential theory and U-statistics.
In the context of finitely additive probabilities Dubins and Savage (1965) and
Dubins (1974) initiated the theory of integration on countable product spaces.
This was extended by Purves and Sudderth in their seminal paper (1976) and
this setup is usually referred to as the strategic setup. They observed in (Purves
and Sudderth, 1983) that the Hewitt Savage 0 − 1 law fails in this setup. The
authors have noted in (Gangopadhyay and Rao, 1998) that this failure can indeed
be spectacular – the symmetric σ field could be purely nonatomic. In this paper
we restrict our attention to product spaces where the component space is a
countable set. Let γ be a finitely additive probability on this set. We show that
the Hewitt-Savage 0-1 law holds for the infinite product measure γ× γ× γ× · · ·
if and only if γ takes at most two values when restricted to subsets of the set
{i : γ(i) = 0}. Moreover when this does not hold, then the symmetric σ field is
indeed nonatomic.

The organization of the paper is as follows : In Section 2 we set up the
notation and recall basic facts as well as some results needed in the sequel. In
Section 3 we describe an alternative way (Theorem 3.1) to select a point in the
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infinite product space with distribution σγ . In Section 4 we prove the main
result (Theorem 4.1) described in the earlier paragraph. We conclude with some
remarks in the last section.

2. Preliminaries

Throughout, N denotes the set of nonnegative integers {0, 1, 2, · · ·} and Z is
the set of all integers. H = N∞ is the space of histories h = (h1, h2, · · ·) equipped
with the product topology where each coordinate space has the discrete topology.
The σ field of H is its Borel σ field. Let γ be a finitely additive probability on
N. σγ denotes the strategic measure on H induced by the i.i.d. strategy γ. It is
the unique finitely additive probability σ on the Borel σ field of H characterized
by the following three properties (Theorem 4.1 p.265 and Theorem 5.1 p.268 of
Purves and Sudderth, 1976)

(i) For any Borel B ⊂ H,σ(B) =
∫
σ(Bi)dγ(i) where

Bi = {(h2, h3, · · ·) : (i, h2, h3, · · ·)εB}

(ii) If O ⊂ H is open then

σ(O) = sup{σ(K) : K clopen , K ⊂ O}

(iii) If B ⊂ H is Borel and ε > 0 then there is a closed set C and open set O
such that

C ⊂ B ⊂ O and σ(O − C) < ε.

In the countably additive case this gives the usual measure. More precisely
(iv) If γ is countably additive then σγ coincides with the usual product

probability γ∞. Let Seq denote the set of finite sequences of elements of N,
including the empty sequence. If B ⊂ H and p ∈ Seq then Bp = {h : ph ∈ B}
where ph is the usual concatenation. If s is a stop rule and h ∈ H then ps(h)
is the finite sequence (h1, . . . , hm) where m = s(h). In particular if s ≡ n then
ps(h) is denoted by pn(h). In the sequel, we need the following properties of σγ

:
(v) (Cor.4.1 p.265 Purves and Sudderth, 1976) If B is Borel and s a stop rule

then,

σγ(B) =
∫
σγ(Bps(h))dσγ(h)

(vi) (Lemma 5.2 p.266 of Purves and Sudderth, 1996) If B1, B2, . . . are Borel
and σγ(Bnpn(h)) = 0 for all n and h then σγ(∪Bn) = 0.

(vii) (Theorem 5.2, p.269 of Purves and Sudderth, 1976) If B1, B2, . . . are
increasing Borel sets then

σγ(∪Bn) = sup
s
σγ(Bs)
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where the supremum is taken over all stop rules s and Bs denotes the set {h ∈
H : h ∈ Bs(h)}.

(viii) (Theorem 7.2 p.275 of Purves and Sudderth, 1976) If A ⊂ N then

σγ{h :
1
n

n∑
k=1

1A(hk) → γ(A)} = 1.

This is a strong law of large numbers.
(ix) (Theorem 3.1 p.34 of Purves and Sudderth, 1983) If B is a tail Borel set

then σγ(B) = 0 or 1. Recall that a set B ⊂ H is a tail set provided Bp = Bq
whenever p, q ∈ Seq have the same length.

