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1. Introduction

From the days of Von Neumann [39] to the recent days of S. AIff53], cellular automata (CA)
has dominated computing technology for doing computatienenefficiently - in terms of speed, cost,
power dissipation, information storage, and solution ifpalt has been proposed to study the general
phenomenological aspects, including communication, edatjon, construction, growth, reproduction,
competition, and evolution [28, 48]. CA also provides anedbent tool for modeling physical phenomena
by reducing them to their basic, elemental laws [47, 52].

Interesting computational properties of the CA model hapined us to investigate new application
avenues. Pattern classification is an important and irggipdinary research area spanning several dis-
ciplines such as database systems [46], machine learni@§l 37], intelligent information systems,
statistics [19, 26, 44], and expert systems. Many new aghexaare being introduced [34, 43], as well
as existing ones getting refined [5, 10, 22, 24, 29, 40]. Hewesearch for new and better solutions
continues, specifically to classify large volume of datagmterated in the internet-worked society of
cyber-age.

In the above scenario, design of CA based model for patt@wgrétion are reported in [7, 25, 38,
41]. Robust model of CA based associative memory is intreduis [21, 31]. The concept of cellularity
embedded in neural network structure has given rise to tphalppoconcept of cellular neural networks
[3,12, 13]. Tzionas et al. [49, 51] proposed a hybrid schesnenfulti-valued pattern classification using
the parallel architecture that employs a two dimensionald@fbined with a single layer perceptron
architecture. Tzionas et al. [50] also presented anothé@tian of a CA based pattern classifier based on
a nearest neighborhood discriminant. Many concepts frendicipline of biology have been borrowed
to build the CA based clustering model. One such model mithiedbehavior of ants to gather and sort
corpses in a self-organized manner [11, 23]. The fact tlasprecial class of CA referred to as multiple
attractor CA (MACA) can act as a natural pattern classifipoigted in [9]. Chattopadhyay et al. [8] have
recently refined this concept to develop CA based pattessifieation model. Ganguly et al. [20, 42, 45]
further characterized the MACA basins to propose robustetsddr pattern classification and associative
memory. Comparison of performance of MACA based classifier@nventional schemes like decision
tree, multi-layer perceptron are investigated by Maji e{32, 33].

However, CA based pattern classifier proposed in [8, 20, 82handle attributes expressed as binary
patterns even though real life applications demand claatiifn of data involving real numbers. For
the classifiers designed to handle binary data, an expligihplicit discretization procedure is applied
to cluster the continuous data of real numbers to a set ohterals. However, most discretization
procedures suffer from user’s bias in generating the seials [14, 27]. Also, since discretization is
performed on a finite training set, it is doubtful whether thestered subintervals encapsulate the real
distribution. Thus, some information may be lost in the $farmation from continuous domain to finite
subintervals and that will invariably degrade the qualitgaution.

In this background, design of pattern classifier based oreei@pclass of CA, termed as fuzzy CA
(FCA), has been explored in [30] to address the problem skdiaation of patterns of real valued data.
FCA is a conventional CA with fuzzy logic applied as next stainction of a cell [1, 6, 18]. Design of
tree-structured pattern classifier based on a special afd3SA, termed as fuzzy multiple attractor CA
(FMACA), has been proposed in [30]. In general, FMACA basaitqun classifier can handle continuous
attributes due to their powerful nonlinear processingitgbil herefore we believe that a strong learning
paradigm can be attained through FMACA based pattern Gilassi
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In the current paper, we consolidate and refine the desigroapip of [30] while integrating the
principles of radial basis function (RBF) and fuzzy celtudaitomata (FCA) for designing an efficient
pattern classifier. The major contributions of this papersarmmarized below:

1. A hybrid pattern classifier is proposed based on the theoRBF and FMACA.

2. Two new operators, dependency vector (DV) and derivedptemment vector (DCV), are intro-
duced for analysis and synthesis of FMACA.

3. The analysis of FMACA based on DV and DCV is next combineith\wenetic algorithm (GA) to
formulate an elegant evolutionary scheme. The geneticatgrsrare implemented in such a way
that they help to preserve the structure of FMACA.

4. Extensive experimental results establish that the i6ileestion accuracy of the proposed hybrid
scheme is comparable while its memory overhead and relttieva are very lesser compared to
conventional classification algorithms.

In order to realize specified objectives, we introduce FC&liprinaries including FMACA funda-
mentals in Section 2. The concept of DV and DCV is introduee8édction 3. Design of pattern classifier
based on RBF and FCA is presented in Section 4. An evolulyosyarthesis scheme is next presented in
Section 5 employing DV and DCV. Finally, applications of fireposed classifier in image classification,
finding splice-junction and protein-coding regions of DN&gsiences are reported in Section 6.

2. Fuzzy Cellular Automata

An elementary FCA [6, 18] is a linear array of cells which exs in time. Each cell of the array assumes
a stateg;, a rational value in the interval, 1] (fuzzy states) and changes its state according to a local
evolution function on its own state and states of its two hieggs. The global evolution results from
synchronous application of the local rule to all cells of #reay. In a FCA, the conventional Boolean
functions are evaluated as follows:

Boolean Function | Operation | FCA Operation
OR a+b min{l,a + b}
AND ab a-b
NOT a (I1—-a)

Herea andb are two states having rational values in the interval [OThf resulting local rule of FCA is
a real valued function [6, 18]. In a 3-neighborhood FCA, ¢hare total 256 distinct next state functions
(rules). Ann-cell FCA is configured with the rule vect®= < R4, -, R;,--- , R,, > wherei” cell
is configured with ruleR;; eachR; being one of the possible 256 rules. Out of 256 rules, ther@aly
16 rules with OR and NOR logic [30]. A FCA rule involving NORdie is referred to as complemented
FCA rule; otherwise, it is a non-complemented FCA rule.

For ann-cell FCA, ann-tuple rule vectofR with only OR and NOR rules can be represented by an
n x n matrix 7" and ann-dimensional binary vectaF' [30]. If P;(¢) represents the state assignment of
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thes?” cell of a FCA att*” instant of time, the state af" cell at(¢ 4 1)*" instant of time is
n
Pi(t+1) =| F; —min{1, ) Ti; - P;(t)} | )
j=1
whereT is ann x n binary matrix andF’ is ann-bit binary vector, termed as complement vector (CV).

Example 2.1. For rule vector< 238, 1,238,3 >, T corresponds to rule vecter 238, 254, 238,252 >.
In this example, 2nd and 4th cells employ complemented ridesce,

o O = =
o O = =
_ = = O
_= = O O
o
Il
_ O = O

Next subsection introduces FMACA. The classifier proposegidction 4 is built around this FCA.

Fuzzy Multiple Attractor CA

A FMACA is a special class of FCA that can efficiently model as@ciative memory to perform pattern
classification task [30]. Its state transition behaviorgists of multiple components - each component,
as noted in Fig.1, is an inverted tree. A node with self looferred to as an attractor state. The states
in the tree rooted on an attractor form an attractor basie. states in a basin other than the attractor are
referred to as transient states in the sense that a FMACAyfisettles down in one of its attractor state
after passing through such transient states.

