REMARKS ON BELL'S INEQUALITY FOR SPIN CORRELATIONS

By K. BALASUBRAMANIAN*
J.C. GUPTA
and
K.R. PARTHASARATHY*
*Indian Statistical Institute, New Delhi

Abstract

SUMMARY. It is shown that Bell's inequalities (1964) for spin correlations are sufficient for a correlation matrix of order ≤ 4 to be the correlation matrix of spin random variables in the classical sense. However, they are not sufficient for matrices of order ≥ 5. Every correlation matrix is realized as a quantum correlation matrix of spin variables.

1. Introduction

A random variable ξ on a probability space is called a spin variable if $P(\xi=$ 1) $=P(\xi=-1)=\frac{1}{2}$. If $\left\{\xi_{i}, 1 \leq i \leq n\right\}$ is a family of spin variables and $\mathbb{E} \xi_{i} \xi_{j}=\sigma_{i j}$ so that $\sigma_{i i}=1$, for every i, then the well-known Bell's inequalities (See Bell, 1964; Parthasarathy, 1992 and Varadarajan, 1985) can be expressed in the form

$$
\begin{equation*}
1+\epsilon_{i} \epsilon_{j} \sigma_{i j}+\epsilon_{j} \epsilon_{k} \sigma_{j k}+\epsilon_{k} \epsilon_{i} \sigma_{k i} \geq 0 \quad \forall i<j<k \leq n \tag{1.1}
\end{equation*}
$$

where $\epsilon_{1}, \epsilon_{2}, \ldots, \epsilon_{n}$ are ± 1.
It is not difficult to construct real non-negative definite matrices $\Sigma=\left(\left(\sigma_{i j}\right)\right)$, $1 \leq i, j \leq n$, satisfying $\sigma_{i i}=1$ for every i but not (1.1). Thus there arises the natural problem of finding simple verifiable conditions on Σ in order to ensure that it is the correlation matrix of n spin variables. Here we shall find such necessary and sufficient conditions when $n=3$ or 4 . We also obtain a characterisation of all correlation matrices of n exchangeable spin variables.

By using the observables of a fermion field obeying the canonical anticommutation relations it is possible to realize any non-negative matrix with diagonal entries unity as the correlation matrix of spin observables.

Paper received. September 1997.
AMS (1991) subject classification: 62 H 20 .
Key words and phrases. Bell's inequality, spin correlations,fermion Fock space.

2. Preliminaries

Let $\left\{\xi_{i}, 1 \leq i \leq n\right\}$ be spin observables. For any $S \subset\{1,2, \ldots, n\}$ define

$$
\begin{gathered}
p_{S}=P\left\{\xi_{i}=-1 \quad \forall i \in S, \quad \xi_{j}=1 \quad \forall j \notin S\right\} \\
\sigma_{S}= \begin{cases}\mathbb{E} \prod_{i \in S} \xi_{i} & \text { if } S \neq \phi, \\
1 & \text { otherwise } .\end{cases}
\end{gathered}
$$

Denote by $|S|$ the cardinality of S. We call the map $\sigma: S \rightarrow \sigma_{S}$ from subsets of $\{1,2, \ldots, n\}$ into $[-1,1]$ the multiple correlation map of the spin variables $\left\{\xi_{i}, 1 \leq i \leq n\right\}$.

By definition

$$
\begin{equation*}
\sigma_{S}=\sum_{T \subset\{1,2, \ldots, n\}}(-1)^{|S \cap T|} p_{T} \tag{2.1}
\end{equation*}
$$

Since $\left(\left((-1)^{|S \cap T|}\right)\right), \quad S, T \subset\{1,2, \ldots, n\}$ is a $2^{n} \times 2^{n}$ orthogonal matrix it follows, in particular, that

$$
\begin{equation*}
p_{T}=2^{-n} \sum_{S \subset\{1,2, \ldots, n\}}(-1)^{|S \cap T|} \sigma_{S} \tag{2.2}
\end{equation*}
$$