This is Kolmogorov 0− 1 Law.
(x) (Theorem 4.1 p.35 of Purves and Sudderth, 1983) If B is a Borel set then

σγ{h : σγ(Bpn(h)) → 1B(h)} = 1

This is Levy 0− 1 Law.
The reader should note that most of these results are valid more generally.

We stated them for an i.i.d. strategic measure σγ , because we will be interested
only in this case.

3. An Identification of σγ

Given a finitely additive probability γ on N, define the countably additive
measure γ1 on N by setting γ1(i) = γ(i) and set γ2 = γ − γ1. Then γ2 is
purely finitely additive and γ = γ1 + γ2. This is nothing but the Hewitt- Yosida
- Kakutani decomposition (Yosida and Hewitt, 1952 and Ranga Rao, 1958).
Set N∞ = N ∪ {∞}. λ denotes the countably additive probability on N∞
defined by λ(i) = γ1(i) = γ(i) for i ∈ N and λ(∞) = γ2(N). µ denotes the
finitely additive probability on N defined by µ(A) = γ2(A)

γ2(N) . This µ is just γ2,
normalized. Throughout this section we assume that 0 < γ1(N) < 1, so that λ
is not point mass at ∞ and µ is well defined.

We are going to use µ and λ to select a sequence of integers with distribution
σγ . To get started, here is the method for selecting a single integer z1: first use
µ to select x1 and then λ to select y1. If y1 6= ∞, set z1 = y1, and if y1 = ∞,
set z1 = x1. Then the probability that z1 ∈ E is γ(E).

To select an infinite sequence of integers with distribution σγ , first use µ
(repeatedly and independently) to select x1, x2, . . . and then use λ (again re-
peatedly and independently) to select y1, y2, . . .. Let x be the first sequence and
y the second one. Let T (x, y) be the sequence obtained by replacing the first
occurrence of ∞ in y by x1, the second occurrence of ∞ in y by x2, and so
on, until all the infinities have been replaced. Then T (x, y) has distribution σγ .
This is the content of Theorem 1 below.



156 sreela gangopadhyay and b.v. rao

To state the Theorem, we need some notation. Set H∞ = N∞ ×N∞ × . . . ,
equipped with the product topology, where N∞ has the discrete topology.

Set H1 = H × H∞. Points in H1 are denoted by (x, y), where x ∈ H and
y ∈ H∞. Let σµ be the finitely additive probability on H induced by the i.i.d.
strategy µ. Let σλ be the usual countably additive product measure λ×λ× . . ..
For any Borel set C in H1 and any x ∈ H, let Cx be the section of C at x,
namely, Cx = {y ∈ H∞ : (x, y) ∈ C}. As σλ is countably additive, observe
that σλ(Cx) is a measurable function of x on H. Consequently, the expression∫
σλ(Cx)dσµ(x) is well defined. Denote this by σ′(C). Then σ′ is a finitely

additive probability on H1.
Here is the precise formulation of the selection procedure mentioned above.
Theorem 1. For Borel B ⊂ H, σ′(T−1B) = σγ(B).
We start making a series of observations leading to the proof. For any infinite

sequence v = (v1, v2, . . .) we let v(1) = (v2, v3, . . .).

1o. For any Borel set S ⊂ H1 and i ∈ N, define

iS = {(x, y) ∈ H1 : y1 = i & (x, y(1)) ∈ S}

Similarly we can define iS for any Borel set S ⊂ H∞ as follows: iS = {y ∈ H∞ :
y1 = i & y(1) ∈ S}.

Claim : σ′(iS) = λ(i)σ′(S). To see this observe that (iS)x = iSx so that

σ′(iS) =
∫
σλ(iS)xdσµ(x) = λ(i)

∫
σλ(Sx)dσµ(x) = λ(i)σ′(S).

2o. Claim : σ′(∪i∈NiS) =
∑

i∈N σ′(iS). To see this, note that,

σλ(∪iSx) =
∑

i

(λ(i))σλ(Sx)

for any x ∈ H — by the countable additivity of λ. Now

σ′(∪iS) =
∫
σλ(∪iSx)dσµ(x)

=
∫

(
∑
λ(i))σλ(Sx)dσµ(x)

= (
∑
λ(i))σ′(S) =

∑
σ′(iS)

where 1o is used in the last equality.
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More generally we have,

3o Claim : For each i ∈ N, let Si be a Borel subset of H1. Then

σ′(∪i∈NiSi) =
∑
i∈N

σ′(iSi).