An n-cell FMACA with k-attractor basins can be viewed as a natural classifier [B@]assifies a
given set of patterns intb distinct classes, each class containing the set of statég iattractor basin.
The following example illustrates a FMACA based two classsifier.

Example 2.2. Let us have two pattern sef§ ={(0.00, 0.00, 0.50), (0.00, 0.25, 0.00), (0.25, 0.25, 0.00),
(0.00, 0.50, 0.00), (0.00, 0.00, 0.00), (0.25, 0.00, 0.@R0, 0.00, 0.00), (0.00, 0.00, 0.25), (0.00, 0.00,
0.75), (0.00, 0.50, 0.25)(Class I) andS, ={(0.75, 1.00, 0.00), (1.00, 0.75, 0.50), (1.00, 1.00, 1.00),
(0.75, 1.00, 1.00), (1.00, 1.00, 0.75), (1.00, 0.75, 1.@0R0, 0.75, 1.00), (1.00, 0.75, 0.75), (0.75, 1.00,
0.75), (0.75, 0.75, 1.0Q)(Class II) with three attributes. In order to classify thése pattern sets into
two distinct classes - Class | and Il respectively, we havaesign a FMACA such that the patterns of
each class falls in distinct attractor basins of a FMACA.

The FMACA of Fig.1 is able to classify the patterns into distiattractor basins where ClassSk |
is represented by one set of attractor basins with attré(@.00 0.00 0.00), (0.25 0.25 0.00), (0.50
0.50 0.00) and (0.75 0.75 0.Q0n Fig.1 while Class Il §2) is represented by the remaining basin with
attractor{(1.00 1.00 0.00). When the FMACA is loaded with an input pattern $ay(0.75 0.75 0.50)
and is allowed to run in autonomous mode, it travels throughraber of transient states and ultimately
reaches an attractor state (1.0 1.0 0.0) - the attractoesepting Class Il

To identify the class of an input pattef the FMACA is initialized with? and operated fod time
steps wherel is depth of the FMACA. In maximum of time steps, the FMACA reaches the attractor
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Figure 1. State space of a 3-cell 5-state FMACA divided inte &ttractor basins

state. The state of the pivot cell (PC) of attractor pointshs memory location that stores the class
information of the input patterf?. The concept of PC has been formalized in Definition 3.2 otiSec
3.1 subsequent to characterization of FMACA attractorrizaskor the example FMACA of Fig.1, 2nd
cell is the PC.

However, am-cell FMACA can be characterized by itsx n 1" matrix and its complement vector
F. So, generation of an attractor stét + d) from any stateP(t) involves O¢?*) complexity. Con-
sequently, the identification of the class in which any sfatbelongs, involves O) complexity. In
order to ensure the scalability of present day’s classifinatn very large datasets, linear complexity of
algorithm is highly desirable. This motivates us to undertaew characterization of FMACA with the
help of some linear operators other tHaand F'. Next section presents the characterization of FMACA.

3. Characterization of FMACA

In this section, we characterize attractor basins of FMATHRe analysis reported in this section bring
down the complexity from O) to O(n) to identify the basin and consequently class of a pattern.

3.1. Non-complemented FMACA

The characterization of non-complemented FMACA proceettderi the following conjecture that is
derived out of extensive experimentation.

Conjecture 1. If the number of attractor basing)(of a FMACA is equal toC™ whereK is the number
of fuzzy states anéh = 1,2, - - - , n, there existn dependency relations among all vectors of each basin.
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Example 3.1. Fig.1 is used to illustrate the above concept. Consider-dimensional (=3) vector space
with IC (=5) fuzzy states, - that is, 0.00, 0.25, 0.50, 0.75 and 1Ten, total possible vectors in the
vector space i§" (= 5% = 125). Then-dimensional vector space is divided into 5 basiks-(Basin |,

I, N, IV and V. That is, K = K andm = 1. If the vectors of any basin is conceived as a system of
equations with three variables,(, z2, x3), then

0.00, for Basin |
0.25, for Basin I
min{l,zs + 23} = ¢ 0.50, for Basin Il
0.75, forBasin IV
1.00, for BasinV

Let a patterriP = (1.00 0.50 0.00) € Basin III. In this casemin{1, 3 + x3} = min{1,0.50} = 0.50.

In the above context, we next introduce the term dependeectpw(DV).

Definition 3.1. The dependency vector (DV) represents each individualrdigreey relation satisfied by
all the vectors in each attractor basin. The DV for the itatte Example 3.1 i< 011 >. The bits in
the DV represents the variable in the sequesce,xox3 >. The 1's in the DV specify the dependent
variables. In Example 3.k;; andzg are dependent variables. The OR of the corresponding Vesiab
all the vectors of an attractor basin is equal to one of theyfistates. Here, OR (addition) implies that
(a4 b) =min{l, (a +b)}.

Thus, in am-dimensional vector space witti-fuzzy states, a FMACA having-attractor basins can
be characterized by» number of DVs ifk = K™, wherem = 1,2,--- ,n. For ease of subsequent
discussions, we next introduce a few terminologies.

e K represents the number of fuzzy states.

e ¢; represents afuzzy staig,< [0, 1]. Thatis,q; = -7, wherei = 0,1,--- , K —1. For example,
if L = 4, a cell of a FMACA can assume a stateout of 4 fuzzy states ¢o = 0.00,¢q1 =
0.33,¢2 = 0.67 andgs = 1.0.

e V,, represents a basin in which sum (OR) of the dependent vasaiblany vectov € V,, is g;.

e w0 represents the number of dependent variables of a DV - thidteisiumber of 1's of DV igb.

Valid Dependency Vector

A 3-neighborhood FMACA whose next state depends on itdslieft and right neighbors, cannot pro-
duce all the variations of DV. The structure of DVs generdigd~-MACA is next elaborated with illus-
trative example.

Axiom 1. In case of a 3-neighborhood FMACA, a DV contains 1's in susisespositions. That is, a
3-neighborhood FMACA can generate a DV with a running seqeiei 1's like <000--- 11111.--
0000>.
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Example 3.2. Some examples of DVs which can be generated by a 3-neightrBMACA are <
001111000 >, < 1111000 >, < 001111 >, < 001000 > and< 11111 >.

Consider am-cell K-attractor basins FMACA with a DV of the forre00--- 1111-.. 1111--.
000>. The DV contains runs of 1's froni” to j** positions. The regioi” to j** cell is defined as the
dependent region (DR) of that FMACA, whil& and j*" cells are termed as first cell (FC) and last cell
(LC) of DR respectively. For ease of subsequent discusstbes'” and;* positions are referred to as
first cell position (FCP) and last cell position (LCP) respesty. Consequentlyk* bit of DV is

1, if FCP <k <LCP
DV, = T )
0, otherwise
Let ¢, represents a fuzzy state whegg = ¢y andm = 0,1,--- ,K — 1. For an attractor basin,,,
any vectorv € V,, must satisfy the relation
J
min{1, Z Tk} = qm (3)
k=i

In this context, we next introduce pivot cell of an attractor

Definition 3.2. The pivot cell (PC) of an attractor of a basin is in between BG& LCP of the DR. If
gm represents state of the PC of attractor of bagjp, then

J
¢m = state of PC = min{1, Zxk}
k=i

Example 3.3. In Example 3.1 (Fig.1)DV =< 011 >, w=2. In this case, FCP=2, LCP=3 and PCP=2.

