Sankhya : The Indian Journal of Statistics
1999, Volume 61, Series A, Pt. 3, pp. 337-346

Van den BERG-KESTEN INEQUALITY FOR THE POISSON
BOOLEAN MODEL FOR CONTINUUM PERCOLATION

By J.C. GUPTA
and
B.V. RAO
Indian Statistical Institute, Calcutta

SUMMARY. For the Poisson Boolean model of continuum percolation we prove the Van
den Berg-Kesten inequality P(A | B) < P(A)P(B) for any two events A and B living on a

bounded region.
1.  Introduction

For Bernoulli sequences Van den Berg and Kesten (1985) obtained a corre-
lation like inequality for two increasing events and conjectured that it holds for
any two events. This conjecture was proved by Reimer (1994). Later devel-
opments led to a need to obtain BK-like inequality for continuum percolation
models. Bezuidenhout and Grimmett (1991) suggest versions of BK inequal-
ity via weak-convergence arguments that require topological conditions on the
events. For the Poisson Boolean model Roy and Sarkar (1992) and Sarkar (1994)
obtained BK inequality for a very special kind of increasing events and Van den
Berg (1996) proved the inequality for any two increasing events. For the Poisson
Boolean model of percolation we prove the BK inequality for any two events
living on a bounded region. Our proof depends on a conditioning argument and
a theorem of Reimer (1994).

2.  Preliminaries

Discrete case. This case is motivated by percolation on the integer lattice
in R? but for all purposes it reduces to the following. Let P be a product
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probability on @Q,, = {0,1}". For z = (z1,22,...,2Z,)In Qpand K C {1,2,...,n}
we define K - cylinder about z.

[#]x ={y €Qn: yi=z Vie K}

For E,F C Q, we define F U F (read : E box F) := {z € Q, : 3 disjoint
K, L c{l1,2,...,n}st. [z]x C Fand [z], C F}. Wesay y >z ify; > x; Vi
and an event F is said to be increasing if x € F and y > « then y € E. Van den
Berg and Kesten (1985) proved

P(EDF) < P(E)P(F) L (2.1)

for increasing events E and F' and conjectured that (2.1) holds for all events
E and F. Van den Berg and Fiebig (1987) proved the BK inequality for some
other special class of events. Finally Reimer (1994) proved the general case by
reducing the proof of (2.1) to the following theorem.

THEOREM 2.1. (Reimer). For E, F' C Q,
|[ELF| <|ENF°. ...(2.2)

Here |A] stands for the cardinality of the set A, ¢ := (1—x1,1—29,...,1—x,)
is the antipodal of © = (z1,22,...,2y,) in Q, and F¢ := {z° : z € F} is the
antipodal complement of F.

We present an outline of the proof based on Gupta (1999) where the reader
can find further details.

PRroOF. For u,v € Q,,, we define
[u,v] :={x € Qn: x; € {u;,v;} Vi},

the subcube generated by w and wv. For u,v € Q,, we define the butterfly
B = B, , on @, as consisting of the following four associated subcubes of @, :

Body(B) := {u}, Tip(B) := {v}, Red(B) := [u, v] and
Yel(B) := [u, v°].

A flock B ={By.,} is a set of butterflies and we define

Body(B) := | J Body(B), Tip(B) := | ] Tip(B),

BeB BeB
Red(B) := | J Red(B) and Yel(B) := | ] Yel(B)
BeB BeB

Reimer’s Butterfly Theorem , see Section 3 of Gupta (1999) for a proof, says
that if the butterflies in a flock B have distinct bodies, i.e.,

B| = [Body/(B)| ..(2.3)
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then
Bl <|RNY*€|, ... (24)
where R = Red(B) and Y = Yel(B).
We observe that [u,v] = [u]x, where K = {i : u; = v;}. Then it is easily

seen that for each a € E Ll F| there exists b € @, such that [a,b] C E and
[a,b] € F. Choose and fix, for each @ € E U F, one such b € @Q,. Then
B={B,):a€ EUF}is a flock of butterflies satisfying

1B| = [Body (B)| = |ECQ F|,Red(B) C E

and
Yel(B) C F. ... (2.5)

