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SUMMARY. Uniform approximations for families of stochastic integrals of Rubin-Fisk-Stratonovich

type and Ito type are studied. It is shown that the approximants of Rubin-Fisk-Stratonovich

type obtained from partitions of equal size converge faster to the corresponding stochastic

integral than the approximants of Ito type for such partitions converge to the correspond-

ing stochastic integral. Methods used for the study of families of stochastic integrals are of

independent interest.

1. Introduction

In view of the extensive use of stochastic integrals and stochastic differential
equations in modeling of systems in engineering, and economic systems espe-
cially in mathematical finance and other applied problems, it is necessary to find
whether there are good approximants to the stochastic integrals and the stochas-
tic differential equations which can be used for simulation purposes. Some work
in the area of approximations for the stochastic differential equations is in Rao et
al. (1974) and Milshtein (1978). More recently, Kloeden and Platen (1992) gives
a comprehensive discussion on the numerical solution of stochastic differential
equations.

Our aim in this paper is to study the uniform approximations for families of
stochastic integrals both of the Ito type and Rubin-Fisk-Stratonovich type. The
problem is of major interest especially when modelling is done by a stochastic
differential equation involving unknown parameters and the uniform approx-
imation of the stochastic integrals involved becomes important for simulation
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purposes. The problem is of importance not only from the probabilistic point
of view but also from the statistical modelling purpose due to its applications
in statistical inference for stochastic processes (cf. Prakasa Rao (1997)). An
earlier version of this paper appeared as Prakasa Rao and Rubin (1979). As far
as the authors are aware, there are no articles dealing with the uniform aspect
of the problem till now. We show that the standard approximants of Rubin-
Fisk-Stratonovich integral converge under some conditions to the corresponding
stochastic integral faster than the Ito approximants to the corresponding Ito-
stochastic integral. Further we obtain uniform bounds in probability for the
errors in approximating families of stochastic integrals. Our method is similar
to the one used in Prakasa Rao and Rubin (1981) in the study of the large
sample theory for estimation for parameters in non-linear stochastic differential
equations.

2. Approximation of a Stochastic Integral

Consider the Ito stochastic differential equation

dX(t) = a(X(t))dt + dW (t), 0 ≤ t ≤ T, X(0) = X0 . . . (2.1)

where {W (t)} is the standard Wiener process,
(A1) a(·) satisfies the Lipschitz and growth conditions i.e.,

|a(x)− a(y) ≤ L|x− y|,

|a(x)| ≤ L(l + |x|)

for some constant L > 0, and
(A2) E[X8

0 ] < ∞.
In addition, suppose that
(A3) f(·) is a real valued function with bounded first and second derivatives

and E[f2(X0)] < ∞.
It is well known that the equation has a unique solution {X(t)} under the

Condition (A1). Suppose that {(X(t)} is a stationary process. Conditions for the
existence of a stationary solution are given in Gikhman and Skorokhod (1972).
Then

I ≡
T∫

0

f(X(t))dW (t)

exists as an Ito-integral almost surely under (A3) and

I = lim
n→∞

n∑
i=1

f(X(ti))[W (ti+1)−W (ti)],
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where πn : 0 = t1 < . . . < tn+1 = T is a subdivision of [0, T ] such that ∆n =
norm of πn = max{|ti+1 − ti| : 1 ≤ i ≤ n} tends to zero as n → ∞, and lim
denotes limit in quadratic mean. If

lim
n→∞

n∑
i=1

{
f(X(ti)) + f(X(ti+1))

2

}
[W (ti+1)−W (ti)]

exists as ∆n → 0, then one obtains the Rubin-Fisk-Stratonovich integral here
after denoted by

S ≡
T∫

0

f(X(t))dW (t).

It can be checked that the integral S exists as defined above under the con-
dition (A3) following Stratonovich (1966).

We now obtain the rate of approximation for stochastic integrals of the type
S for integrands of the form f(X(t)) where {X(t), 0 ≤ t ≤ T} is a stationary
solution of a Ito stochastic differential equation.