The pivot cell position (PCP) of an attractor may be in betwE€P and LCP of the DR. ThE
matrix corresponding to a DV depends on PCP. The state of pr@égents an attractor basin uniquely. It
yields the address of memory that stores basin information.

The characterization based on DV establishes that a nopleamented rule vectoR=< R, - - -,
Ri, -+, Rj, ---, R, > can generate a DV in which successive 1's are placed in batweeo ;"
positions. The rule vectoR depends on the number of dependent variatiles DV and PCP of the
DR. This leads to three specific cases of rule vectors.

1. If DV contains single 1 at th&" position (=1),
e R; =204; and
Y Rl:”':RiflzRiJrl:.”:Rn:O'
2. If w > 2, then

(a) for PCP=FCP#
o R; = 238
¢ Riy1 =Rigo == ijl = 170; and
° R1:---:'Ri_lZRjZRj+1=---:Rn=0.
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(b) for PCP=LCP3

° Rj=252;
.Rl:”’:RiflzR’i:R]?l»l:"':Rn:O'

3. If w > 3, then for PCP=z

e R, =254 wherei < z < j;

® Riy1=Rit2="--Ryz—1 = 240;
° Rm+1 = .- ZRj_l = 170; and

To achieve wide variations in state transition behaviornext characterize complemented FMACA.

3.2. Complemented FMACA

This subsection analyzes the state transition behaviopwiptemented FMACA with reference to its
non-complemented counterpart. While the number of atirdzasins and the number of state vectors
in each basin of a complemented FMACA is same as that of norpleamented counterpart, there is a
movement of vectors from one basin to another. That is, thetsire of state space in terms of attractor
basins is identical while the states covered by the basffex dis illustrated below.

Example 3.4. Fig.2 illustrates an example where some patterns are moweddne basin to another.
Here, ' has been changed frojh 0 0] to [0 1 1], while T remains same.

‘ 00.05.05 [0500.09 | os1oodl 00.05.05 [05,00.0 3
| 0.0, 1.0, 1.0 | 3 | 5 (000,03 0.5,1.0,0. | 3 | 5 o003 |
05101 [05.05.00~ [ (16,0004 |
! /105,100 e {05,1.0,0.9
1 .0,0.5,0. 1.0,0.5, 1. !
| [0.0, 1.0, 0.0— T 05,0503 !

(1.0.00, 1.6= 00.10,03 !
8 J 10,0509
[0.0,05, 1.9 [0.5,0.0, 1.0 [0.5,0.0,0. [0.0,0.5,0.0

i Rule Vector: <238, 170, 0 > 00,000 0.0,0.0,0.5 Rule Vector: <238, 85, 255>

‘ ) 1.

110.0,0.0,0. 110 \—UJ 110 o

| [00.00,04 T:&)Oﬂ 4004 0.0,05, 1.0 T{‘%Bé F=011]

| 000

! U

(a) Non—complemented rule with all 0’s F Vector (b) Complemented rule with non—zero F Vector

Figure 2. Modification of state transition behavior

Fig.2(a) represents state transition diagram of a 3-cstaB FMACA configured with non- comple-
mentedR = < 238,170,0 >. In this case, DV is< 111 >, - that is, DR is from 1st to 3rd positions.
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Thus, any vectov € V,, . must satisfy Relation 3 whetg,, = 0.0,0.5,1.0. That is,

3 0.0, forBasin I(Vpo)
min{1,» "z} =4 0.5, for Basin Il (Vys)
k=1 1.0, for Basin Il (V1)
The following discussion analyzes the effectroflimensional complement vector (C\F) on the
state transition diagram of am-cell FMACA. Analysis is based on the DR of a DV with a running
sequence of 1's from FCP to LCP. Each 1 in the sequence refdependency of the corresponding cell

and consequently a dependent variable in the complemeM&®LCR while PCP refers to the pivot cell
position. The characterization is based on PCP.

Conjecture 2. For a non-complemented rule vec®r= <Ry, -+, Ri, -+, Rj, -+, Rpy>, if R;10R;
is the DR - that is, the DV contains runs of 1's fraffi to j** positions, then there exists a complemented
rule vectork where

e Rpc (rule for pivot cell) remains same as that of non-compleme&fMACA,;
e inthe DR, the number of complemented rules in each side d?@é& even; and

e any ruleR; toR;_; andR ;. to R,, may be complemented,

then, the structure of state space in terms of number ando$iaétractor basins of complemented
FMACA remain identical to its non-complemented countetrpar

If complement (NOR) rules are applied on cells out side the(Dfo (i — 1) and (j + 1) to n),
Relation 3 remains same for each basin. But, if NOR rules ppéiead on the cells of DRi(to 7), the
number of NOR rules in each side of PCP must be even. In thies dd$OR rules are applied pairwise

on (/zl)jl)a(2{2)‘7{2))(/235.]’.3)"" and(il)jl))(/L'Qan)a(i3)j3))"' cell pOSitionS where
1<i<i1<ji<---<PCP<ij<ji<---<j<n
then,v € V,,, satisfies the relation

min{l, A+ B} = ¢, (4)

i—1 j1—1 ia—1 Jo—1

PC
A= m+ > (I—a)+ > ae+ Y (I—ap)+-+ > a}
o

k‘:Z,j k:jl k:ég kf:jB

i1 J1 iz J2 J
B={ Z TR + Z (1—x) + Z Tp + Z (1—ap)+---+ Z x}

k=PC+1 k=i1+1 k‘=j1+1 k=io+1 k‘=j3+1

Thus, the number of attractor basins and number of vectazacéh basin remain same. Only some state
vectors will move from one attractor basin to another.

In the above context, we next introduce a parameter, termmekbi@ved complement vector (DCV),
which is derived from both DV and CV. To identify an attrachasin in Of) time complexity, the DCV
is employed. The details of this identification process j@rted in Section 3.3.
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Definition 3.3. If a DV contains runs of 1's froni” to j*" positions and” contains 1 a1, j1), (i2, j2), - - -
and (i1, j1), (ia, jo), - - - positions, thenk! bit of DCV is

17 k:ilv(il—i_l)v 7(j1 - 1)77527"' 7(j2_1)7"' ;
DCV]C: (21+1)’(/Ll+2)’)]15(22+1)’ ana"' 3 (5)
0, otherwise
whereDC'V is termed as derived complement vector.
Thus, from Relation 4, any vectere V,,, of an attractor basinlf,,) must satisfy the relation
J
min{1,» " | DCV; — 24 |} = g (6)
k=i

Fig.2 is used to illustrate the effect of DCV on state spacei@ by a complemented FMACA.

Example 3.5. Fig.2(a) represents state transition diagram of a 3-ceth8 FMACA configured with
non-complemented rule vect® = < 238,170,0 >. Here, PCP=FCP=1. As per Conjecture 2, the only
possible complemented rule vectorRfis R =< 238, 85,255 > where

e R1 = Rpc = 238 remains same; and
e complemented rules in the DR are rule 85 and 255.