Then by (2.3), (2.4) and (2.5) we have,
[EUF| <|ENF. 0O
Continuum case. In the Poisson Boolean model (X, A, p) of continuum per-
colation each point x of X, a Poisson process of density A > 0, is the centre of a
closed ball of random radius in such a way that different radii are independently
distributed according to p and are also independent of the process X. We denote
a typical realisation of this percolation process by w = {(z;,r;) : i = 1,2,...}.
The restriction of the realisation w to a region K C R? is

wg = {(z;,r;) Ew:x; € K}
For K C R?, we define
Wk == {w : wi = wk} ...(2.6)

We say that an event A lives on U if w € A implies that any w’ such that
wy; = wy is also in A. For A and B living on a bounded region U define

AU B:={w:3 disjoint regions K, L C Us.t.
[wlk C A and [w];, C B} . (27)

For a reformulation of this definition, see (4.3) below.

There are many mathematical constructions of the Poisson Boolean percola-
tion available in the literature, see, e.g., Section 1.4 of Meester and Roy (1994).
In the next section we discuss our mathematical framework.

3. Mathematical Framework
We fix a Borel subset U of R?. Let v be a finite, not identically zero, non-

atomic Borel measure on U and p be a Borel probability on [0,00). Consider
the measure = v x p on (5,S) where S = U x [0,00) and S is its Borel o-field.
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Let (Q, F, P) be a probability space on which are defined two families of random
variables {7,,,n > 1} and {n,,n > 1} such that

(¢) {Tn,n > 1} and {n,,n > 1} are independent,

(i4) 1, are [0,00) - valued, independent and identically distributed with
P(1, >t) = e 05,

and

(441) ny = (&n,rn) are S = U x [0, 00) - valued, independent and identically
distributed with

_ 9(E)
P(UnGE)—ﬁa E €S,
or equivalently,
A
Plén € Ao € B) = L p(B)

for Borel subsets A and B of U and [0, 00) respectively. Let

m(w){ 0 if mi(w)>1

max {j:7i(w)+ m(w)+... 4+ 7j(w) <1} otherwise.

A standard fact is that (see, e.g., Ikeda and Watanabe, 1981)

ni(w) = (&(w), ry(w)), i = 1,2,...,m(w) is a realisation of a Poisson point
process on S = U x [0,00) with intensity measure § = v x p. Consequently,
(1) &, i=1,2,...,m(w) is a realisation of a Poisson point process on U with

intensity measure v,

(#4) r;, which may be interpreted as the radii of closed balls around &;, i =
1,2...., are independent and identically distributed as p, and

(#4i) the radii are independent of the Poisson point process on U mentioned
in (i) above.

The above provides an adequate framework for all the events living on a
region U for the Poisson Boolean model (X, A, p) described in Section 2 if we
take U C R? to be a bounded Borel set and v to be A-times the Lebesgue
measure on U. Define, for £ € S,

X(w, E) :=#{i <m(w) : n;(w) € E}. ...(3.1)

Let A be the class of those finite counting measures on (S,S) which as-
sign mass at most one to singletons. We endow N with
the o-field B generated by sets {N e N :N(FE)=k}, FeS,
k=0,1,2,....



POISSON BOOLEAN MODEL FOR CONTINUUM PERCOLATION 341

The non-atomicity of  implies that, with probability 1, X (w,-) € N. Also
support(X (w,)) = {&(w) : ¢ = 1,2,...,m(w)}. It easily follows that the map
w — X (w,-) is measurable and induces a probability Py on (N, B). We may
regard the above percolation process as an N -valued random variable defined on
(Q, F, P). However in the following we take (N, B,Py) as our probability space
and the identity map on this space as our percolation process X.

4. Proof of Van den Berg-Kesten Inequality

We denote by {Py : 6§ € ©} the class of all probability measures on (N, B)
where © = {# = v x p : v is a not identically zero, non-atomic measure on U
and p is a probability on [0,00)}, and Py is as described in the previous section.

LEMMA 4.1. Consider the statistical structure
N XN, BB,{Pyx Py:0¢c0})

and let X(Nl,NQ) = Nl, Y(Nl,NQ) = N2 and Z(Nl,Nz) = N1 + N2 =
X (N1, Na) + Y (N1, Na). Then, with probability 1,Z € N and

(a) Z is a sufficient statistic for {Py X Py : 0 € O}, and
(b) the conditional distribution of (X,Y) given Z = Ny is uniform on the set

Tny = {(N1,N2) : Ny < No, Ny = No— Ni}. L (41)

Here N1 < Ny means N1 (E) < No(E) V E € S, or equivalently, support(Ny) C
support(Np).