To see this fix any integer k > 1. Proceeding as in 2o we get

σ′(∪iSi) =
∫ ∑

i λ(i)σλ((Si)x)dσµ(x)

≥
∫ ∑k

i=0 λ(i)σλ((Si)x)dσµ(x)

=
∑k

i=0 σ
′(iSi)

where we used the finite additivity of the integral and 1o for the last equality. k
being arbitrary we get

σ′(∪iSi) ≥
∑

σ′(iSi).

To show the reverse inequality, fix ε > 0 and an integer k such that
∑

k+1<i<∞ λ(i)
< ε. Observe that

∑
k+1<i<∞ λ(i)σλ((Si)x) < ε for each x so that proceeding

as above

σ′(∪iSi) ≤
k∑

i=0

σ′(iSi) + ε ≤
∞∑

i=0

σ′(iSi) + ε.

ε being arbitrary the proof is complete.

4o. For each i ∈ N, Bi ⊂ H be a Borel set and B = ∪i∈N(iBi). Then

σ′{(x, y) ∈ T−1B : y1 = ∞} = λ(∞)
∫
σ′(T−1Bi)dµ(i).

To see this denote by C the set in braces on the left side. Observe that y ∈ Cx

iff y1 = ∞ and T (x(1), y(1)) ∈ Bx1 (Recall that Bx1 = {h ∈ H : x1h ∈ B}).
Thus y ∈ Cx iff y1 = ∞ and y(1) ∈ (T−1Bx1)x(1). Thus

σ′(C) =
∫
σλ(Cx)dσµ(x)

= λ(∞)
∫
σλ(T−1Bx1)x(1)dσµ(x)

= λ(∞)
∫
σ′(T−1Bx1)dµ(x1)

= λ(∞)
∫
σ′(T−1Bi)dµ(i)

where in the third equality we used 2(i) applied to the function (instead of sets),
f(x) = σλ(T−1B)x. For the last equality note that Bi = Bi.
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5o. For any clopen set Γ ⊂ H, σ′(T−1Γ) = σγ(Γ).
The proof is by induction on the rank of the clopen set Γ. Of course if Γ = φ

or H this is trivial. Suppose then that Γ = ∪(iΓi) and σγ(Γi) = σ′(T−1Γi). We
show that σγ(Γ) = σ′(T−1Γ).

σγ(Γ) =
∫
σγ(Γi)dγ(i) (by 2(i))

=
∫
σγ(Γi)dγ(i) (since, Γi = Γi)

=
∑

i σγ(Γi)λ(i) + λ(∞)
∫
σγ(Γi)dµ(i)

=
∑

i σ
′(T−1Γi)λ(i) + λ(∞)

∫
σ′(T−1Γi)dµ(i)

(by induction hypothesis )

= σ′(∪iiT
−1Γi) + σ′{(x, y) : y1 = ∞ and T (x, y) ∈ Γ}

(by 3o and 4o)

= σ′(T−1Γ) (σ′ being finitely additive).

6o. For any open set U ⊂ H, σ′(T−1U) ≥ σγ(U).
Indeed fix ε > 0 and by the regularity property of strategic probability (see

2(ii)), get clopen Γ ⊂ U with σγ(U) ≤ σγ(Γ) + ε. Note that T−1Γ ⊂ T−1U so
that

σγ(U) ≤ σγ(Γ) + ε = σ′(T−1Γ) + ε by 5o

≤ σ′(T−1U) + ε.

ε being arbitrary this proves the stated inequality.
7o. If V ⊂ H1 is open and ε > 0 then there is a clopen set C ⊂ V such that

σ′(V ) ≤ σ′(C) + ε.
To see this, fix clopen sets Li ⊂ H and Mi ⊂ H∞ such that V = ∪i(Li×Mi).

Put Vn = ∪i≤n(Li ×Mi) so that Vn are clopen and Vn ↑ V . Set

An = {x : σλ((Vn)x) > σλ(Vx)− ε

2
}.

As σλ is countably additive, An ↑ H and hence σµ(∪nAn) = 1. By 2(vii) get a
stoptime τ with σµ(Aτ ) > 1− ε/2. Define

C = {(x, y) : (x, y) ∈ Vτ(x)} = ∪n[Vn ∩ {(x, y) : τ(x) = n}].