Let

Sπn =
n∑

i=1

{
f(X(ti)) + f(X(ti+1))

2

}
[W (ti+1)−W (ti)].

We shall now estimate E|Sπn − S|2 to obtain the rate of convergence. Let
ti = (i − 1)T/n, 1 ≤ i ≤ n + 1. Throughout this paper, C denotes a generic
constant.

Let π′n be a partition, finer than πn, obtained by choosing the mid point t̃i
from each of the intervals ti < t̃i < ti+1, i = 1, . . . , n. Let 0 = t′1 < t′2 < . . . <
t′2n+1 = T be the points of subdivision of the refined partition π′n. Define the
approximating sum Sπ′n as before. We shall first obtain bounds on E|Sπn

−Sπ′n |
2

to get bounds on E|Sπn
− S|2.

Let 0 ≤ t∗0 < t∗1 < t∗2 ≤ T be three points in [0, T ] and let us denote X(t∗i )
by Xi and W (t∗i ) by Wi. Define

Z ≡
{

f(X2)+f(X0)
2

}
(W2 −W0)−

{(
f(X2)+f(X1)

2

)
(W2 −W1)

+
(

f(X1)+f(X0)
2

)
(W1 −W0)

}
=

(
W1−W0

2

)
(f(X2)− f(X1)) +

(
W2−W1

2

)
(f(X0)− f(X1)).

. . . (2.2)

Clearly

f(X2)− f(X1) = (X2 −X1)f ′(X1) + 1
2 (X2 −X1)2f ′′(µ)

= (W2 −W1 + I2)f ′(X1) + 1
2 (X2 −X1)2f ′′(µ) . . . (2.3)
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and
f(X0)− f(X1) = (X0 −X1)f ′(X1) + 1

2 (X0 −X1)2f ′′(ν)

= −(W1 −W0 + I1)f ′(X1) + 1
2 (X0 −X1)2f ′′(ν)

. . . (2.4)

where |X1 − µ| ≤ |X2 −X1|, |X1 − ν| ≤ |X0 −X1| and

I1 =
t∗1∫
t∗0

a(X(t))dt, I2 =
t∗2∫
t∗1

a(X(t))dt. . . . (2.5)

Equations (2.2) to (2.4) show that

Z =
(

W1−W0
2

)
I2f

′(X1) +
(

W1−W0
4

)
(X2 −X1)2f ′′(µ)

−
(

W2−W1
2

)
I1f

′(X1) +
(

W2−W1
4

)
(X1 −X0)2f ′′(ν).

. . . (2.6)

Let
J1 = (W1 −W0)

(
I2
2 f ′(X1) + (X2−X1)

2

4 f ′′(µ)
)

. . . (2.7)

and
J2 = (W2 −W1)

(
I1f ′(X1)

2 + (X1−X0)
2

4 f ′′(ν)
)

. . . . (2.8)

Clearly
E(Z2) ≤ 2(E(J2

1 ) + E(J2
2 )). . . . (2.9)

Furthermore, the J2’s, corresponding to different subintervals of [0, T ] generated
by πn, form a martingale difference sequence and the J1’s corresponding to dif-
ferent subintervals of [0, T ] generated by πn form a reverse martingale difference
sequence.

Observe that

E(J2
2 ) = E(W2 −W1)2E

(
I1f ′(X1)

2 + (X1−X0)
2

4 f ′′(ν)
)2

≤ C E(W2 −W1)2{E(I2
1 ) + E(X1 −X0)4}

. . . (2.10)

for some constant C > 0 by the boundedness of derivatives of f and by the
Cr-inequality. Note that there exists C > 0 such that

E(X1 −X0)4 ≤ C(E(X4
0 ) + 1)(t∗1 − t∗0)

2 . . . (2.11)

by Theorem 4 of Gikhman and Skorokhod (1972) p.48 and

E(I2
1 ) = E

(
t∗1∫
t∗0

a(X(t))dt

)2

≤ (t∗1 − t∗0)E

(
t∗1∫
t∗0

a2(X(t))dt

)

≤ 2L(t∗1 − t∗0)
2 E(1 + |X0|2)