PRrROOF. The non-atomicity of 6 and the independence of X and Y imply
that Z € V. For a partition F;, i=1,2,...,k of S it is easily checked that

P@ XP@ {X(Ei)zli,Y(Ei)Zmi, i=1,2,...,k H Z}

_ H li+m;\ (1 i 1

The proof of (b) can be completed by usual extension arguments. That the
conditional distribution is same for all § € © implies (a). 0

Fix Ny € N. Let n = | support(No)|; say, support(Ng) = {z1,22,...,2,}
Now N; < Ny and N, = Ny — N; imply that the supports of N; and N, are
disjoint and their union is {21, 22, ..., 2, }. Thus the conditional distribution of
(X,Y) given Z = Ny assigns, independently, each z; to either support(N;) or
support(Nz) with probability % each.

For N < Ny define
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:cN—{ 1 if 1; € support(N)

i 0 if ;& support(N),

then zV = (2N, 2l ... 2)) € Q, = {0,1}", 2N = (1,1,...,1) and if Ny <
Ny, Ny = Ny— Ny then 2™ is antipodal to V2 in Q,,. Thus TN, can be identified
with .

Tn, = {(z,2°) 1z € Qn}. ... (4.2)

Now fix A,BCN . For N €¢ N and K C U define
[INlx == (N e N : N(E) = N(E) YE€S,EC K x [0,00)},

and
AU B:= {N e N :3disjoint K,L C U s.t.
[N]x C A and [N], C B}. - (4.3)
To ensure the Py-measurability of A [J B we assume that K and L are finite
unions of rational rectangles, see Section 6. Now let Ny € A and define

A={N:NeAN<Ny}, E={z"N:NeA}

B={N:NeB/N<Ny}, F={z":NeB)},
and o
AOB={N:NecAOB, N < N}. . (4.4)

We have the following lemma.

LemMma 4.2. [EUF| > |ALUB].

PrOOF. Suppose N € AUB, ie, N € AU B and N < Ny. Fix disjoint
K,L CUst. [N]g C Aand [N]p C B. Thus [N]Jg N (N < Ng) C A and
[Nl N (N < Ny) C B. Consequently, [zV]gx« C E and [zV],« C F where
K*={i:§e€K}and L* = {i: & € L}. Hence 2V € EONF. 0

THEOREM 4.1. Py(ALl B) < Py(A)Py(B).

Proor. Using notations of (4.2) and (4.4) we have

Pg X Pg (A X B||Z = No)
= Pyx Py {(N1,Ny): Ny € ANy € B,N; < Ny, Na = Ny — N1||Z = No}
ENFe
= \27”\ by Lemma (4.1)
[EOF|
T
AU B
2 —
Pg X Pg{(ADB) XNHZ = No}.

by (2.2)

by Lemma (4.2)

V
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Consequently,
P@ X P@(A X B) > PQ(ADB),

or equivalently,
Py(A)Py(B) = Py(AU B). |
REMARK. The BK inequality can be shown to hold even in the case where
6 is not of the form v X p but any finite measure on S = U x [0,00) with its
U-marginal non-atomic.

5. Examples and Applications

In this section we give some examples and applications of Theorem 4.1. In
subsections 5a, 5b and 5¢ we provide examples of the validity of the BK in-
equality in cases not accessible via earlier literature. Finally in subsection 5d we
briefly describe how our techniques can be adapted to prove the BK inequality
in some special cases of the Random-Connection Model.

5a. Consider Poisson Boolean percolation in the plane. Fix a bounded region
U C R2. Let us say that a Poisson ball B is isolated in U if there exists G, a
finite union of open rational rectangles, such that B C G C U and G does not
intersect any other Poisson ball. Let A be the event that there exists an isolated
ball in U. Then AU A is the event that there are at least two isolated balls in
U. By Theorem 4.1,

P(AOA) < [P(A)>. ...(5.1)

It may be noticed that the event A is neither increasing nor decreasing. We
would like to say that the verification of the above inequality through direct
calculations is not entirely trivial. This example was suggested by Damien G.
White.