That is,FF =< 011 >. As per Definition 3.3DCV =< 001 >. Fig.2(b) represents the state transition
behavior of a 3-cell FMACA with rule vectdR =< 238, 85, 255 >. It has identical number of attractor
basins, with each basin having number of states identicdlatoof non-complemented FMACA shown
in Fig.2(a). In this case, any vectorc V,,  must satisfy Relation 6. That is,

9 0.0, for Vo
min{1, Z xp+ (1 —2x3)} =< 0.5, forVys
k=1 1.0, for Vi

The characterization of complemented FMACA based on DC¥hdishes the fact that the state
space of a non-complemented FMACA can be altered while kgepumber of attractor basins and
number of states in each basin identical. This can be adhieyelesigning complemented FMACA as
per the above formulation.

Valid Derived Complement Vector

In case of a 3-neighborhood FMACA, if a DV contains succes4is in betweent” to jth cells, then
the PCP may be anywhere in betweaéhto j* positions marked as FCP and LCP respectively. As per
Conjecture 2 and Definition 3.3, the valid DCV depends on {Ge.P

1. If PCP=FCP, then the DCV is given by

{0,1} if (FCP+1) <k <LCP
{0}  otherwise

DCV, € { (7)
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2. If PCP=LCP, then

DOV, {0,1} if FCP <k < (LCP —1) @®
{0} otherwise
3. IfFCP< PCP< LCP, then
DOV e {0,1} ifFCP <k < (PCP-1)and(PCP +1) < k <LCP ©)
g {0} otherwise

Example 3.6. Examples of DCVs which can be generated by a 3-neighborhoogiemented FMACA
with DV =< 0011111100 > are < 0000101000 >, < 0000110100 >, < 0010010000 >, and <
0010000100 >.

The following formulation provides the application of DV&ADCYV to identify basin of FMACA.

3.3. ldentification of Attractor Basins

As per Section 3.1, for non-complemented FMACA,[M/ is ann-bit dependency vector of an-
dimensional vector space aftlis a pattern belonging to;, ., then

gm = state of PC = min{1,»  DV; - P;} (10)
=1
As per Section 3.2, for complemented FMACA I and DC'V represent dependency vector and
derived complement vector respectively, @adelonging toV,,, then

¢m = state of PC = min{1, Z | DCV; — DV; - P; |} (11)
i=1
In Section 2, when the FMACAT( and F’) is loaded withP, it travels through a number of states
equal to depthl of the FMACA and ultimately reaches an attracfoyi.e.,

P =|F-T-PO)|; PQ)=|F-T-PQ)|; P=Pd)=|F-T-Pd-1)|

whereT is ann x n matrix, F' is ann-dimensional CV, and ~ n. The statey,, of PC of attractor of the
basin whereP belongs is identified accordingly which represents therbegj,. The complexity of this
algorithm is O¢3), n being the size of the patterns. Whereas in the proposed sslieenstate of PC of
attractor of the basin whef@ belongs is given by

gm =min{1,» | DCV; — DV; - P; |} (12)
i=1
So, the complexity of this approach is®)( Thus, to identify attractor basi,,, of a patterri?, DV
andDCYV can be employed rather thdhand F' which reduce complexity from @) to O(n).
Next we present the design of a hybrid pattern classifierdbasehe principles of radial basis func-
tion (RBF) and FMACA to classify a given set of patterns iffaclasses.
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4. RBFFCA: A Hybrid Pattern Classifier

The RBFFCA is a hybrid pattern classifier based on the theid®B& and FCA. It consists of three layers
with entirely different roles. The input layer is made up ofisce nodes (sensory units) that connect the
system to its environment. The second layer, the only hiddger, applies a nonlinear transformation
from the input space to hidden space. The output layer isi-djnaar, supplying the response of the
system to the activation pattern (signal) applied to theftgyer.

FCA

GA

- C
.7
.7
-
P
27, —
7
-
. 7
A .
- ’
.
.
,
’

Input Output
Layer Hidden Layer Layer
consists of
n RBFs

Figure 3. Architecture of RBFFCA based hybrid pattern éfass

Fig.3 represents the architecture of RBFFCA. It consisthiade layers - input, hidden, and output
layers denoted as; (i = 1,2,--- ,ng),y; j =1,2,--- ,n),ando, (k = 1,2,--- , K) respectively. The
first layer is composed of input (source) nodes whose nunsbegual to the dimensiom, of the input
vectorz. The second layer is a hidden layer, composed of nonlingés tiat are connected directly to
all of the nodes in the input layer. There is one hidden umiefxh data point!,7 = 1,2,--- , N, where
N is the size of training samples. The activation functionthefindividual hidden units are defined by

[l — 512

2
20j

G(x,t5) = exp(— ) (13)

whereG(z, t;) is the multivariate gaussian functiot),ando; denote the center and width of the func-
tion, andj = 1,2,--- ,n wheren < N. The output layer consists df units, K being the number
of classes. This layer is fully connected to the hidden ldyeFCA. The FCA provides an appropriate
mappings of patterns of hidden layer into output layer. Tésired FCA is evolved through GA.

4.1. Learning Phase of RBFFCA

The hybrid learning process consists of two stages:

1. Self-organized learning stage: The purpose of this stageestimate appropriate locations for the
centers of the radial basis functions in the hidden layer.

2. Supervised learning stage: It completes the design binfirttie desired FCA for the output layer.
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4.1.1. Design of RBF

For the self-organized learning process, k-means clasteaigorithm is used [15]. The k-means al-
gorithm places the centers of the radial basis functionsnlg those regions of the input space where
significant data are present. Letdenotes the number of radial basis functions. The detetioimaf

a suitable value for. may require extensive experimentation. Ke(s) 7, denote the centers of the
radial basis functions at iteratianof the algorithm. Then, the k-means clustering algorithowcpeds as
follows:

Algorithm 1. k-means clustering

1. Choose random values for initial centey8) in such a way that these initial values be different.

2. Draw a sample vectar from the input space with a certain probability. The veatds input into
the algorithm at iteration.

3. Letj(z) denotes the index of the best-matching (winning) centeimfout vectorz. Find j(x) at
iteration s by using the minimum-distance euclidean criterion:

j(x) = arg ming|[z(s) — t;(s)]| (14)
wheret;(s) is the center of thg*” radial basis function at iterationandj = 1,2, - - - , n.

4. Adjust the centers of the radial basis functions, usiregughdate rule:

tj(s) +nlz(s) —t;(s)] j=ix)

: (15)
ti(s) otherwise

tj(8+1) = {

wheren is a learning rate parameter that lies in the rabigen < 1.

5. Increments by 1, go back to Step 2, and continue the procedure until nigeadile changes are
observed in the centets.
Having identified the individual center§; 7, of the gaussian radial basis functions and their
widths {aj}?zl using the k-means algorithm, the next and final stage of theidhyearning process
is to find out desired fuzzy cellular automata (FCA) for thépom layer.