. . . (2.12)
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by stationarity of the process {X(t)}.
Relations (2.10) - (2.12) prove that

E(J2
2 ) ≤ C(t∗2 − t∗1)(t

∗
1 − t∗0)

2 . . . (2.13)

for some constant C > 0 independent of t∗0, t∗1 and t∗2. Let us now estimate
E(J2

1 ). Note that

E(J2
1 ) = E

[
(W1 −W0)

{
I2f ′(X1)

2 + (X2−X1)
2

4 f ′′(µ)
}]2

= E

[
(W1 −W0)2

{
I2f ′(X1)

2 + (X2−X1)
2

4 f ′′(µ)
}2
]

≤
[
E(W1 −W0)4E

{
I2f ′(X1)

2 + (X2−X1)
2

4 f ′′(µ)
}4
]1/2

(by Cauchy-Schwartz inequality)

≤ C(t∗1 − t∗0)[E{I4
2 + (X2 −X1)8}]1/2

. . . (2.14)

for some constant C > 0, by the boundedness of derivatives of f, Cr-inequality
and the fact that E(W1 −W0)4 = 3(t∗1 − t∗0)

2. Note that there exists a constant
C > 0 such that

E(X2 −X1)8 ≤ C(t∗2 − t∗1)
4 . . . (2.15)

by Theorem 4 of Gikhman and Skorokhod (1972), p. 48. Furthermore, it is easy
to check that

E(I4
2 ) = E

[
t∗2∫
t∗1

a(X(t))dt

]4

≤ L4E

[
t∗2∫
t∗1

(1 + |X(t)|)dt

]4

≤ 4L4(t∗2 − t∗1)
4E(|+ |X(0)|4)

. . . (2.16)

by the stationarity of the process {X(t)}. Relations (2.15) and (2.16) prove that

E(J2
1 ) ≤ C(t∗1 − t∗0)(t

∗
2 − t∗1)

2 . . . (2.17)

for some constant C > 0 independent of t∗0, t∗1 and t∗2. Inequalities (2.13) and
(2.17) prove that there exists a constant C > 0 independent of t∗0, t∗1 and t∗2 such
that

E(J2
i ) ≤ C(t∗2 − t∗0)

3, i = 1, 2. . . . (2.18)

Using the property that J2’s corresponding to different subintervals form a
martingale difference sequence and Jl’s form a reverse martingale difference se-
quence, it follows that

E|Sπn
− Sπ′n |

2 ≤ C T 3

n2 . . . (2.19)
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for some constant C > 0.
Let {π(p)

n , p ≤ 0} be the sequence of partitions such that π
(i+1)
n is a refine-

ment of π
(i)
n by choosing the midpoints of subintervals generated by π

(i)
n . Note

that π
(0)
n = πn and π

(1)
n = π′n. The analysis given above proves that

E|Sπn(p)− Sπn(p + 1)|2 ≤ C T 3

2pn2 , p ≥ 0 . . . (2.20)

where Sπn(p) is the approximant corresponding to π
(p)
n and Sπn(0) = Sπn .

Therefore

E|Sπn
− Sπn

(p + 1)|2 ≤ {
p∑

k=0

(E|Sπn
(k)− Sπn

(k + 1)|2)1/2}2

≤

{
p∑

k=0

(
CT 3

2kn2

)1/2
}2

≤ C T 3

n2

. . . (2.21)

for all p ≥ 0. Let p → ∞. Since the integral S exists, Sπn(p + 1) converges
in quadratic mean as p → ∞. Note that {πn(p + 1), p ≥ 0} is a sequence of
partitions such that the norms of the partition tends to zero as p →∞ for any
fixed n. Therefore

E|Sπn − S|2 = O(n−2), . . . (2.22)

where

S = lim
n→∞

Sπn
=

T∫
0

f(X(t))dW (t).

We have the following result.

Theorem 2.1. Let {X(t), 0 ≤ t ≤ T} be a stationary stochastic process
satisfying the Ito stochastic differential equation (2.1). Suppose the conditions
(A1), (A2) and (A3) hold. Define Sπn

as given above as an approximation for
the Rubin-Fisk-Stratonovich integral S of f(X(t)) with respect to the Wiener
process on [0, T ]. Suppose πn is a sequence of equidistant partitions. Then
E|Sπn

− S|2 = O(n−2).