From (2.1) and (2.2) we conclude immediately the following:
Proposition 2.1. Let $\sigma: S \rightarrow \sigma_{S}$ be a mapping from the space of all subsets of $\{1,2, \ldots, n\}$ into the closed interval $[-1,1]$ such that $\sigma_{\phi}=1, \quad \sigma_{\{i\}}=0 \quad \forall i$. Then σ is a multiple correlation map of n spin variables if and only if

$$
\begin{equation*}
\sum_{S \subset\{1,2, \ldots, n\}}(-1)^{|S \cap T|} \sigma_{S} \geq 0 \quad \forall \quad T \subset\{1,2, \ldots, n\} . \tag{2.3}
\end{equation*}
$$

We shall now prove the following:
THEOREM 2.2. Let $\Sigma=\left(\left(\sigma_{i j}\right)\right), 1 \leq i, j \leq 3$ be a real symmetric matrix with $\sigma_{i i}=1 \quad \forall i$. Then Σ is the correlation matrix of three spin variables if and only if

$$
\begin{align*}
& \min \left\{1+\sigma_{12}+\sigma_{23}+\sigma_{31}, 1-\sigma_{12}+\sigma_{23}-\sigma_{31}\right. \\
& \left.1-\sigma_{12}-\sigma_{23}+\sigma_{31}, 1+\sigma_{12}-\sigma_{23}-\sigma_{31}\right\} \geq 0 \tag{2.4}
\end{align*}
$$

Proof. Necessity: This is immediate from (1.1).
Sufficiency: Choose any real number δ such that $|\delta|$ does not exceed the left hand side of the inequality (2.4). Define the map $S \rightarrow \sigma_{S}$ on the space of subsets of $\{1,2,3\}$ by

$$
\sigma_{\phi}=1, \sigma_{\{i\}}=0, \sigma_{\{i, j\}}=\sigma_{i j}, i \neq j, \quad \sigma_{\{1,2,3\}}=\delta .
$$

Let $q_{T}:=\sum_{S \subset\{1,2,3\}}(-1)^{|S \cap T|} \sigma_{S}$. Then by the choice of δ we have

$$
\begin{gathered}
q_{\phi}=1+\sigma_{12}+\sigma_{23}+\sigma_{31}+\delta \geq 0 \\
q_{\{1\}}=1-\sigma_{12}-\sigma_{13}+\sigma_{23}-\delta \geq 0 \\
q_{\{2\}}=1-\sigma_{12}-\sigma_{23}+\sigma_{31}-\delta \geq 0 \\
q_{\{3\}}=1+\sigma_{12}-\sigma_{13}-\sigma_{23}-\delta \geq 0 \\
q_{\{1,2\}}=1+\sigma_{12}-\sigma_{13}-\sigma_{23}+\delta \geq 0 \\
q_{\{2,3\}}=1-\sigma_{12}-\sigma_{13}+\sigma_{23}+\delta \geq 0 \\
q_{\{1,3\}}=1-\sigma_{12}+\sigma_{13}-\sigma_{23}+\delta \geq 0 \\
q_{\{1,2,3\}}=1+\sigma_{12}+\sigma_{13}+\sigma_{23}-\delta \geq 0
\end{gathered}
$$

Now sufficiency is immediate from Proposition (2.1).
Proposition 2.3. Let $\sigma: S \rightarrow \sigma_{S}, \quad S \subset\{1,2, \ldots, n\}$ be a multiple correlation map for a family of n spin variables. Define the map $\tilde{\sigma}: S \rightarrow \tilde{\sigma}_{S}$ by

$$
\tilde{\sigma}_{S}=\left\{\begin{array}{llll}
\sigma_{S} & \text { if } & |S| & \text { is even } \\
0 & \text { if } & |S| & \text { is odd }
\end{array}\right.
$$

Then $\tilde{\sigma}$ is also a multiple correlation map for a family of n spin variables.
Proof. For any $T \subset\{1,2, \ldots, n\}$ denote by T^{\prime} its complement. By Proposition 2.1 we have

$$
\sum_{|S| \text { odd }}(-1)^{|S \cap T|} \sigma_{S}+\sum_{|S| \text { even }}(-1)^{|S \cap T|} \sigma_{S} \geq 0
$$

$$
\sum_{|S| \text { odd }}(-1)^{\left|S \cap T^{\prime}\right|} \sigma_{S}+\sum_{|S| \text { even }}(-1)^{\left|S \cap T^{\prime}\right|} \sigma_{S} \geq 0
$$