4.1.2. Design of FCA

A special class of FCA, termed as FMACA, is used to design thegsed pattern classifier. Suppose,
we want to design a FMACA based classifier for a training$et {Sy,---,S;, - , Sk} partitioned
into K classes, wher§; represents the set of elements of cladsirst, a FMACA withk-attractor basins
is generated, where > K. The elements of the training s8tget distributed intds-attractor basins.
Distribution of the training sef in k-attractor basins is then evaluated. L&the the set of elements in
ith i = 1,2, --- , k) attractor basin. Then labéf*-basin asj*" class, if the number of elements gf
class inS is maximum. For ease of subsequent discussions, we inteddllowing terminologies.
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e K denotes number of classes in the training$et
e L denotes number of attractor basins of a FMACA in which thasktS is to be distributed.

e N;; represents the number of elements of classovered byi!" attractor basin, where =
1,2,--- ,kandj =1,2,--- , K.

e )M, indicates the distribution of class elements in #tfeattractor basin.
The diversity ofi?* attractor basin of an-cell FMACA is given by
max{N;;}

Yy Nij
Thei" (i = 1,2,--- , k) attractor basin indicates the clag$j = 1,2, --- , K) for which N;j is maxi-

mum. The classification accurady of the FMACA is determined by the percentage of patterns whic
are correctly classified into different attractor basinkaflis,

k
F= % > M ~k Z I;X{N”} (17)
=1 j=1

To determine the overall best distribution, classificatt@m be done by a simple application of the
FMACA to the training set. The complexity lies in determigithe best distribution for each basin. The
desired FMACA is evolved through GA. Details of GA formuatiare reported in Section 5.

M; = (16)

4.2. ldentification Phase

Let,  be an input pattern with dimension, whose class is to be identified by RBFFCA based hybrid
pattern classifier. The input pattestir,, z2, - - - , y,) IS first transformed inta:-dimensional pattern
y(yla Y2, ,?/n) where

|z — ]2
Yj = eXP(—TJQJ) (18)
andt; ando; represent the center and width of tji& RBF respectively and = 1,2, --- ,n. Next,y is

loaded with the DV and DCV of FMACA which returg,,, the state of the attractor’s pivot cell (PC) of
an attractor basin whergbelongs. Combining Equations 12 and 18, we obtain

R |z — 5]
gm = min{1, ; | DCV; — DV - exp(—TJ;) 1} (19)

The value ofy,, yields the address of the memory that stores the class iat@ymof input patterr.

5. Synthesis of FMACA: A GA Formulation

The basic structure of GA revolves around the concept ofvawplsuccessive solutions according to
their fitness. The fitness function for FMACA is elaboratedtne
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5.1. Fitness Function

The fitnessF’ of a particular FMACA in a population is determined by thegegtage of patterns which
are correctly classified into different attractor basinsafIis,

max{N;;}
(20)
k Z Z] 1 Nij

wherek and K represent the number of attractor basins and the numbeasdes in the training set;
and N;; depicts the number of patterns of clgssovered byit* attractor basin. Thug; represents the
capability of the evolved FMACA for classifying the giverpint pattern set into separate set of basins.

For the purpose of evolution, each solution (the solutiaFMACA) has to be encoded in bit string
format (chromosome). Three major functions - random géioeraf initial population (IP), crossover
and mutation, as developed in the current GA formulatioe,next discussed.

5.2. Chromosome

The scheme to generatecell FMACA employs a chromosome consisting of:

1. a symbol string of numerical digits consistsiefhumber of DVs each corresponding toanx n;
T matrix, whereny + ng + - - - n,, = n; and

2. a symbol string of numerical digits consistsmafnumber of DCVs representing-dimensional
complement vectoF'.

Rule Vector R = <0, 238, 85, 255, 255, 238, 85, 170, 255 >

00000000 0000 0000
; 01100000 0000 0110
| 00010000 T 0000 '1°|0001
ir_|00000000 0000 0000
1’ "|loooogoo00Q = 0000 0000
' 00000110 0000 110
00000001 0000 T _loo1
00000000 0000 2 271000
00000Q0O0O0 0000 000

Fo=lo101

(a) FMACA rule vector, corresponding T matrix, and CV (F)

lola]s]s]of2]2[ 2] 2fofo]o[1]0]o]o]2]2]
DV

1 DV2‘><—DCV1 -~ DCV2‘>

n

n

1 2 " i)
(b) Associated DVs, DCVs, and equivalent chromosome format

Figure 4. An example chromosome for GA formulation

So, the length of the chromosome2is wheren is the number of cells in a FMACA. In essence, the
m DVs/DCVs are concatenated together to form the final DV/DThe final DV/DCV represents the
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multiple dependency of the variables if there exists. TheM8V of a FMACA with K™ attractor
basins can be derived from the number of DVs/DCVs of the FMACA with attractor basins. A final
DV/DCYV has the constituent DVs/DCVs placed in non-overlagpositions. If two DVs ardDV; =<
01110 > and DV, =< 1111 >, then the corresponding final DV is given ByV = [011102222].
Similarly, if two DCVs are DCV; =< 00010 > and DCV,; =< 0011 >, then the corresponding
final DCV is given byDC'V = [000100022]. In general, the? dependency relation in a DV/DCV is
represented with (: = 1,2, --- ,m) inserted in place of corresponding dependent variables.

Fig.4 represents a 18-bit chromosome corresponding tauteevector<0, 238, 85, 255, 255, 238,
85, 170, 255. While Fig.4(a) represents thiE matrix and theF’; Fig.4(b) represents the equivalent
chromosome format of FMACAV;s andDC'V;s).

5.3.  Random Generation of Initial Population

To form the initial population, it must be ensured that easlut®on randomly generated is ancell
FMACA with k£ = K™ attractor basins wherke and K represent the number of attractors of FMACA
and the number of fuzzy states respectively. The chromos@reerandomly synthesized according to
the following steps.

1. Randomly partitiom into m number of integers such that + no + - - - + n,, = n.

2. For eacl;, randomly generate a valid D\VIXV;) and a valid DCV DCV;).

3. Synthesizen-bit DV through concatenation af, number ofDV;s for first part.

4. Synthesize:-bit DCV through concatenation ef. number of DC'V;s for second part.
5. Synthesize a chromosome through concatenation of fidss@arond part.

Fig.4(b) represents a randomly generated 18 bit chromogdbaterefers to thel’ matrix and the
complement vectoF’ shown in Fig.4(a). Th® x 9 T matrix is obtained from two matrice§( and
T5) of length 5 and 4 respectively by block diagonal form (BDH)e 9-bit F' is produced through the
concatenation of two CVdij and F») of length 5 and 4 respectively.

5.4. Crossover Algorithm

Fig.5 illustrates the crossover process employed in the G%ugon. Two chromosomes (FMACA
and FMACA,) are shown in Fig.5. The single crossover point is seleca@damly which is 8 in this
case. The first 8 symbols of first part are taken from FMAQWhile the rest 2 symbols are taken from
FMACA to form the new DV for FMACA. Similarly, in the second part, first 8 symbols of FMACA
and rest 2 symbols of FMACAare merged together to form thedimensional DCVDC' V3 (Fig.5).