On the other hand, let us consider

Iπn
=

n∑
i=1

f(X(ti))[W (ti+1)−W (ti)]

as an approximating sum for the Ito integral

I =

T∫
0

f(X(t))dW (t).
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Remarks. It can be easily shown that

E|Iπn − I|2 = O(n−1) . . . (2.23)

by arguments analogous to those given above and by noting that {Iπn , n ≥ 1}
is a martingale. It is sufficient to assume the existence and boundedness of first
derivative of f in this case.

In other words, the sequence of Rubin-Fisk-Stratonovich approximating sums
converge to the corresponding Rubin-Fisk-Stratonovich integral faster than the
sequence of Ito approximating sums converge to the corresponding Ito integral.
The assumption about the equidistant partition is not essential for the result.
However, smoothness of f and stationarity of the process X(·) are crucial for
the method adapted here for obtaining the rates.

3. Uniform Equi-continuity of Ito Stochastic Integrals
Indexed by a Parameter

Let us now consider a family of stochastic integrals

I(θ) =
T∫
0

f(X(t), θ)dW (t), θ ∈ [−1, 1], . . . (3.1)

where f(X, θ) is differentiable with respect to θ and the partial derivative fθ is
Lipschitz in θ of order α > 0 i.e.,

|fθ(x, φ1)− fθ(x, φ2)| ≤ g(x)|φ1 − φ2|α . . . (3.2)

with
E[g2(X(0))] < ∞, . . . (3.3)

and {X(t), 0 ≤ t ≤ T} is the stationary process satisfying (2.1).
We shall suppose that {I(θ), θ ∈ [−1, 1]} is separable. It is easy to see from

(3.2) that

E|f(X(t), θ) − 1
2{f(X(t), θ + ε) + f(X(t), θ − ε)}|2

≤ 1
4ε2+2αE[g2(X(t))]

. . . (3.4)

for every ε > 0. Let πn : 0 = t1 < t2 < . . . < tn+1 = T be a partition of [0, T ].
Denote X(tk) by Xk and ∆Wk = W (tk+1)−W (tk). Define

Iπn(θ) =
n∑

k=1

f(Xk, θ)∆Wk. . . . (3.5)
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Note that Iπn(θ) is an approximating sum for the Ito stochastic integral I(θ)
defined by (3.1). Let

Qπn(θ, ε) = Iπn(θ)− 1
2
[Iπn(θ + ε) + Iπn(θ − ε)].

Relation (3.4) implies that

E[Qπn
(θ, ε)]2 ≤ 1

4ε2+2α

n∑
i=1

E[g2(Xi)](ti+1 − ti)

≤ CTε2+2α

. . . (3.6)

for some C > 0 by the stationarity of {X(t)}. In view of the remarks made in
the Appendix, f(x, θ) can be expanded in the form

f(x, θ) =
∞∑

i=0

2i∑
j=1

λij(x)qij(θ)

where
λ00 = 1

λij(x) = f(x,−1 +
2j − 1

2i
)− 1

2
{f(x,−1 +

j − 1
2i−1

) + f(x,−1 +
j

2i−1
)}

for 1 ≤ j ≤ 2i, i ≥ 1 and qij ’s are as defined in the Appendix. Furthermore,
for any θ, at most only one of qij ’s is non-zero. It is obvious from the fact that
{X(t)} is a stationary process that

E(λ2
ij(X(0))) ≤ C2−(2+2α)i for 1 ≤ j ≤ 2i . . . (3.7)

and hence

P (max1≤j≤2i |λij(X(0))| ≥ εi) ≤ C2−(1+2α)iε−2
i . . . . (3.8)