Adding the two and using the relation $|S|=|S \cap T|+\left|S \cap T^{\prime}\right|$ we get

$$
\sum_{|S| \text { even }}(-1)^{|S \cap T|} \sigma_{S} \geq 0
$$

or, equivalently,

$$
\sum_{S}(-1)^{|S \cap T|} \tilde{\sigma}_{T} \geq 0
$$

The required result is now immediate from Proposition 2.1.
Theorem 2.4. Let $\Sigma=\left(\left(\sigma_{i j}\right)\right), \quad 1 \leq i, j \leq 4, \quad \sigma_{i i}=1 \quad \forall i$. In order that Σ may be the correlation matrix of 4 spin variables it is necessary and sufficient that for any $1 \leq i<j<k \leq 4$

$$
\begin{align*}
& \min \left\{1+\sigma_{i j}+\sigma_{j k}+\sigma_{k i}, 1-\sigma_{i j}+\sigma_{j k}-\sigma_{k i}\right. \\
& \left.1-\sigma_{i j}-\sigma_{j k}+\sigma_{k i}, 1+\sigma_{i j}-\sigma_{j k}-\sigma_{k i}\right\} \geq 0 \tag{2.5}
\end{align*}
$$

Proof. Necessity is immediate from Theorem 2.2. To prove sufficiency it is enough to show the existence of a multiple correlation map $\sigma: S \rightarrow \sigma_{S}, \quad S \subset$ $\{1,2, \ldots, n\}$ for which $\sigma_{\phi}=1, \quad \sigma_{S}=0$ when $|S|$ is odd, $\sigma_{\{i, j\}}=\sigma_{i j}$ for $i \neq j$, and $\sigma_{\{1,2,3,4\}}=\delta$ is a suitable value. For such a map σ, the conditions $\sum_{S}(-1)^{|S \cap T|} \sigma_{S} \geq 0$ and $\sum_{S}(-1)^{\left|S \cap T^{\prime}\right|} \sigma_{S} \geq 0$ are equivalent. In view of Proposition 2.1 it is enough to choose δ so that (2.3) holds for $T=\phi,\{i\}, 1 \leq i \leq 4$, $\{1,2\},\{1,3\},\{1,4\}$. This reduces to the following eight inequalities:

$$
\begin{aligned}
& 1+\sigma_{12}+\sigma_{13}+\sigma_{14}+\sigma_{23}+\sigma_{24}+\sigma_{34}+\delta \geq 0, \\
& 1-\sigma_{12}-\sigma_{13}-\sigma_{14}+\sigma_{23}+\sigma_{24}+\sigma_{34}-\delta \geq 0, \\
& 1-\sigma_{12}+\sigma_{13}+\sigma_{14}-\sigma_{23}-\sigma_{24}+\sigma_{34}-\delta \geq 0, \\
& 1+\sigma_{12}-\sigma_{13}+\sigma_{14}-\sigma_{23}+\sigma_{24}-\sigma_{34}-\delta \geq 0, \\
& 1+\sigma_{12}+\sigma_{13}-\sigma_{14}+\sigma_{23}-\sigma_{24}-\sigma_{34}-\delta \geq 0, \\
& 1+\sigma_{12}-\sigma_{13}-\sigma_{14}-\sigma_{23}-\sigma_{24}+\sigma_{34}+\delta \geq 0, \\
& 1-\sigma_{12}+\sigma_{13}-\sigma_{14}-\sigma_{23}+\sigma_{24}-\sigma_{34}+\delta \geq 0, \\
& 1-\sigma_{12}-\sigma_{13}+\sigma_{14}+\sigma_{23}-\sigma_{24}-\sigma_{34}+\delta \geq 0,
\end{aligned}
$$

A detailed examination of these inequalities shows that this is equivalent to $|\delta| \leq \rho_{i j k}$ where $\rho_{i j k}$ denotes the left hand side of (2.5) for each $1 \leq i<j<k \leq$ 4. This completes the proof of sufficiency.

3. Exchangeable Spin Variables

A family $\left\{\xi_{i}, 1 \leq i \leq n\right\}$ of spin variables is said to be exchangeable if the joint distributions of $\left(\xi_{1}, \xi_{2}, \ldots, \xi_{n}\right)$ and $\left(\xi_{\pi(1)}, \xi_{\pi(2)}, \ldots, \xi_{\pi(n)}\right)$ are same for any permutation π of $\{1,2, \ldots, n\}$.