Then C ⊂ V , C is clopen. Note that if x ∈ Aτ then σλ(Cx) ≥ σλ(Vx)− ε/2.
Moreover for any x, σλ(Cx) ≥ σλ(Vx) − 1. We will use the last inequality for
x /∈ Aτ . As a result
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σ′(C) =
∫
σλ(Cx)dσµ(x)

=
∫

Aτ
σλ(Cx)dσµ(x) +

∫
Ac

τ
σλ(Cx)dσµ(x)

≥
∫
σλ(Vx)dσµ(x)− ε

2σµ(Aτ )− σµ(Ac
τ ) ≥ σ′(V )− ε.

To proceed further we introduce a hypothesis, which will be relaxed later.
(⊥) : N = N1 ∪N2, N1 ∩N2 = φ, µ(N1) = 1, λ(N2 ∪ {∞}) = 1.

8o. Assume (⊥). For any open U ⊂ H; σ′(T−1U) ≤ σγ(U).
To see this, temporarily denote by H1, the set of sequences of points from

N1. Denote by H2, the set of sequences of points from N2 ∪{∞} with infinitely
many occurrences of ∞. Set D = H1 ×H2 ⊂ H1.Let R be the set of sequences
of points of N having infinitely many occurrences of elements from N1. Then
by the usual SLLN, σλ(H2) = 1.

Consequently σ′(D) = 1. By strategic SLLN (see 2(viii)), σγ(R) = 1. More-
over T is a homeomorphism on D onto R. Fix ε > 0. T−1U being open in H1,
use 7o to get a clopen set Γ ⊂ T−1U with σ′(T−1U) ≤ σ′(Γ) + ε.

Note that
σ′(Γ) = σ′(Γ ∩D), as σ′(D) = 1

≤ σ′(T−1T (Γ ∩D)).

As Γ is closed in H1, Γ ∩D is closed in D so that T (Γ ∩D) is closed in R. Say
T (Γ ∩D) = C ∩R where C is closed in H.

Thus
σ′(Γ) ≤ σ′(T−1(C ∩R))

≤ σ′(T−1C)
≤ σγ(C) by 6o

= σγ(C ∩R) as σγ(R) = 1
= σγ(T (Γ ∩D))
≤ σγ(U) as Γ ⊂ T−1U.

Thus σ′(T−1U) ≤ σγ(U) + ε. Since ε is arbitrary we are done.
Combining 6o and 8o we immediately obtain:
9o. Assume (⊥). For any open U ⊂ H, σ′(T−1U) = σγ(U).
This leads us to a special case of the theorem, which we state as a Lemma.
Lemma 1. Assume (⊥). For any Borel B ⊂ H, σ′(T−1B) = σγ(B).

Proof. Suffices to show that σγ(B) ≥ σ′(T−1B). To this end, fix ε > 0. By
2(iii) , take open U ⊃ B with σγ(B) ≥ σγ(U)− ε. Then we have,

σγ(B) ≥ σγ(U)− ε
= σ′(T−1U)− ε by 90

≥ σ′(T−1B)− ε as T−1U ⊃ T−1B
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Since ε is arbitrary the proof is complete.
To remove the assumption (⊥) we need to work a little more. Suppose φ is a

map on Z onto N. Let η be a finitely additive probability on Z and γ be defined
on N by γ(A) = η(φ−1A). Let ση and σγ be the strategic measures on Z∞ and
N∞ = H respectively. Define φ∞ on Z∞ by φ∞(x1, x2, · · ·) = (φ(x1), φ(x2), · · ·).
It is natural to expect that as in the countably additive case, σγ(B) = ση(φ−1

∞ B)
for all Borel sets B ⊂ H. We have not been able to establish this. We show
that if φ is a finite-to-one map (that is, for every i, φ−1{i} is finite), then this is
indeed correct. The general proof eludes us.

