Sankhyā: The Indian Journal of Statistics 1998, Volume 60, Series A, Pt. 1, pp. 29-35

REMARKS ON BELL'S INEQUALITY FOR SPIN CORRELATIONS

By K. BALASUBRAMANIAN* J.C. GUPTA

and

K.R. PARTHASARATHY* *Indian Statistical Institute, New Delhi

SUMMARY. It is shown that Bell's inequalities (1964) for spin correlations are sufficient for a correlation matrix of order ≤ 4 to be the correlation matrix of spin random variables in the classical sense. However, they are not sufficient for matrices of order ≥ 5 . Every correlation matrix is realized as a quantum correlation matrix of spin variables.

1. Introduction

A random variable ξ on a probability space is called a *spin variable* if $P(\xi = 1) = P(\xi = -1) = \frac{1}{2}$. If $\{\xi_i, 1 \leq i \leq n\}$ is a family of spin variables and $\mathbb{E} \xi_i \xi_j = \sigma_{ij}$ so that $\sigma_{ii} = 1$, for every *i*, then the well-known Bell's inequalities (See Bell, 1964; Parthasarathy, 1992 and Varadarajan, 1985) can be expressed in the form

$$1 + \epsilon_i \epsilon_j \sigma_{ij} + \epsilon_j \epsilon_k \sigma_{jk} + \epsilon_k \epsilon_i \sigma_{ki} \ge 0 \quad \forall i < j < k \le n \qquad \dots (1.1)$$

where $\epsilon_1, \epsilon_2, \ldots, \epsilon_n$ are ± 1 .

It is not difficult to construct real non-negative definite matrices $\Sigma = ((\sigma_{ij}))$, $1 \leq i, j \leq n$, satisfying $\sigma_{ii} = 1$ for every *i* but not (1.1). Thus there arises the natural problem of finding simple verifiable conditions on Σ in order to ensure that it is the correlation matrix of *n* spin variables. Here we shall find such necessary and sufficient conditions when n = 3 or 4. We also obtain a characterisation of all correlation matrices of *n* exchangeable spin variables.

By using the observables of a fermion field obeying the canonical anticommutation relations it is possible to realize any non-negative matrix with diagonal entries unity as the correlation matrix of spin observables.

Paper received. September 1997.

AMS (1991) subject classification: 62H20.

Key words and phrases. Bell's inequality, spin correlations, fermion Fock space.

2. Preliminaries

Let $\{\xi_i, 1 \le i \le n\}$ be spin observables. For any $S \subset \{1, 2, ..., n\}$ define

$$p_S = P\{\xi_i = -1 \quad \forall \ i \in S, \quad \xi_j = 1 \quad \forall \ j \notin S\}$$

$$\sigma_S = \begin{cases} \mathbb{E} & \prod_{i \in S} \xi_i & \text{if } S \neq \phi, \\ 1 & \text{otherwise.} \end{cases}$$

Denote by |S| the cardinality of S. We call the map $\sigma : S \to \sigma_S$ from subsets of $\{1, 2, \ldots, n\}$ into [-1, 1] the *multiple correlation map* of the spin variables $\{\xi_i, 1 \leq i \leq n\}$.

By definition

$$\sigma_S = \sum_{T \subset \{1, 2, \dots, n\}} (-1)^{|S \cap T|} p_T. \qquad \dots (2.1)$$

Since $(((-1)^{|S\cap T|}))$, $S,T \in \{1,2,\ldots,n\}$ is a $2^n \times 2^n$ orthogonal matrix it follows, in particular, that

$$p_T = 2^{-n} \sum_{S \subset \{1, 2, \dots, n\}} (-1)^{|S \cap T|} \sigma_S. \qquad \dots (2.2)$$

From (2.1) and (2.2) we conclude immediately the following:

