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SUMMARY. The paper is concerned with the estimation problem for a proper block design

with recovery of inter-block information for which numerous procedures are available in the

literature with very little known about their relative merits. A desirable property, termed here

as goodness, of any such procedure is the natural requirement that it should not, under any

circumstances, lead to loss of efficiency compared to the usual procedure without recovery of

inter-block information. So far, this has been theoretically investigated only in the case of the

Yates-Rao procedure and yielded fragmentary results. The purpose of the present paper is to

supercede these results by providing the necessary and sufficient condition for goodness of the

Yates-Rao procedure in the case of any proper block design excluding the rare cases where the

application of the procedure without truncation of the estimated variance ratio can give rise

to a negative weight for the inter-block estimator.

1. Introduction

Yates (1939, 1940) initiated the subject of recovery of inter-block information
in the context of a cubic lattice (1939) and a BIBD (1940). His procedure was
adopted to PBIBD by Nair (1944) and modified and extended by Rao (1947) to
all proper block designs. The difference between Yates’ and Rao’s approach has
been discussed by Sprott (1956) and Fraser (1957). A general approach synthe-
sizing the two based on a canonical reduction to minimal sufficient statistics is
given in Roy and Shah (1962) and Bhattacharya (1981). Both Yates’ and Rao’s
procedures are based on estimates of intra-block and inter-block error variances
by the ANOVA method to which numerous alternatives have been developed by
others (see e.g., Tocher (1952), Roy and Shah (1962), Hartley and Rao (1967),
Cunningham and Henderson (1968) as corrected in Thompson (1969), Nelder
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(1968), Patterson and Thompson (1971) and Bhattacharya (1981)). However,
the motivation for recovery of inter-block information is to improve upon the
customary intra-block analysis. It is, therefore, natural to require that the ad-
ditional information from inter-block analysis should be used in such a way that
under no possible circumstances it leads to estimators which would be worse
than what we could obtain without using it. A procedure which satisfies this
natural requirement will be referred to as good in this paper. Ad-hoc procedures
which are good under appropriate conditions have been developed by many (see
e.g., Graybill and Deal (1959), Seshadri (1963a,b), Shah (1964), Brown and
Cohen (1974), Khatri and Shah (1974), Bhattacharya (1978, 1980, 1981) and
Kubokawa (1987)) but very little has been done so far to examine the goodness
of procedures based on various well-known general principles.

Yates (1939) was quite aware of the point raised above as is evident from
his attempt to establish the goodness of his procedure by numerical integration
in his very first paper on the subject. The procedure considered by him in this
connection was, however, a simplified version of that commonly associated with
his name and ignored the treatment component of the adjusted block sum of
squares. For the selected design and selected parameter values, his calculations
indicated that the procedure considered by him was good. Simulation studies
conducted by some authors (namely, El-Shaarawi et al. (1975), Khatri and Shah
(1975)) indicated similar results in the case of large designs considered in those
studies not only for the Yates-Rao procedure but also for two other procedures,
namely the maximum likelihood procedure (Roy and Shah (1962) and Hartley
and Rao (1967)) and its modification due to Patterson and Thompson (1971),
both derived as marginal procedures in El-Shaarawi et al. (1975). However,
numerical or simulation studies are not quite satisfactory for the purpose since,
leaving aside the question of accuracy, such studies can be carried out only for
selected designs at selected parameter points.

Some attempts to resolve the problem theoretically has been made by Shah
(1964), Bhattacharya (1978, 1981) and Kubokawa (1987) in the case of Yates-
Rao procedure. While Shah (1964) considered the subclass of D1-class designs
(defined in that paper) given by linked block designs introduced by Youden
(1951), Bhattacharya (1978) considered the complimentary subclass within D1-
class designs. Shah (1964) showed that for linked block designs (including sym-
metrical BIBD’s), Yates-Rao procedure is good if and only if number of blocks
exceeds six. There are many designs for which this condition fails (e.g., the
symmetrical BIBD with four treatments and three replications; several others,
which are not BIBD’s can be found in Roy and Laha (1956)). For the compli-
mentary subclass of D1-class designs, Bhattacharya (1978) obtained separately
(i) a sufficient condition and (ii) a necessary condition, which together resolved
the problem for all asymmetrical BIBD’s listed in Fisher and Yates (1963) with
the exception of one, namely the BIBD with parameters v = 5, b = 10, k = 2,
r = 4. His work revealed one more BIBD (asymmetrical BIBD with parame-
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ters v = 4, b= 6, k = 2, r= 3) for which the Yates-Rao procedure is not good.
Bhattacharya (1981) unified and extended the earlier results to all proper block
designs excluding the rare class for which either application of the Yates-Rao
procedure without truncation of the estimated variance ratio can give rise to a
negative weight for the inter-block estimator or the sum of the degrees of free-
dom for the inter-block error sum of squares and the dimension of the vector
space of all treatment contrasts estimable from both intra-block and inter-block
analyses is less than three. Kubokawa (1987) improved the sufficient condition
in Bhattacharya (1978) in the case of a BIBD and resolved the question of good-
ness of the Yates-Rao procedure favourably in the case of the exceptional BIBD
mentioned above.