Lemma 2. Let φ be a finite-to-one map. Then for every Borel set B ⊂ H

ση(φ−1
∞ (B)) = σγ(B)

Proof. Since both ση and σγ are strategic measures, it is easy to see by
using induction on the rank of clopen sets, the desired equality holds when B is
a clopen set in H. Proceeding as in 6o we can establish that σγ(U) ≤ ση(φ−1

∞ U)
for all open sets U ⊂ H. Note that φ∞ takes open sets to open sets. As φ is
finite-to-one, a simple argument shows that φ∞ takes closed sets to closed sets as
well. Thus for any clopen set Γ ⊂ Z∞, φ∞(Γ) is a clopen set in H. Now take any
open set U ⊂ H and fix ε > 0.Then there exists a clopen set Γ ⊂ φ−1

∞ (U) with
ση(φ−1

∞ U) ≤ ση(Γ) + ε. Note that ση(Γ) ≤ ση(φ−1
∞ φ∞Γ) = σγ(φ∞Γ) ≤ σγ(U)

where the equality is a consequence of the fact that φ∞Γ is clopen. ε being
arbitrary we deduce that ση(φ−1

∞ U) ≤ σγ(U). This establishes the result for B
an open set. Now proceed as in Lemma 1 to complete the proof.

Proof of theorem 1. The main idea is to shift the purely finitely additive
part of γ to the negative integers so that (⊥) holds. Then we will apply Lemma
1. Finally we bring back the mass from negative integers. These three steps are
achieved with the help of the maps ψ∞, T and φ∞ as detailed below.

Given γ on N define γ on Z by γ(A) = γ1(A) + γ2(−A) where −A = {−x :
x ∈ A}. Recall that γ1 and γ2 are respectively, the countably additive part and
finitely additive part of γ. Define µ and λ for γ just as µ, λ were defined for γ.
Define σ′′ on Z∞ × Z∞∞ with σµ and σλ just as σ′ was defined on N∞ × N∞

∞
with σµ and σλ.

Define the map ψ∞ : N∞ ×N∞
∞ → Z∞ × Z∞∞ by ψ∞(x, y) = (−x, y) where

−x = (−x1,−x2, . . .) if x = (x1, x2, . . .). Then it is immediate that σ′′(B) =
σ′(ψ−1

∞ B) for each Borel set B ⊂ Z∞ × Z∞∞.
Define the map T : Z∞ × Z∞∞ → Z∞ just as T was defined from N∞ ×N∞

∞
to N∞. Lemma 3.2.2 applies now to yield that σγ(B) = σ′′(T

−1
B) for each

Borel set B ⊂ Z∞. Lemma 1, though stated for N applies to Z as well. Finally,
define the map φ : Z → N by φ(x) =| x |. Lemma 2 now yields that for each
Borel B ⊂ N∞, σγ(B) = σγ(φ−1

∞ B).
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Thus for each BorelB ⊂ H, σγ(B) = σγ(φ−1
∞ B) = σ”(T

−1
φ−1
∞ B) = σ′(ψ−1

∞ T
−1

φ−1
∞ B). Observe that T = φ∞ ◦ T ◦ ψ∞ to complete the proof.

4. Hewitt-Savage 0− 1 Law

A permutation π of {1, 2, . . .} is called a finite permutation if π(n) = n for
all sufficiently large n. If h = (h1, h2, . . .) ∈ H and π is a finite permutation
then hπ = (hπ(1), hπ(2), . . .). A Borel set B ⊂ H is called symmetric if hπ ∈ B
whenever h ∈ B and π is a finite permutation.

Let γ be a finitely additive probability on N and as usual σγ the strategic
measure on H = N∞ induced by the i.i.d. strategy γ. Let A = {i ∈ N : γ(i) =
0}. Suppose γ restricted to A takes more than two values. Say Ao ⊂ A and
0 < γ(Ao) < γ(A). Then, generalizing a construction of (Purves and Sudderth,
1983) we can exhibit a symmetric Borel set S ⊂ H such that 0 < σγ(S) < 1 as
follows : LetH1 be the subset ofH consisting of those histories in which elements
of A occur at infinitely many coordinate places and they occur in increasing order
of magnitude. Note that σγ(H1) = 1. Let S1 be the subset of H1 consisting of
those histories in which the first occurrence from A is from Ao. Define for all
n ≥ 1, Bn = {h ∈ H1 : hi 6∈ A for i < n and hn ∈ Ao}. Then S1 = ∪n≥1Bn.
Direct computation shows that for n ≥ 1, σγ(Bn) = [1− γ(A)]n−1γ(Ao) so that
σγ(S1) ≥ γ(Ao)

γ(A) . Similar computation shows σγ(H1\S1) ≥ γ(A\Ao)
γ(A) . It follows

that equality must hold at both the places. Thus if S is the symmetrization of
S1 then 0 < σγ(S) = σγ(S1) < 1. The set S can alternatively be described as
the set of histories in which there are infinitely many occurences of elements of
A and their minimum belongs to A0. If β = max{γ(Ao)

γ(A) ,
γ(A\Ao)

γ(A) } then we have
a decomposition of H into two symmetric sets, each having σγ measure ≤ β.
Since β < 1 and the above construction can be extended by taking into account
the first finite number of occurrences of points of A, we get the following : given
ε > 0 there is a decomposition of H into symmetric sets each having σγ measure
≤ ε.