The resultant chromosome (FMAGA as explained below, violates the chromosome format in the
7th, 8th and 9th positions of first part (encircled in FiglB)Fig.5, the DV is [1110022322] where 2 and
3 are interleaved, which is invalid. The resultant validothosome after local recoding of symbols is
shown in Fig.5 (FMACA).
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FMACA 2

R1 = < 238,85,255,0,0,238,0,238,85,255 > R2 = < 0,238,85,170,255,0,238,85,170,2
110700 0 § soo8ok
100160 10r =[o119 -|looo10p
10 0 0 00 001 ; 00001l
L,,,O,,Q,,QO,,,,, 0 : 0000 s
0000000 o P 000000
0000011 11 F,=[00diT=] :
0000000 od 2 P 1=[00101]d
0000060 : :
0000000 1 : 1100
0000000 01 F=[01 1! T -|0010
777777777777777777777 0 : 270001}
0110001 - o 0000

Fe[o1 031

[1[a]afof o2 2] 5[ o & d dil dofofol o] of s]Fmaca,

lofalalalafof2] 2] 2] 2[ o[ o] o[ 1] 1] o[ o] of 2] 2fFmaca,

[1[a]afof o[ 2] s[ 2] 2| o d1[ dofofo] of2] 2]Fmaca,

[1[a]afof o2l 2]z [2] 2] of d1] dofofo] of2] 2]Fmaca,

F=[011000010 1 R4=<238852550,0,238,170,85,170,255 >
FMACA ,

Figure 5. An illustration of crossover technique

5.5. Mutation Algorithm

As per the analysis reported in Section 3, if in a DV, the valti@ (number of 1's in a DV) is greater
than 2, there exists a valil and DCV. In mutation, we first randomly select a chromosome. Ifithe
DV DV; of the selected chromosome contains successive 1's #f¢RC) to j; (LC) cell positions and
w; (of DV;) > 2, then we randomly select a mutation painand flip thez** position, where

(FCP+1) <z <LCP if PCP =FCP; (FCP+1) <z < (LCP-1) if PCP = LCP;
(FCP+1) <z < (PCP—-1) or (PCP+1) <z <LCP if FCP < PCP < FCP
So, in this case, th& matrix and the DV remain same, ontyand DCV has been changed.
Fig.6 represents an example of mutation technique on a malydselected chromosome (FMAGA

A single mutation point (5th position) is randomly selecfeain the second part of the chromosome
(FMACA,). The FMACA; is the mutated version of FMACA

5.6. Selection

Selection is done by the roulette wheel method. The proltiabilare calculated on the basis of ranking
of the individuals in terms of the fitness function, insteathe fitness function itself. Elitism is incorpo-
rated in the selection process to prevent oscillation ofithess function with generation. The fitness of
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| 0000000 R1=<0,238,85,170,255,0,238,85,170,255 >
: lo1100®000
3 100010®00 F=[00101100101 110
| 100001®00 T -]001
1 '00000®mOO 000000D0 271000
'T=looo000®0o0 011000 000
.~ |ooooo0@i0p T, =000100F=[00101]0
| o 1 |oooo01p 1l

00000®O01!

00000®@OO01 000000 F2—[010]L

|00000® OO0 000000 FmACA

! | !
lolalalalalol2]2] 2] 2/ 0]l olol1la) of of o 2] 2fFmaca

[ofxTaTxTxTol2[ 22 2[ o[ o[o] 1] o[ o[ o[ o[ 2] 2] Fraca,.
12345678 910 12345678 9 10 ‘

! (6000 0®o o0 R2 =< 0,238,85,85,0,0,238,85,170,255 >
| ljo1100®000
~ Jooo1o0@oo0 F=[0011000101 110
! 100001®O00 T.=/001
: '00000®OO 00000p 2 000
' T=lloooo00mo0o0 011000 000
.~ |ooo00a1op T,={000100F=lo0110]0
; o 1 |oooo1p!?

00000®O0 1

00000®OO0T 000000 FZ:[Olo]L

00000®OO! 0000O0pP FMACA

Figure 6. An illustration of mutation technique

the best individual of a new generation is compared with dfidhhe current generation. If the later has a
higher value the corresponding individual replaces a ramglselected individual in the new population.

The experimental results reported next confirm that the GAugon provides the desired direction
to arrive at the best FMACA to perform the pattern classiitcatask.

6. Performance Analysis

This section presents the application of RBFFCA based npatiassifier in different applications. The
major metric for evaluating classifier performance is dfasgion accuracy. We also report retrieval time
and memory overhead required to store RBFFCA based classifisecondary metrics for performance
evaluation. In all of our experiments, the GA parametersl ase as follows:

Maximum generation : 100
Population size : 100
Chromosome length : 2n where n is the
number of RBFs
Probability of crossover : 0.8
Probability of mutation : 0.001
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The parameters are held constant across all runs. Unbiaisiedl population is generated randomly
spreading over entire variable space in consideration.th&llexperiments are performed in SUN with
Solaris 5.6, 350 MHz clock.

To analyze the performance of RBFFCA, the experimentatamldeen done in two parts.

1. Inthe first part, we have used the synthetic dataset peopiog2].

2. In the second part, we perform the experiment on some BT LOG datasets [36] available
from http://www.ics.uci.edumlearn and different DNA dataset proposed by Fickett eL@l.[

6.1. Synthetic Database

An often used benchmark in classification is STATLOG [36].wdeer, due to lack of a classification

benchmark containing large datasets, we use the synttetbabse proposed in [2] for our experiments.
Each record in this synthetic database consists of ninbwis. Ten classification functions were also
proposed in [2] to produce databases with distribution$ wétrying complexities. In this subsection,

we present the results of RBFFCA for these functions. Alséhfinctions divide the database into two
classes. Attributes values are randomly generated.

Experimental Results

Table 1 presents the classification accuracy of RBFFCA foh @& the ten functions proposed in [2]. It
also shows a comparison with radial basis function neuraaor& (RBFN). In all cases, 50 percent of
the samples are used as training set and the remaining saanplased as test set. Ten such independent
runs are performed and the mean value and standard dewvidtibe classification accuracy, computed
over them, are presented in Table 1. The parameters used exfreriments are as follows:

Number of hidden nodes for RBFFCA : | 50
Number of hidden nodes for RBFN : 50

Number of fuzzy states for RBFFCA : | 101
The value of m for RBFFCA : 1

The results corresponding to memory overhead and rettiievalof RBFFCA and RBFN are as follows:

Memory overhead of RBFFCA : 24.02 KB

Memory overhead of RBEN : 32.19 KB
Retrieval time of RBFFCA for N = 10000 : | 291 ms
Retrieval time of RBFN for N = 10000 : 327 ms

Retrieval time of RBFFCA for N = 100000 : | 382 ms
Retrieval time of RBEFN for N = 100000 : 617 ms
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Table 1. Classification Accuracy of RBFFCA and RBFN on Sytitdaataset