PROPOSITION 2.1. Let σ : $S \to \sigma_S$ be a mapping from the space of all subsets of $\{1, 2, \ldots, n\}$ into the closed interval [-1, 1] such that $\sigma_{\phi} = 1$, $\sigma_{\{i\}} = 0 \quad \forall i$. Then σ is a multiple correlation map of n spin variables if and only if

$$\sum_{S \subset \{1, 2, \dots, n\}} (-1)^{|S \cap T|} \sigma_S \ge 0 \quad \forall \quad T \subset \{1, 2, \dots, n\}.$$
 (2.3)

We shall now prove the following:

THEOREM 2.2. Let $\Sigma = ((\sigma_{ij})), 1 \leq i, j \leq 3$ be a real symmetric matrix with $\sigma_{ii} = 1 \quad \forall i$. Then Σ is the correlation matrix of three spin variables if and only if

$$\min\{1 + \sigma_{12} + \sigma_{23} + \sigma_{31}, 1 - \sigma_{12} + \sigma_{23} - \sigma_{31}, 1 - \sigma_{12} - \sigma_{23} + \sigma_{31}, 1 + \sigma_{12} - \sigma_{23} - \sigma_{31}\} \ge 0.$$
(2.4)

PROOF. Necessity: This is immediate from (1.1).

Sufficiency: Choose any real number δ such that $|\delta|$ does not exceed the left hand side of the inequality (2.4). Define the map $S \to \sigma_S$ on the space of subsets of $\{1, 2, 3\}$ by

$$\sigma_{\phi} = 1, \sigma_{\{i\}} = 0, \sigma_{\{i,j\}} = \sigma_{ij}, \ i \neq j, \quad \sigma_{\{1,2,3\}} = \delta.$$

Let $q_T := \sum_{S \subset \{1,2,3\}} (-1)^{|S \cap T|} \sigma_S$. Then by the choice of δ we have $q_{\phi} = 1 + \sigma_{12} + \sigma_{23} + \sigma_{31} + \delta \ge 0,$

$$\begin{split} q_{\{1\}} &= 1 - \sigma_{12} - \sigma_{13} + \sigma_{23} - \delta \geq 0, \\ q_{\{2\}} &= 1 - \sigma_{12} - \sigma_{23} + \sigma_{31} - \delta \geq 0, \\ q_{\{3\}} &= 1 + \sigma_{12} - \sigma_{13} - \sigma_{23} - \delta \geq 0, \\ q_{\{1,2\}} &= 1 + \sigma_{12} - \sigma_{13} - \sigma_{23} + \delta \geq 0, \\ q_{\{2,3\}} &= 1 - \sigma_{12} - \sigma_{13} + \sigma_{23} + \delta \geq 0, \\ q_{\{1,3\}} &= 1 - \sigma_{12} + \sigma_{13} - \sigma_{23} + \delta \geq 0, \\ q_{\{1,2,3\}} &= 1 + \sigma_{12} + \sigma_{13} + \sigma_{23} - \delta \geq 0, \end{split}$$

Now sufficiency is immediate from Proposition (2.1).

PROPOSITION 2.3. Let $\sigma : S \to \sigma_S$, $S \subset \{1, 2, ..., n\}$ be a multiple correlation map for a family of n spin variables. Define the map $\tilde{\sigma} : S \to \tilde{\sigma}_S$ by

$$\tilde{\sigma}_{S} = \begin{cases} \sigma_{S} & if \quad |S| \quad is \ even \\ 0 & if \quad |S| \quad is \ odd. \end{cases}$$

Then $\tilde{\sigma}$ is also a multiple correlation map for a family of n spin variables.

PROOF. For any $T \subset \{1, 2, ..., n\}$ denote by T' its complement. By Proposition 2.1 we have

$$\sum_{\substack{|S| \text{ odd}}} (-1)^{|S\cap T|} \sigma_S + \sum_{\substack{|S| \text{ even}}} (-1)^{|S\cap T|} \sigma_S \ge 0,$$
$$\sum_{\substack{|S| \text{ odd}}} (-1)^{|S\cap T'|} \sigma_S + \sum_{\substack{|S| \text{ even}}} (-1)^{|S\cap T'|} \sigma_S \ge 0.$$

Adding the two and using the relation $|S| = |S \cap T| + |S \cap T'|$ we get

$$\sum_{S|\text{even}} (-1)^{|S \cap T|} \sigma_S \ge 0$$

or, equivalently,

$$\sum_{S} (-1)^{|S \cap T|} \tilde{\sigma}_T \ge 0.$$

The required result is now immediate from Proposition 2.1.