Let ε > 0 and εi = εA2−τi where A = (1− 2−τ ) and α < τ < 1+2α
2 . Then

∞∑
i=1

P ( max
1≤j≤2i

|λij(X(0))| ≥ εi) ≤ C

∞∑
i=1

2−(1+2α−2τ)i ε−2A−2 = Cε−2 . . . (3.9)

for some constant C > 0. Therefore, by the Borel-Cantelli lemma, it follows
that for any ε > 0,

max
1≤j≤2i

|λij(X(0))| ≤ εA2−τi

for sufficiently large i with probability one and by the stationarity of the process
X(t),

max1≤j≤2i |λij(X(t))| ≤ εA2−τi, 0 ≤ t ≤ T . . . (3.10)
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for sufficiently large i with probability one.
Let {πn} be a sequence of partitions such that the norm of {πn} tends to

zero as n →∞ and define Iπn(θ) by (3.5). Note that

Iπn
(θ) =

∑
k

{
∑

i

∑
j

λij(Xk)qij(θ)}∆Wk

=
∑

i

∑
j

{
∑

k

λij(Xk)∆Wk}qij(θ)

=
∑

i

∑
j

Rijqij(θ),

. . . (3.11)

where
Rij =

∑
k

λij(Xk)∆Wk. . . . (3.12)

Now, for any εi > 0,

P (max
j
|Rij | > εi) ≤ 1

ε2
i

2i∑
j=1

E(R2
ij)

=
1
ε2

i

2i∑
j=1

{
n∑

k=1

E(λ2
ij(Xk))(tk+1 − tk)}

=
T

ε2
i

2i∑
j=1

E(λ2
ij(X0)) (by stationarity)

≤ T

ε2
i

C2−(2+2α)i2i (by (3.7))

=
CT

ε2
i

2−(1+2α)i.

Let εi = ε2−τi where α < τ < 1+2α
2 . Then

∞∑
i=1

P (max
j
|Rij | > εi) ≤ CT

ε2

∞∑
i=1

1
2(1+2α−2τ)i

≤ C

ε2
< ∞.

Hence, by the Borel-Cantelli Lemma, it follows that

max1≤j≤2i |Rij | ≤ ε2−τi . . . (3.13)
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for sufficiently large i with probability one. For any fixed i, at most one of the
qij(θ) is non-zero and if θ and φ are such that |θ − φ| < δ, then θ and φ are in
adjacent intervals of size 1

2i , if i is sufficiently large. Hence it follows that

sup
|θ−φ|<δ

|Iπn
(θ)− Iπn

(φ)| ≤
∑

i

{ max
i≤j≤2i

|Rij |} ≤
∑

i

ε2−τi ≤ Cε

for some constant C > 0 with probability approaching one. Therefore, for every
ε > 0,

limδ→0 limn→∞ P (sup|θ−φ|≤δ |Iπn(θ)− Iπn(φ)| ≥ ε) = 0. . . . (3.14)

Note that Iπn
(θ) → I(θ) in probability for every θ ∈ [−1, 1]. Let F be any finite

set of θ’s in [−1, 1]. it is clear that, for any ε > 0, there exist N1 and N2 and
δ > 0 such that

P (max
θ∈F

|Iπn(θ)− I(θ)| ≥ ε

3
) <

ε

3

for n ≥ N1 and

P

(
sup

|θ−φ|≤δ

|Iπn
(θ)− Iπn

(φ)| ≥ ε

3

)
<

ε

3

for n ≥ N2 (independent of F ) by (3.14). Let N = max(N1, N2). It is now easily
seen that

P ( sup
|θ−φ|≤δ
θ,φ∈F

|I(θ)− I(φ)| ≥ ε)

≤ P

(
sup
θ∈F

|I(θ)− Iπn
(θ)| ≥ ε

3

)
+ P

(
sup
φ∈F

|I(φ)− IπN
(φ)| ≥ ε

3

)

+P

 sup
|θ−φ|≤δ
θ,φ∈F

|IπN
(θ)− IπN

(φ)| ≥ ε

3


< ε,

for any finite set F of θ’s in [−1, 1]. As an immediate consequence, it follows
that

P

 sup
|θ−φ|≤δ
θ,φ∈K

|I(θ)− I(φ)| ≥ ε

 < ε

for any countable set K of θ’s in [−1, 1]. By the sep of the process, it follows
that

P

(
sup

|θ−φ|≤δ

|I(θ)− I(φ)| ≥ ε

)
< ε.
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Hence the process {I(θ), θ ∈ [−1, 1]} is uniformly equicontinuous in probability
and we have the following result.