Fn Size of RBFFCA RBFN

No | Dataset Training Testing Training Testing
Mean | Sd.Dv. | Mean | Sd.Dv. | Mean | Sd.Dv. | Mean | Sd. Dv.
1 10000 83.2 0.25 81.7 0.09 84.1 0.33 79.6 0.12
100000 | 83.0 0.12 80.2 0.04 83.8 0.13 78.2 0.30
2 10000 81.7 0.10 78.3 0.31 80.6 0.15 75.3 0.21
100000 | 82.1 0.07 77.8 0.11 81.9 0.04 76.6 0.04
3 10000 80.9 0.12 78.5 0.20 82.5 0.04 72.1 0.17
100000 | 82.3 0.01 80.1 0.01 83.1 0.16 79.8 0.02
4 10000 85.4 0.13 81.9 0.06 84.8 0.01 78.3 0.31
100000 | 83.7 0.20 82.0 0.30 85.2 0.06 81.6 0.07
5 10000 81.6 0.31 80.2 0.11 80.4 0.31 76.7 0.12
100000 | 81.1 0.11 78.9 0.02 79.3 0.11 78.2 0.03
6 10000 84.0 0.08 82.4 0.05 82.8 0.08 81.9 0.01
100000 | 84.5 0.17 81.8 0.15 82.0 0.02 79.0 0.22
7 10000 83.9 0.04 81.6 0.17 81.6 0.12 81l.1 0.10
100000 | 83.6 0.02 80.3 0.19 82.4 0.03 78.5 0.02
8 10000 82.8 0.21 78.4 0.11 83.6 0.09 73.2 0.01
100000 | 81.5 0.02 77.7 0.01 83.7 0.10 74.1 0.27
9 10000 84.1 0.03 83.8 0.00 79.5 0.20 79.7 0.14
100000 | 85.4 0.09 83.2 0.16 86.1 0.11 75.3 0.02
10 10000 82.6 0.11 79.1 0.03 82.3 0.02 74.4 0.01
100000 | 82.8 0.20 78.6 0.08 82.1 0.22 78.3 0.23

The time required to generate RBFFCA and RBFN for a givensagaiare as follows:

Learning time of RBFFCA for N = 10000 : | 1357 ms
Learning time of RBFN for N = 10000 : 872 ms
Learning time of RBFFCA for N = 100000 : | 2689 ms
Learning time of RBFN for N = 100000 : | 1207 ms

All the results reported above and in Table 1 clearly esthbihe fact that RBFFCA performs better
than RBFN with lesser memory overhead and retrieval tinespective of the functions and size of the
dataset. Though the generation time of RBFFCA is greater tina of RBFN, this is not an important
design consideration. Because usually the classifier isrgéad once and used over and over again. So,
the higher classification accuracy with lesser retrievaktand memory overhead mainly establish the
significance of RBFFCA. Next the application of RBFFCA inedlite image classification is presented.
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6.2. Satellite Image Classification

The original Landsat data for this database is generated ffata purchased from NASA by the Aus-
tralian Centre for Remote Sensing, and used for researdtedtniversity of New SouthWales. The
sample database is generated taking a small section (82amadv300 columns) from the original data
[36]. The data are divided into train and test set with 443&m@xes in train set and 2000 in test set.

6.2.1. Experimental Results

The results on dataset reported earlier are presented ie Zaim respect of classification accuracy.
Column | of Table 2 represents the number of hidden unitg (hahe number of gaussian radial basis
functions) while Columns Il and Il depict the number of fyzgtates and the value of. Columns
IV and V show the mean value and standard deviation of thesifilgation accuracy of both training
and test dataset respectively. The classification accufirgining and testing confirm that the evolved
RBFFCA based hybrid pattern classifier can generalize ttedlisa database irrespective of the number
of hidden units, number of fuzzy states and the valueof

Table 2. Classification Accuracy of RBFFCA on Satlmage ddtas

Hidden | Value | Value Training (%) Testing (%)
Units of £ of m Mean | Sd.Dv. | Mean | Sd. Dv.
25 11 1 78.4 0.11 74.9 0.06

2 79.1 0.17 76.3 0.12

101 1 83.2 0.16 80.1 0.02

2 81.9 0.07 79.4 0.17

50 11 1 90.4 0.14 88.1 0.01
2 88.6 0.23 87.0 0.07

101 1 89.6 0.13 84.1 0.21

2 89.9 0.08 85.8 0.13

75 11 1 90.1 0.21 85.1 0.01
2 91.5 0.18 82.3 0.20

101 1 89.4 0.31 81.9 0.16

2 87.0 0.42 82.8 0.33

6.2.2. Comparison of Different Algorithms

Table 3 compares the performance of RBFFCA with that of cotiweal classification algorithms like
RBFN [24, 29], MLP (multilayer perceptron) [24, 29], C4.504 FCATree (fuzzy cellular automata
tree) [30], CATree (cellular automata tree) [33] in termsclafssification accuracy, memory overhead,
and retrieval time.

Column Il of Table 3 represents the classification accurahifenColumns Il and IV depict the
memory overhead and retrieval time of different algorithifise experimental results of Table 3 clearly
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Table 3. Comparison of Different Classification Algorithms

Different Classification Memory Retrieval

Algorithms | Accuracy (%) | Overhead (KB) | Time (ms)
RBFFCA 88.1 9.16 484
RBFN 87.9 10.17 502
MLP 86.2 11.33 716
C4.5 85.2 709.72 2255
FCATree 81.9 189.62 2419
CATree 87.6 222.74 4943

establish the fact that the classification accuracy of RB&KChigher while its memory overhead and
retrieval time are lesser compared to that of differentsifesition algorithms.
Next subsection presents the application of RBFFCA for figdiplice-junction in DNA sequences.

6.3. ldentification of Splice-Junction in DNA Sequence

In bioinformatics, one of the major task is the recognitidreartain DNA subsequences important in the
expression of genes. Basically, a DNA sequence is a stringalphabet DfA,C,G,T}. DNA contains
the information by which a cell constructs protein molesul€he cellular expression of protein proceeds
by the creation of a ‘message’ ribonucleic acid (MRNA) comnf the DNA template. This mRNA is
then translated into a protein. One of the most unexpectelihfis in molecular biology is that large
pieces of the mRNA are removed before it is translated fufftfle The utilized sequences are known as
exons while the removed sequences are known as intronggorening sequences. The points at which
DNA is removed are known as splice-junctions. The splicesfion problem is to determine into which
of the following three categories a specified location in aADd¢quence falls: (1) exon/intron borders,
referred to as donors (2) intron/exon borders, referred @caeptors and (3) neither.

6.3.1. Description of Dataset

The dataset used in this problem is a processed version d¢fvihe Primate splice-junction database
[36]. Each of the 3186 examples in the database consists imiclow of 60 nucleotides, each represented
by one of four symbolic value§ A,C,G,T}) and the classification of the middle point in the window as
one of intron-exon boundary, or neither of these. Procgsgsivolved the removal of a small number of
examples(4), conversion of the original 60 symbolic atitéls to 180 binary attributes and the conversion
of symbolic class labels to numeric labels. The trainingp$@000 is chosen randomly from the dataset
and the remaining 1186 examples are used as the test set.