THEOREM 2.4. Let $\Sigma = ((\sigma_{ij})), \quad 1 \leq i, j \leq 4, \quad \sigma_{ii} = 1 \quad \forall i.$ In order that Σ may be the correlation matrix of 4 spin variables it is necessary and sufficient that for any $1 \leq i < j < k \leq 4$

$$\min\{1 + \sigma_{ij} + \sigma_{jk} + \sigma_{ki}, 1 - \sigma_{ij} + \sigma_{jk} - \sigma_{ki}, 1 - \sigma_{ij} - \sigma_{jk} + \sigma_{ki}, 1 + \sigma_{ij} - \sigma_{jk} - \sigma_{ki}\} \ge 0 \qquad \dots (2.5)$$

PROOF. Necessity is immediate from Theorem 2.2. To prove sufficiency it is enough to show the existence of a multiple correlation map $\sigma: S \to \sigma_S$, $S \subset \{1, 2, \ldots, n\}$ for which $\sigma_{\phi} = 1$, $\sigma_S = 0$ when |S| is odd, $\sigma_{\{i,j\}} = \sigma_{ij}$ for $i \neq j$, and $\sigma_{\{1,2,3,4\}} = \delta$ is a suitable value. For such a map σ , the conditions $\sum_{S} (-1)^{|S \cap T|} \sigma_S \geq 0$ and $\sum_{S} (-1)^{|S \cap T'|} \sigma_S \geq 0$ are equivalent. In view of Proposition 2.1 it is enough to choose δ so that (2.3) holds for $T = \phi$, $\{i\}$, $1 \leq i \leq 4$, $\{1,2\}, \{1,3\}, \{1,4\}$. This reduces to the following eight inequalities:

$$\begin{split} 1 + \sigma_{12} + \sigma_{13} + \sigma_{14} + \sigma_{23} + \sigma_{24} + \sigma_{34} + \delta &\geq 0, \\ 1 - \sigma_{12} - \sigma_{13} - \sigma_{14} + \sigma_{23} + \sigma_{24} + \sigma_{34} - \delta &\geq 0, \\ 1 - \sigma_{12} + \sigma_{13} + \sigma_{14} - \sigma_{23} - \sigma_{24} + \sigma_{34} - \delta &\geq 0, \\ 1 + \sigma_{12} - \sigma_{13} + \sigma_{14} - \sigma_{23} + \sigma_{24} - \sigma_{34} - \delta &\geq 0, \\ 1 + \sigma_{12} + \sigma_{13} - \sigma_{14} + \sigma_{23} - \sigma_{24} - \sigma_{34} - \delta &\geq 0, \\ 1 + \sigma_{12} - \sigma_{13} - \sigma_{14} - \sigma_{23} - \sigma_{24} + \sigma_{34} + \delta &\geq 0, \\ 1 - \sigma_{12} + \sigma_{13} - \sigma_{14} - \sigma_{23} + \sigma_{24} - \sigma_{34} + \delta &\geq 0, \\ 1 - \sigma_{12} - \sigma_{13} + \sigma_{14} + \sigma_{23} - \sigma_{24} - \sigma_{34} + \delta &\geq 0, \end{split}$$

A detailed examination of these inequalities shows that this is equivalent to $|\delta| \leq \rho_{ijk}$ where ρ_{ijk} denotes the left hand side of (2.5) for each $1 \leq i < j < k \leq 4$. This completes the proof of sufficiency.

3. Exchangeable Spin Variables

A family $\{\xi_i, 1 \leq i \leq n\}$ of spin variables is said to be *exchangeable* if the joint distributions of $(\xi_1, \xi_2, \ldots, \xi_n)$ and $(\xi_{\pi(1)}, \xi_{\pi(2)}, \ldots, \xi_{\pi(n)})$ are same for any permutation π of $\{1, 2, \ldots, n\}$.