Theorem 3.1. Suppose {X(t), 0 ≤ t ≤ T} is a stationary stochastic process
satisfying the Ito Stochastic differential equation (2.1). Define I(θ) by (3.1).
Then the process {I(θ), θ ∈ [−1, 1]} is uniformly equicontinuous in probability
in the sense that for every ε > 0, there exists δ > 0 such that

P

(
sup

|θ−φ|≤δ

|I(θ)− I(φ)| ≥ ε

)
< ε.

4. Uniform Approximation of Families of Rubin-Fisk-Stratonovich
Stochastic Integrals

We shall now obtain uniform bounds in probability for the family of Rubin-
Fisk-Stratonovich stochastic integrals

S(θ) ≡
T∫
0

f(X(t), θ)dW (t), θ ∈ [−1, 1], . . . (4.1)

where {X(t), 0 ≤ t ≤ T} is the unique stationary solution of the Ito stochastic
differential equation

dX(t) = a(X(t))dt + dW (t), 0 ≤ t ≤ T, X(0) = X0.

Conditions for the existence of such a solution are given in Gikhman and Sko-
rokhod (1972). We assume that the following additional conditions hold :

(B1) f(x, θ) is differentiable with respect to x and θ with partial derivatives
fxθ(x, θ) and fxxθ(x, θ). Furthermore fxθ(x, θ) is Lipschitz in θ of order α > 1

2
and fxxθ(x, θ) is Lipschitz in θ of order α uniformly in x;

(B2) (i) |a(x)| ≤ L(1 + |x|), x ∈ R, (ii) |a(x) − a(y)| ≤ L|x − y|, x ∈ R for
some constant L > 0; and

(B3) E(X8
0 ) < ∞.

In view of the approximation discussed in the Appendix

f(x, θ) =
∑

i

∑
j

λij(x)qij(θ),

where qij(θ) is defined in the Appendix and

λij(x) = f(x,−1 +
2j − 1

2i
)− 1

2
{f(x,−1 +

j − 1
2i−1

) + f(x,−1 +
j

2i−1
)}
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for 1 ≤ j ≤ 2i, i ≥ 1. In particular

fx(x, θ) =
∑

i

∑
j

λ′ij(x)qij(θ) . . . (4.2)

and
fxx(x, θ) =

∑
i

∑
j

λ′′ij(x)qij(θ). . . . (4.3)

Let
πn : 0 = t−1 < t1 < t3 < . . . < t2n−1 < t2n+1 = T

be a partition of [0, T ] and

πn(1) : 0 = t−1 < t0 < t1 < t2 < t3 < . . . < t2n−1 < t2n < t2n+1 = T

be obtained from πn by taking the midpoints of the subintervals of πn i.e. t2k =
1
2 (t2k−1 + t2k+1), k = 0, 1, . . . , n. Let

Sπn
(θ) =

n∑
k=1

{
f(X(t2k+1), θ) + f(X(t2k−1), θ))

2

}
[W (t2k+1)−W (t2k−1)]

. . . (4.4)
and define Sπn(1)(θ) in a similar way. For simplicity, write

X(ts) = Xs and ∆Ws = W (ts)−W (ts−1) and ∆Xs = X(ts)−X(ts−1).