Now suppose γ restricted to subsets of A is trivial – that is γ assumes at
most two values on subsets of A. In this case we show that the Hewitt-Savage
0 − 1 law holds. Main idea is the following : Suppose S ⊂ H is a symmetric
Borel set. Then for x ∈ H, (T−1S)x is a symmetric Borel set in H∞ so that
σλ(T−1S)x = 0 or 1. Let E = {x : σλ((T−1S)x) = 1}. In case γ is countably
additive on Ac then of course γ | A is its purely finitely additive part and hence
µ is 0− 1 valued, so is σµ. Thus σµ(E) is either 0 or 1. Accordingly σγ(S) is 0
or 1. The problem becomes more difficult if γ is not countably additive on Ac

or, equivalently, if γ1 and γ2 are not supported by disjoint sets. In that case µ
may not be two valued even though µ|A is so and therefore the above argument
is not applicable. But observe that we are interested only in the value of σµ(E)
and if we can show that σµ(E) is either 0 or 1 we are done. That is what we are
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going to show next. If A = φ, that is, if γ gives positive mass to every singleton
then a simple calculation shows that E is a tail set in H so that σµ(E) is either
0 or 1 (see 2(ix)) as we want.

But in the general situation when A is not necessarily empty E may not
be a tail set. However we can apply Levy 0-1 law (see 2(x)) to conclude that
σµ(E) = 0 or 1. In the countably additive case the martingale theoretic proof of
the Hewitt-Savage 0− 1 law is well known. See Meyer (1996). Here is our main
Theorem :

Theorem 1. Let γ be a finitely additive probability on N and A = {i : γ(i) =
0}.

a) If γ restricted to subsets of A is trivial (assumes at most two values) then
for any symmetric Borel set S ⊂ H, σγ(S) is either 0 or 1

b) If γ restricted to subsets of A is nontrivial (assumes more than two values)
then for any ε > 0 there is a finite partition of H into symmetric Borel sets each
having σγ measure < ε.

Proof. Part (b) was already established above. We shall prove (a). We can
and shall assume that γ is not countably additive. We use the notation of §3.
In particular µ, λ, σ′, T are as discussed there. Let S ⊂ H be a symmetric Borel
set.

We first observe that for x ∈ H, (T−1S)x is a symmetric set in H∞. Let
y = (y1, y2, . . .) ∈ (T−1S)x. Let i < j. Let ỹ be obtained by permuting the
coordinates yi and yj in y. We show that ỹ ∈ (T−1S)x. If both yi and yj are ∞
then of course ỹ = y ∈ (T−1S)x. In the other case, a simple calculation shows
that, T (x, ỹ) is obtained by a finite permutation of T (x, y) so that T (x, ỹ) ∈ S
and hence ỹ ∈ (T−1S)x. As a consequence, for each x ∈ H, σλ((T−1S)x) is
either 0 or 1. Let now

E = {x ∈ H : σλ((T−1S)x) = 1}

Here are some properties of E.

1o. If x = (x1, x2, . . .) ∈ E, k ≥ 1, xk ∈ Ac and x̃ is obtained from x by
deleting xk, then x̃ ∈ E.

To show x̃ ∈ E we only need to show that σλ((T−1S)x̃) > 0.
Let M = {y ∈ H∞ : yi = ∞ for all i ≤ k}. Then σλ(M) > 0 and hence so

is σλ(Mo) where Mo = (T−1S)x ∩M . Let

M1 = {y ∈ H∞ : yk = xk & y ∈Mo}

where

yi =
{
yi if i 6= k
∞ if i = k

Then σλ(M1) > 0 and it is easy to verify that M1 ⊂ (T−1S)x̃.
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2o. If x = (x1, x2, . . .) ∈ E; k ≥ 1; a ∈ Ac and x̃ is obtained from x by
inserting a just before xk then x̃ ∈ E.