PROPOSITION 3.1. Let $(\xi_1, \xi_2, \ldots, \xi_n)$ be an exchangeable sequence of spin variables for which $\mathbb{E} \ \xi_i \xi_j = \sigma \text{ for } i \neq j$. Then

$$1 \ge \sigma \ge \begin{cases} -\frac{1}{n-1} & \text{if } n \text{ is even,} \\ -\frac{1}{n} & \text{if } n \text{ is odd.} \end{cases}$$
(3.1)

Conversely, for every σ satisfying (3.1) there exists an exchangeable sequence $(\xi_1, \xi_2, \ldots, \xi_n)$ of spin variables such that $\mathbb{E} \ \xi_i \xi_j = \sigma$ for all $i \neq j$.

PROOF. Necessity: The non-negative definiteness of the correlation matrix

$$\left(\begin{array}{cccccc} 1 & \sigma & \sigma & \cdots & \sigma \\ \sigma & 1 & \sigma & \cdots & \sigma \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \sigma & \sigma & \cdots & \sigma & 1 \end{array}\right)$$

implies that its determinant $(1 - \sigma)^{n-1}(1 + \overline{n-1} \sigma)$ is non-negative. Since $\sigma \leq 1$ it follows that $1 + \overline{n-1} \sigma \geq 0$ and therefore $\sigma \geq -\frac{1}{n-1}$. If n is odd then $|\xi_1 + \cdots + \xi_n| \geq 1$. Thus

$$1 \le \mathbb{E} (\xi_1 + \dots + \xi_n)^2 = n + (n-1)n\sigma$$

which implies $\sigma \geq -\frac{1}{n}$, completing the proof of necessity.

To prove sufficiency, consider the uniform distribution of $(\xi_1, \xi_2, \ldots, \xi_n)$ with support in the set of all *n*-length sequences of ± 1 with exactly $\left[\frac{n}{2}\right] = m$ terms of one sign and the remaining (n - m) terms of the opposite sign. Then $(\xi_1, \xi_2, \ldots, \xi_n)$ is an exchangeable sequence of spin variables with \mathbb{E} $\xi_i \xi_j = -\frac{1}{n-1}$ if *n* is even and $-\frac{1}{n}$ if *n* is odd for $i \neq j$.

If $\xi_1 = \xi_2 = \cdots = \xi_n$ and $P(\xi_1 = 1) = P(\xi_1 = -1) = \frac{1}{2}$ then $(\xi_1, \xi_2, \dots, \xi_n)$ is an exchangeable sequence of spin variables with $\mathbb{E} \ \xi_i \xi_j = 1$.

The space of all permutation invariant probability distributions in the set of all n-length sequences of ± 1 's is a convex set and the correlation $\mathbb{E} \ \xi_1 \xi_2 = \sigma$ is a continuous function on this convex set which assumes the values $-\frac{1}{n-1}$ and 1 when n is even and $-\frac{1}{n}$ and 1 when n is odd. Thus σ assumes every value in between and the proof of sufficiency becomes complete.

REMARK. Proposition 3.1 shows that when $n \ge 5$, non-negative definiteness together with (2.5) is not sufficient for Σ to be the correlation matrix of n spin variables.

Spin observables with a pre-assigned correlation matrix. Till now we dealt with only classical spin variables. We shall now take a look at the case of spin observables in the sense of quantum mechanics. By a *spin observable* we mean a selfadjoint operator X in a Hilbert space with spectrum $\{-1,1\}$ together with a state ρ such that X assumes the values -1 and 1 with probability $\frac{1}{2}$ each in the state ρ .