Proposition 3.1. Let $\left(\xi_{1}, \xi_{2}, \ldots, \xi_{n}\right)$ be an exchangeable sequence of spin variables for which $\mathbb{E} \xi_{i} \xi_{j}=\sigma$ for $i \neq j$. Then

$$
1 \geq \sigma \geq\left\{\begin{array}{cl}
-\frac{1}{n-1} & \text { if } n \text { is even } \tag{3.1}\\
-\frac{1}{n} & \text { if } n \text { is odd }
\end{array}\right.
$$

Conversely, for every σ satisfying (3.1) there exists an exchangeable sequence $\left(\xi_{1}, \xi_{2}, \ldots, \xi_{n}\right)$ of spin variables such that $\mathbb{E} \xi_{i} \xi_{j}=\sigma$ for all $i \neq j$.

Proof. Necessity: The non-negative definiteness of the correlation matrix

$$
\left(\begin{array}{ccccc}
1 & \sigma & \sigma & \cdots & \sigma \\
\sigma & 1 & \sigma & \cdots & \sigma \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\sigma & \sigma & \cdots & \sigma & 1
\end{array}\right)
$$

implies that its determinant $(1-\sigma)^{n-1}(1+\overline{n-1} \sigma)$ is non-negative. Since $\sigma \leq 1$ it follows that $1+\overline{n-1} \sigma \geq 0$ and therefore $\sigma \geq-\frac{1}{n-1}$. If n is odd then $\left|\xi_{1}+\cdots+\xi_{n}\right| \geq 1$. Thus

$$
1 \leq \mathbb{E}\left(\xi_{1}+\cdots+\xi_{n}\right)^{2}=n+(n-1) n \sigma
$$

which implies $\sigma \geq-\frac{1}{n}$, completing the proof of necessity.
To prove sufficiency, consider the uniform distribution of $\left(\xi_{1}, \xi_{2}, \ldots, \xi_{n}\right)$ with support in the set of all n-length sequences of ± 1 with exactly $\left[\frac{n}{2}\right]=m$ terms of one sign and the remaining $(n-m)$ terms of the opposite sign. Then $\left(\xi_{1}, \xi_{2}, \ldots, \xi_{n}\right)$ is an exchangeable sequence of spin variables with $\mathbb{E} \xi_{i} \xi_{j}=$ $-\frac{1}{n-1}$ if n is even and $-\frac{1}{n}$ if n is odd for $i \neq j$.

If $\xi_{1}=\xi_{2}=\cdots=\xi_{n}$ and $P\left(\xi_{1}=1\right)=P\left(\xi_{1}=-1\right)=\frac{1}{2}$ then $\left(\xi_{1}, \xi_{2}, \ldots, \xi_{n}\right)$ is an exchangeable sequence of spin variables with $\mathbb{E} \xi_{i} \xi_{j}=1$.

The space of all permutation invariant probability distributions in the set of all n-length sequences of ± 1 's is a convex set and the correlation $\mathbb{E} \xi_{1} \xi_{2}=\sigma$ is a continuous function on this convex set which assumes the values $-\frac{1}{n-1}$ and 1 when n is even and $-\frac{1}{n}$ and 1 when n is odd. Thus σ assumes every value in between and the proof of sufficiency becomes complete.

Remark. Proposition 3.1 shows that when $n \geq 5$, non-negative definiteness together with (2.5) is not sufficient for Σ to be the correlation matrix of n spin variables.

Spin observables with a pre-assigned correlation matrix. Till now we dealt with only classical spin variables. We shall now take a look at the case of spin observables in the sense of quantum mechanics. By a spin observable we mean a selfadjoint operator X in a Hilbert space with spectrum $\{-1,1\}$ together with a state ϱ such that X assumes the values -1 and 1 with probability $\frac{1}{2}$ each in the state ϱ.