6.3.2. Experimental Results

The experimental results on DNA dataset reported earlepegsented in Table 4 and subsequent dis-
cussions analyze the results in respect of classificatioaracy.
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Column | of Table 4 represents the number of hidden unitseM®dlumns Il and 11l depict the number
of fuzzy states and the value of. Columns IV and V show the mean value and standard deviafion o
the classification accuracy of both training and test dataspectively. The classification accuracy of
training and testing confirm that the evolved RBFFCA can gadize the DNA database irrespective of
the number of hidden units, number of fuzzy states and theevaflm.

Table 4. Classification Accuracy of RBFFCA on DNA dataset

Hidden | Value | Value Training (%) Testing (%)
Units of £ of m Mean | Sd.Dv. | Mean | Sd. Dv.
25 11 1 88.2 0.23 81.9 0.28

2 89.3 0.18 79.4 0.31

101 1 84.8 0.31 77.2 0.10

2 86.4 0.02 87.6 0.27

50 11 1 93.8 0.05 88.1 0.23
2 93.9 0.09 90.2 0.07

101 1 96.1 0.17 92.9 0.03

2 96.4 0.12 91.3 0.11

75 11 1 95.7 0.15 89.8 0.20
2 95.2 0.32 88.1 0.30

101 1 91.6 0.11 86.5 0.17

2 92.7 0.22 89.2 0.34

6.3.3. Comparison of Different Algorithms

Table 5 compares the performance of RBFFCA with RBFN, MLR5CBCATree, CATree, etc. in terms
of accuracy, memory overhead, and retrieval time.

Column 11 of Table 5 represents the classification accurahjlenColumns IIl and IV depict the
memory overhead and retrieval time of different algorithifise experimental results of Table 5 clearly
establish the fact that the classification accuracy of RBAREZomparable to different algorithms while
its memory overhead and retrieval time are lesser comparttht of different algorithms.

6.4. ldentification of Protein Coding Region in DNA

This subsection presents the application of RBFFCA for figgirotein-coding (exon) regions in anony-
mous sequences of DNA. The idea of the new method is to useahe¥ork of RBF and FCA. The
new method is evaluated for few sequences and an analysisiieg the accuracy is also presented.

6.4.1. Description of Dataset

The data used for this study are the human DNA data colleotdeidkett and Tung [16]. The bench-
mark human data includes three different datasets. Forrstedfitaset, non-overlapping human DNA
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Table 5. Comparison of Different Classification Algorithms

Different Classification Memory Retrieval

Algorithms | Accuracy (%) | Overhead (KB) | Time (ms)
RBFFCA 92.9 28.71 298
RBFN 93.9 34.19 876
MLP 91.4 37.22 1184
C4.5 93.3 1067.96 655
FCATree 88.1 51.22 491
CATree 86.4 50.86 494

sequences of length 54 have been extracted from all humamisees, with shorter pieces at the ends
discarded. Every sequence is labeled according to whetheentirely coding, entirely non-coding,
or mixed, and the mixed sequences (i.e., overlapping tha-@tmn boundaries) are discarded. The
dataset also includes the reverse complement of every segu&his means that one-half of the data is
guaranteed to be from the non-sense strand of the DNA, whaitesithe problem of identifying coding
regions somewhat harder. For the current study, we havethseshme division into training and test
data as in the benchmark study [16]. The training set is useldgvely to construct the RBFFCA based
pattern classifier, and the classifier is then used to cladsiftest set. In addition to the 54-base dataset,
we have used datasets containing 108 and 162 bases. No ationnabout reading frames is used in
this study. We have tried to solve the problem of finding cgdiegions in DNA about which nothing
is known. Every window is either all-coding or all-non-condj but the reading frame of each window
is unknown. This choice of window lengths and experimentathnod follows that used by Fickett and
Tung [16], and the problem here is what they defined as protaiimg region.

6.4.2. Experimental Results

The experimental results on Fickett and Tung dataset asepted in Table 6. Column | of Table 6
represents the number of hidden units while Columns Il ahddpict the number of fuzzy states and
the value ofm. Columns IV-VI show the classification accuracy of bothrinaf) and test dataset on
Human DNA 54bp, 108bp, and 162bp respectively. The claasific accuracy of training and testing
confirm that the RBFFCA can generalize the Fickett and Tunigsga irrespective of DNA sequence
length, number of hidden units, number of fuzzy states ahdevaf m.

6.4.3. Comparison of Different Algorithms

Table 7 compares the classification accuracy of RBFFCA wighh of conventional algorithms namely
OC1, Position Asymmetry, Fourier, Hexamer, Dicodon Usage, Columns II-1V of Table 7 represent
the classification accuracy of different algorithms on HarB&A 54bp, 108bp, and 162bp respectively.
The experimental results of Table 7 clearly establish thetfeat the classification accuracy of RBFFCA
is greater than that of different algorithms irrespecti¥@sosequence length.
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Table 6. Classification Accuracy of RBFFCA on Fickett and Jdataset

Hidden | Value | Value Human 54bp Human 108bp Human 162bp
Units of K of m Training | Testing | Training | Testing | Training | Testing

50 11 1 78.4 74.8 79.2 75.8 80.6 74.9

2 77.0 74.1 80.6 77.4 78.3 73.3

101 1 81.6 77.5 81.5 76.3 83.4 78.6

2 82.1 76.3 83.3 78.0 85.7 81.8

75 11 1 84.8 79.0 83.9 79.2 86.2 83.2

2 83.7 78.7 85.1 74.8 86.8 84.1

101 1 86.1 83.2 87.9 84.1 88.2 84.6

2 87.8 815 88.5 83.6 89.1 84.3

100 11 1 85.3 82.6 83.2 82.9 85.5 82.8

2 83.6 79.3 80.8 77.2 84.8 80.9

101 1 81.2 76.4 84.2 80.7 86.9 83.4

2 84.3 79.9 80.6 73.5 85.8 80.5

Table 7. Classification Accuracy of Different Algorithms

Algorithms 54bp | 108bp | 162bp
RBFFCA 83.2 84.1 84.6
0OcC1 73.9 83.7 84.2
Position Asymmetry | 70.7 77.6 81.7
Fourier 69.5 77.4 82.0
Hexamer 69.8 71.4 73.8
Dicodon Usage 69.8 71.2 73.7

7. Conclusion

In this paper, we propose a hybrid learning algorithm bagethe principles of radial basis function
(RBF) and fuzzy cellular automata (FCA) for pattern clasatibn of real valued data. Two new op-
erators are introduced to characterize a special class 8f EEmed as fuzzy multiple attractor CA
(FMACA). Application of such operators brings down the cdexgy to identify the class of an input
pattern from Of3) to O(r). An efficient formulation of genetic algorithm (GA) has Ibegroposed for
evolution of desired FMACA to perform pattern classificatimsk. The genetic operators are imple-
mented in such a way that they help to preserve the structl¥MACA.

The aforesaid model is used in different pattern classiingtroblems and the results are compared
with some of the related techniques on the basis of some itptave performance indices. Extensive
experimental results show that the proposed hybrid legraigorithm has high classification accuracy
with less memory overhead and computation time. The irgatstin, besides having significance in
cellular automata (CA) research, has potential in soft atting research and for application to large
scale problems involving data mining, bioinformatics,. etc
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