Consider an arbitrary non-negative definite matrix $\Sigma = ((\sigma_{ij})), \quad 1 \leq i, j \leq n$ with $\sigma_{ii} = 1$ for every *i* and probably complex entries. Then it is possible to construct a Hilbert space \mathcal{H} of dimension at most *n* and unit vectors $u_i \in \mathcal{H}, 1 \leq i \leq n$ such that $\sigma_{ij} = \langle u_i, u_j \rangle$. (This is nothing but a special case of the GNS principle.) Consider the fermion Fock space $\Gamma(\mathcal{H})$ over \mathcal{H} with vacuum vector Φ and fermion annihilation operators $\{a(u), u \in \mathcal{H}\}$ so that the canonical anticommutation relations hold:

$$\begin{aligned} a(u)\Phi &= o\\ a(u)a(v) + a(v)a(u) &= o\\ a(u)a^{\dagger}(v) + a^{\dagger}(v)a(u) &= < u, v > \end{aligned}$$

for all $u, v \in \mathcal{H}$, where $a^{\dagger}(u)$ is the adjoint of a(u) and called the fermion creation operator associated with u and a scalar times the identity operator is denoted by the scalar itself. (See Parthasarathy, 1992). Define the selfadjoint operator $F(u) = a(u) + a^{\dagger}(u)$.

Then

$$F(u)F(v) + F(v)F(u) = 2 Re < u, v > .$$

In particular, $F(u)^2 = ||u||^2$. Since $\langle \Phi, F(u)\Phi \rangle = 0$ it follows that F(u) assumes the values ||u|| and -||u|| with probability $\frac{1}{2}$ each in the vacuum state Φ . If ||u|| = 1, F(u) is a spin observable. In particular, $\{F(u_i), 1 \leq i \leq n\}$ is a family of spin observables satisfying

$$\langle \Phi, F(u_i) F(u_j) \Phi \rangle = \langle a^{\dagger}(u_i)\Phi, a^{\dagger}(u_j)\Phi \rangle$$

= $\langle u_i, u_j \rangle$
= $\sigma_{ij}.$

Thus we have realized $\Sigma = ((\sigma_{ij}))$ as a quantum correlation matrix of n spin observables.

For any unitary operator U in \mathcal{H} its second quantization $\Gamma(U)$ is a unitary operator in $\Gamma(\mathcal{H})$ satisfying $\Gamma(U)\Phi = \Phi, \Gamma(U)F(u)\Gamma(U)^{-1} = F(Uu)$. Now consider the case $\sigma_{ij} = \sigma$ for all $i \neq j$. A permutation of $\{u_i, 1 \leq i \leq n\}$ yields the unitary operator U in \mathcal{H} and its second quantization $\Gamma(U)$ permutes the operators $\{F(u_i), 1 \leq i \leq n\}$ by conjugation. This shows that for any distinct $i_1, i_2, \ldots, i_k, < \Phi, F(u_{i_1})F(u_{i_2}) \cdots F(u_{i_k})\Phi >$ is independent of the set $\{i_1, i_2, \ldots, i_k\}$ when k is fixed between 1 and n. In fact, it is not difficult to see that for distinct i_1, i_2, \ldots, i_k one has

$$<\Phi, F(u_{i_1})F(u_{i_2})\cdots F(u_{i_k})\Phi>= \begin{cases} \sigma^{k/2} & \text{if } k \text{ is even} \\ 0 & \text{if } k \text{ is odd.} \end{cases}$$

Thus $\{F(u_i), 1 \leq i \leq n\}$ may be considered to be exchangeable in a quantum probability sense.

Acknowledgement. The authors thank R.B. Bapat for fruitful discussions.

References

BELL J.S. (1964). On the Einstein-Podolsky-Rosen paradox, Physics 1 195-200.

PARTHASARATHY K.R. (1992). An Introduction to Quantum Stochastic Calculus, Birkhauser Verlag, Basel.

VARADARAJAN V.S. (1985). *Geometry of Quantum Theory*, 2nd edition. Springer Verlag, Berlin.

K.Balasubramanian & K.R.Parthasarathy Indian Statistical Institute 7, S.J.S. Sansanwal Marg New Delhi 110016 India email : bsmn@isid.ernet.in krp@isid.ernet.in J.C. GUPTA 32, Mirdha Tola Budaun 243601 Uttar Pradesh India