Proceed as earlier and take

M = {y ∈ H∞ : yi = ∞ for i ≤ k − 1, yk = a}

and
M1 = {y ∈ H∞ : yk = ∞ & y ∈Mo}

where

yi =
{
yi if i 6= k
a if i = k.

Now to show that σµ(E) is either 0 or 1 we argue as follows :
For any p ∈ Seq, let | p | denote the length of p. Now fix a p ∈ Seq and

let its length be n. We have the following relation:

σµ(Ep) =
∫

i∈Ac

σµ(Epi)dµ(i) +
∫

i∈A

σµ(Epi)dµ(i)

For i ∈ Ac, Epi = Ep by 1o and 2o. So, we get from the above equality,

σµ(Ep)µ(A) =
∫

i∈A

σµ(Epi)dµ(i)

Since µ is two-valued on A, this implies that µ{i ∈ A : | σµ(Ep) − σµ(Epi) |>
ε

2n+1 } = 0 where ε > 0 is any arbitrary number fixed beforehand. (Recall that
n =| p |). As noted above, Ep = Epi for all i ∈ Ac. Thus,

µ{i : | σµ(Ep)− σµ(Epi) |> ε

2n+1
} = 0.

Let Ip denote the set in braces and Kp the set of all those histories whose first
coordinate is in Ip so that σµ(Kp) = 0. This is all done for a fixed p ∈ Seq. Now
having done this for each fixed p ∈ Seq define

Fk = ∪|p|=k(pKp) and F = ∪∞k=0Fk.

Note that Ep = E when | p |= 0.
Also observe that σµ(Fkpk(x)) = 0 for all k and x. Now by 2(vi) we have

σµ(F ) = 0. This can be restated as,

3o. σµ{x : ∀n ≥ 0 :| σµ(Epn(x))− σµ(Epn+1(x)) |≤ ε
2n+1 } = 1

To complete the proof of the Theorem fix x ∈ F c such that σµ(Epn(x)) →
1E(x). This is possible by Levy 0− 1 law (see 2(x)). Combining this with 3o we
get | σµ(E)− 1E(x) |≤ ε. If, to start with, 0 < σµ(E) < 1, then an appropriate
choice of ε would give rise to a contradiction.



164 sreela gangopadhyay and b.v. rao

5. Remarks

1. Lemma 2 of Section 3 is perhaps true for general φ
2. There is perhaps a trite way to prove Theorem 3.1 without going through

the detour as we did.
3. Ramakrishnan (1980) proved that if S is a Gδ set inH which is a countable

intersection of symmetric open sets then σγ(S) is either zero or one for any γ.
It is quite likely that for a large class of sets the 0− 1 law holds whatever be γ.

4. The sets of interest in the context of Random Walks are Gδ sets of the
form S = {h :

∑n
1 hi ∈ A i.o.} for some A ⊂ N (see Ramakrishnan, 1980,

1984,Gangopadhyay and Rao, 1998). It is interesting to note that such a set S
is a countable intersection of symmetric open sets iff A is of the form {i : i ≥ k}
for some k. But in that case S is already open.

5. Let A = {i : γ(i) = 0}. If γ restrited to subsets of A takes more than two
values then the Hewitt-Savage 0−1 law does not hold. However the Kolmogorov
0− 1 law holds. In this case there are symmetric sets which are not equivalent
to any tail set under σγ . Of course if γ restricted to subsets of A is atmost
two-valued then the Hewitt-Savage 0− 1 law holds. So trivially, any symmetric
set is equivalent to a tail set under σγ .

6. If An consists of all histories with at least one coordinate smaller than n
then An is a symmetric set and An ↑ H. If γ is diffuse (that is every singleton
gets γ mass zero) then clearly σγ(An) = 0 showing that σγ is not countably
additive on the symmetric σ field. Contrast this with the well known fact that
σγ is countably additive on the tail σ field (Theorem 2 of Purves and Sudderth,
1983). With a little more argument it can be shown that σγ is countably additive
on the symmetric σ field iff γ{i : γ(i) = 0} = 0.

7. As noted earlier, N is taken for convenience but the theorems hold good
for any countable set.
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