Consider an arbitrary non-negative definite matrix $\Sigma=\left(\left(\sigma_{i j}\right)\right), \quad 1 \leq i, j \leq$ n with $\sigma_{i i}=1$ for every i and probably complex entries. Then it is possible to construct a Hilbert space \mathcal{H} of dimension at most n and unit vectors $u_{i} \in$ $\mathcal{H}, 1 \leq i \leq n$ such that $\sigma_{i j}=<u_{i}, u_{j}>$. (This is nothing but a special case of the GNS principle.) Consider the fermion Fock space $\Gamma(\mathcal{H})$ over \mathcal{H} with vacuum vector Φ and fermion annihilation operators $\{a(u), u \in \mathcal{H}\}$ so that the canonical anticommutation relations hold:

$$
\begin{aligned}
& a(u) \Phi=o \\
& a(u) a(v)+a(v) a(u)=o \\
& a(u) a^{\dagger}(v)+a^{\dagger}(v) a(u)=<u, v>
\end{aligned}
$$

for all $u, v \in \mathcal{H}$, where $a^{\dagger}(u)$ is the adjoint of $a(u)$ and called the fermion creation operator associated with u and a scalar times the identity operator is denoted by the scalar itself. (See Parthasarathy, 1992). Define the selfadjoint operator $F(u)=a(u)+a^{\dagger}(u)$.

Then

$$
F(u) F(v)+F(v) F(u)=2 R e<u, v>
$$

In particular, $F(u)^{2}=\|u\|^{2}$. Since $<\Phi, F(u) \Phi>=0$ it follows that $F(u)$ assumes the values $\|u\|$ and $-\|u\|$ with probability $\frac{1}{2}$ each in the vacuum state Φ. If $\|u\|=1, F(u)$ is a spin observable. In particular, $\left\{F\left(u_{i}\right), 1 \leq i \leq n\right\}$ is a family of spin observables satisfying

$$
\begin{aligned}
<\Phi, F\left(u_{i}\right) F\left(u_{j}\right) \Phi> & =<a^{\dagger}\left(u_{i}\right) \Phi, a^{\dagger}\left(u_{j}\right) \Phi> \\
& =<u_{i}, u_{j}> \\
& =\sigma_{i j}
\end{aligned}
$$

Thus we have realized $\Sigma=\left(\left(\sigma_{i j}\right)\right)$ as a quantum correlation matrix of n spin observables.

For any unitary operator U in \mathcal{H} its second quantization $\Gamma(U)$ is a unitary operator in $\Gamma(\mathcal{H})$ satisfying $\Gamma(U) \Phi=\Phi, \Gamma(U) F(u) \Gamma(U)^{-1}=F(U u)$. Now consider the case $\sigma_{i j}=\sigma$ for all $i \neq j$. A permutation of $\left\{u_{i}, 1 \leq i \leq n\right\}$ yields the unitary operator U in \mathcal{H} and its second quantization $\Gamma(U)$ permutes the operators $\left\{F\left(u_{i}\right), 1 \leq i \leq n\right\}$ by conjugation. This shows that for any distinct $i_{1}, i_{2}, \ldots, i_{k},<\Phi, F\left(u_{i_{1}}\right) F\left(u_{i_{2}}\right) \cdots F\left(u_{i_{k}}\right) \Phi>$ is independent of the set $\left\{i_{1}, i_{2}, \ldots, i_{k}\right\}$ when k is fixed between 1 and n. In fact, it is not difficult to see that for distinct $i_{1}, i_{2}, \ldots, i_{k}$ one has

$$
<\Phi, F\left(u_{i_{1}}\right) F\left(u_{i_{2}}\right) \cdots F\left(u_{i_{k}}\right) \Phi>= \begin{cases}\sigma^{k / 2} & \text { if } k \text { is even } \\ 0 & \text { if } k \text { is odd }\end{cases}
$$

Thus $\left\{F\left(u_{i}\right), 1 \leq i \leq n\right\}$ may be considered to be exchangeable in a quantum probability sense.

Acknowledgement. The authors thank R.B. Bapat for fruitful discussions.

References

Bell J.S. (1964). On the Einstein-Podolsky-Rosen paradox, Physics 1 195-200.
Parthasarathy K.R. (1992). An Introduction to Quantum Stochastic Calculus, Birkhauser Verlag, Basel.

Varadarajan V.S. (1985). Geometry of Quantum Theory, 2nd edition. Springer Verlag, Berlin.
K.Balasubramanian \& K.R.Parthasarathy

Indian Statistical Institute
7, S.J.S. Sansanwal Marg
New Delhi 110016
India
email : bsmn@isid.ernet.in krp@isid.ernet.in
J.C. Gupta

32, Mirdha Tola
Budaun 243601
Uttar Pradesh
India