It is easy to see that

Sπn(θ)− Sπn(1)(θ =
∑

k

1
2
{f(X2k+1, θ)− f(X2k, θ)}∆W2k

+
∑

k

1
2
{f(X2k−1, θ)− f(X2k,θ)}∆W2k+1

=
∑

k

J1(X2k, θ) +
∑

k

J2(X2k, θ)

. . . (4.5)

where

J1(X2k, θ) = {1
2
I2(X2k)fx(X2k, θ) +

1
4
X2

2k+1fxx(µ2k, θ)}∆W2k, . . . (4.6)

J2(X2k, θ) = {1
2
I1(X2k)fx(X2k, θ) +

1
4
X2

2kfxx(ν2k, θ)}∆W2k+1, . . . (4.7)

I1(X2k) =

t2k∫
t2k−1

a(X(s))ds, . . . (4.8)
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and

I2(X2k) =

t2k+1∫
t2k

a(X(s))ds, . . . (4.9)

by arguments analogous to those in Section 2. Note that∑
k

J2(X2k, θ) = 1
2

∑
k

I1(X2k){
∑

i

∑
j

λ′ij(X2k)qij(θ)}∆W2k+1

+ 1
4

∑
k

∆X2
2k{
∑

i

∑
j

λ′′ij(ν2k)qij(θ}∆W2k+1

=
∑

i

∑
j

[
∑

k

{1
2
I1(X2k)λ′ij(X2k)∆W2k+1}]qij(θ)

+
∑

i

∑
j

[
∑

k

{1
4
∆X2

2kλ′′ij(ν2k)∆W2k+1}]qij(θ).

. . . (4.10)

Let
R

(1)
ij =

∑
k

I1(X2k)λ′ij(X2k)∆W2k+1 . . . (4.11)

and
R

(2)
ij =

∑
k

∆X2
2kλ′′ij(ν2k)∆W2k+1. . . . (4.12)

Suppose that i is sufficiently large so that there exists C > 0 and α < τ < 1+2α
2

such that |λ′ij(X(t))| ≤ C2−τi a.s. for all t. This is possible by arguments similar
to those used to derive (3.10). It is easy to see that |λ′′ij(x)| ≤ C2−αi for all x
by (B1). Hence

P (maxj |R(1)
ij | > εi) ≤ 1

ε2
i

2i∑
j=1

E(R(1)
ij )2

= 1
ε2

i

2i∑
j=1

{
∑

k

E(I1(X2k)λ′ij(X2k))2(t2k+1 − t2k)}

≤ C
ε2

i

2i∑
j=1

{
∑

k

E(I1(X2k)22−2τi(t2k+1 − t2k)}

= C
ε2

i

2i∑
j=1

2−2τi{
∑

k

(t2k − t2k−1)2(t2k+1 − t2k)}

. . . (4.13)
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by arguments similar to those used to derive (2.12). Therefore

P (max
j
|R(1)

ij | > εi) ≤
C

ε2
i

2(1−2τ)i
∑

k

(t2k+1 − t2k−1)3

for some constant C > 0.
Similarly

P (max
j
|R(2)

ij | > εi) ≤ 1
ε2

i

2i∑
j=1

E(R(2)
ij )2

=
1
ε2

i

2i∑
j=1

∑
k

{E(∆X2
2kλ′′ij(ν2k))2(t2k+1 − t2k)}

≤ C

ε2
i

2i∑
j=1

{
∑

k

E(∆X4
2k)2−2αi(t2k+1 − t2k)}

≤ C

ε2
i

2(1−2α)i
∑

k

(t2k+1 − t2k)(t2k − t2k−1)2

for some constant C > 0 by Theorem 4 of Gikhman and Skorokhod (1972), p.48.
Hence

P (max
j
|R(2)

ij | > εi) ≤
C

ε2
i

2(1−2α)i
∑

k

(t2k+1 − t2k−1)3. . . . (4.14)

Combining (4.10)-(4.14), we get that

P (sup
θ
|
∑

k

J2(X2k, θ)| >
∑

i

εi) ≤ C
∑

k

(t2k+1 − t2k)3
∞∑

i=1

2(1−2α)i

ε2
i

for some constant C > 0. Similar estimate can be obtained for the term∑
k

J1(X2k, θ)

by using the reverse martingale property of J1’s and the stationarity of the
process {X(t)}. Hence

P (sup
θ
|Sπn(θ)− Sπn(1)(θ)| ≤

∑
εi) ≤ C((

∑
k

(t2k+1 − t2k−1)3{
∞∑

i=1

2(1−2α)i

ε2
i

}.