5b. For p = (p1,p2, -+, Pn), 0 < p; < 1,let P, denote the product probability
on Q, = {0,1}" with i*"-component space having mass p; at 1 and 1 — p; at 0.
Clearly, for any A C Qn, Py(A) = Ppe(A°) where p® = (1—p1,1—pa,---,1—py).
This duality implies that if the BK inequality holds for all increasing events A, B
then it as well holds for all decreasing events A, B.

There is no such apparent duality in the continuum case. Thus the result of
Van den Berg (1996) for increasing events does not immediately lead to the same
for decreasing events. However, Theorem 4.1 says that the inequality is valid
provided both the decreasing events live on a bounded region U. This provides
a rich class of examples where the BK inequality is available.

5c. Let us consider Continuum Percolation (X, A, p) in the plane. Here X is
a Poisson process with density A and p is the radius distribution. We assume
that p is supported on the interval, say, [3,1]. Let
T : = the rectangle with corners (20,5), (20,—5),(—20,—5), and (—20,5).
R : = the rectangle with corners (20,5), (20,—5), (15,—5), and (15,5).
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M : = the rectangle with corners (5,5), (5,—5), (—5,—5), and (—5,5).
as illustrated in the figure 1 below.

Let

A Dbe the event that there exists a N-S connection on T, that is, some point
on the northern border of T is connected to some point on the southern border.

B be the event that there does not exist an E-W connection on T

C be the event that there does not exist an E-W connection on R and

D be the event that there exists a N-S connection on M. Then it is easily
seen that,

(i) A and B are not independent,

(ii) CND C (ADB);AQB

and

0< P(CND)< P(AOB) < P(ANB). ... (5.1)

It may be noticed that the result of Van den Berg (1996) is not applicable
to this example.

5d. (Random-Connection model). We are given a Poisson point process X
on R? and a so-called connection function g : [0,00) — [0, 1], which is assumed
to be non-increasing. In the random-connection model, for all distinct pairs of
points x; and z; of the point process X, we insert an edge between them with
probability g(|z; —z;|) independently of all other pairs of points of X, where |- |
denotes the usual Euclidean distance.

Let us fix a Borel U C R? and consider a Poisson point process on S =
U x [0,00) % [0,00) % --- with intensity measure § = v x p X p X --- such that
v is a finite, not identically zero, non-atomic Borel measure on U and p is a
probability on [0,00) with distribution function F. Given a realisation, say
(&,ri1,mi2,-++), 4 =1,2,---, of this process we insert an edge between &; and §;
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iff
1§ — &l < rij + 1y ... (5.2)

It is easily seen that, for this random-connection model,
g(x) =P(rij +rj; >x)=1—(Fx*F)(x), ... (5.3)

where F' x F' stands for the convolution of F' with itself. It may be observed
that the corresponding analogue of Theorem 4.1 holds. Thus, for the random-
connection model with g given by (5.3), the BK inequality holds for events A
and B living on U.

In a similar way, by considering Poisson point process on an enlarged space
S, one can prove the validity of BK inequality for other connection functions g,
e.g.,

g(x) = W {1 — (F; * F)(2)},

where F, Fy, ..., F} are probability distribution functions. We hope to return
to this problem.

6. Measurability of AL B

We briefly outline a proof of the fact that for any A,B € B, A U B is
measurable for any probability Py on (N, B). We first observe that (N, B) is
a standard Borel space — see Parthasarathy (1967), p. 133 for the definition.
Indeed N, = {N € N : N(S) = k} can be identified with the set of distinct

k-tuples in the cartesian product S*. As N, € B and N = UNk’ it is not
k>0
difficult to see that (N, B) is standard Borel. If K C S is Borel and A € B then

{(N,N"): N'(E)=N(E)WE €S,ECK x[0,00], N € A/ N" ¢ A}
is a Borel subset of N’ x A/ and its projection to the first coordinate is precisely
{N:NecA|Nlg ¢ A}.

Thus this set is analytic (see Parthasarathy (1967), p. 16) and hence measurable
w.r.t. any probability Py on (N, B). In particular for any A, B € B and Borel
sets K, L C S the set

{N :[N]k C A and [N]; C B}

is Py-measurable. Note that in our framework S = U x [0,00). Denote by C
subsets of S of the form V' x [0,00) where V is a rational rectangle intersected
with U. Running K, L over the countable class of disjoint pairs of finite unions
of sets in C we observe that ALl B, given by (4.3), is Ps-measurable.
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