Let γ be such that 0 < 2γ < 2α−1. Choosing εi = ε2−γi, we have the inequality

P (sup
θ
|Sπn(θ)− Sπn(1)(θ)| > εA) ≤ C

ε2

∑
k

(t2k+1 − t2k−1)3
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where A =
∑

i

2−iγ . Hence, if t2k+1 − t2k = T/n, then

P (sup
θ
|Sπn

(θ)− Sπn(1)(θ)| > εA) ≤ C

ε2

T 3

n2
.

Let {πn(p), p ≥ 0} be a sequence of partitions of [0, T ] as defined in Section
2. Then

P (sup
θ
|Sπn

(θ)− Sπn(p+1)(θ)| > ε) ≤ C

p∑
k=0

1
ε2

k(2k
n)2

,

where
∞∑

k=1

εk ≤ ε. Choosing εk suitably, we obtain that

P (sup
θ
|Sπn

(θ)− Sπn(p+1)(θ)| > ε) ≤ Cn−2ε−2, p ≥ 0.

Letting p →∞, we see that Sπn(θ)
p→ S(θ) uniformly in θ and

P (sup
θ
|Sπn

(θ)− S(θ)| > ε) ≤ Cn−2ε−2

for some positive constant C. In fact

E(sup
θ
|Sπn

(θ)− S(θ)|2) = O(
1
n2

)

by the arguments given earlier under the assumptions (B1), (B2) and (B3). We
have the following result.

Theorem 4.1. Let {X(t), 0 ≤ t ≤ T} be a stationary stochastic process
satisfying the stochastic differential equation (2.1). Let S(θ) be the Rubin-Fisk-
Stratonovich integral defined by (4.1) and suppose that conditions (B1)-(B3)
hold. Let Sπn(θ) be an approximating sum for S(θ) where {πn} is a sequence of
equidistant partitions. Then

E(sup
θ
|Sπn(θ)− S(θ)|2) = O(n−2).

Remarks. If one considers the Ito integral I(θ) given by (3.1) and the Ito
approximating sum defined by (3.5), then it can be shown that

E(sup
θ
|Iπn

(θ − I(θ)|2) = O(
1
n

)
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for the sequence of partitions defined above under the assumptions (B2), (B3)
and (B1)∗ given below :
(B1)∗ f(x, θ) is differentiable with respect to x and θ with partial derivative
fxθ(x, θ). Furthermore fxθ(x, θ) is Lipschitz in θ of order α > 1

2 uniformly in x.
Since the method of proof is similar to that given above, we omit the details.

Remarks. The techniques used in Section 2 of this paper have recently
been used in Mishra and Bishwal (1995) in their work on approximate maximum
likelihood estimation for diffusion processes from discrete observations based on
an unpublished earlier version of this paper (cf. Prakasa Rao and Rubin (1979)).

Appendix

Let h(θ) be continuous on [−1, 1]. We construct a family of functions qij(θ), 1 ≤
j ≤ 2i, i ≥ 0 as follows. Define

q00(0) = h(−1), qoo(1) = h(1)

and suppose that q00(·) is linear in [−1, 1]. For i ≥ 1, at the ith stage, divide
[−1, 1] into 2i equal intervals and define, for 1 ≤ j ≤ 2i,

qij(θ) = 0 if θ 6∈ (−1 +
j − 1
2i−1

, −1 +
j

2i−1
)

= 1 if θ = −1 +
2j − 1

2i

and qij(θ linear in the intervals

[−1 +
j − 1
2i−1

,−1 +
2j − 1

2i
] and [−1 +

2j − 1
2i

, −1 +
j

2i−1
].

Observe that at each stage exactly one of the q’s is non-zero for any given
θ ∈ [−1, 1]. Let

λ00 ≡ 1

and

λij = h(−2 +
2j − 1

2i
)− 1

2

{
h(−1 +

j − 1
2i−1

) + h(−1 +
j

2i−1
)
}

for 1 ≤ j ≤ 2i and i ≥ 1. Then

h(θ) =
∞∑

i=0

2i∑
j=1

λijqij(θ), θ ∈ [−1, 1].
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