In the present paper we derive the necessary and sufficient condition for
goodness of the Yates-Rao procedure applied to any proper block design for
which the Yates-Rao procedure without truncation of the estimated variance
ratio cannot give rise to a negative weight to the inter-block estimator. Any
proper block design for which the additional condition assumed in Bhattacharya
(1981) are violated are shown to be not good. The restricted class of designs to
which the necessary and sufficient condition applies includes all D1-class designs
and in particular all BIBD’s. It also includes most of the PBIB designs listed in
Clatworthy (1973).

2. Preliminaries

Consider a proper block design with n experimental units, divided into b
blocks of size k each for comparing v treatments using design matrices X and Z
for treatment and block factors, respectively. Let N and r denote the incidence
matrix and replication vector, respectively. Following Tocher (1952) we shall
write rδ (rδ/2) to denote diagonal matrices with ri (r1/2

i ) as diagonal elements.
δij will stand for Kronecker’s delta. The customary model for analysis of a block
design without recovery of inter-block information is given by

Y ∼ N(Xτ + Zβ, σ2I) . . . (2.1)

where Y = observed responses from experimental units and τ = treatment ef-
fects, β = block effects and σ2 are unknown. When recovery of inter-block
information is contemplated one usually assumes an Eisenhart model III (Eisen-
hart (1947)) as in Yates (1939, 1940) and Rao (1947) where β is a realization
of a random vector b such that Y given b=β follows (2.1) and b ∼ N(0, σ2

∗I).
Accordingly, one supplements the information on τ in (2.1) by

B ∼ N(N ′τ , k[1 + kρ∗]σ2I) . . . (2.2)

where B=block totals and ρ∗=σ2
∗/σ

2. Alternatively, one replaces (2.1) by
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Y ∼ N(Xτ , σ2[I + ρ∗ZZ ′]), ρ∗ > 0. . . . (2.3)

We assume here a generalization [Houtman and Speed (1983)] given by

Y ∼ N(Xτ ,
∑3

i=1 σ
2
i P i) . . . (2.4)

where P 1 = I − ZZ ′/k, P 2 = ZZ ′/k − 11′/n and P 3 = 11′/n. Observe that
(2.3) is a special case of (2.4) with σ2

1 = σ2 and σ2
2 = σ2

3 = σ2(1 + kρ∗) > σ2.
For i = 1, 2, let Xi = R′

iX,Y i = R′
iY , where Ri is a semi-orthogonal matrix

with column span identical with that of P i and note that Y i ∼ N(X ′τ , σ2
i I).

It can be seen that for the purpose of estimating treatment contrasts (2.1), (2.2)
and (2.4) are equivalent to the models of Y 1, Y 2 and (Y 1, Y 2), referred to as
models for intra-block, inter-block and combined analyses. We shall denote these
three models by M1, M2 and M and the corresponding estimates of a treatment
contrast θ by θ̃(1), θ̃(2) and θ̃. Si, ei will denote the error SS and error df for Mi.
Let Θ1, Θ2 and Θ denote the set of all treatment contrasts estimable from M1,
M2 and M respectively and let Θ∗ = Θ1

⋂
Θ2. Clearly, Θ = span(Θ1

⋃
Θ2) is

the space of all treatment contrasts. Furthermore, θ̃(1) for θ ∈ Θ1

⋂
Θ⊥
∗ and θ̃(2)

for θ ∈ Θ2

⋂
Θ⊥
∗ are optimal in the sense of being minimum variance unbiased.

Hence every θ ∈ Θ
⋂

Θ⊥
∗ admits optimal estimation and the problem of recovery

of inter-block information is essentially concerned with that of estimation of
θ ∈ Θ∗ for which no optimum solution is known. According to Yates’ approach
(crudely interpreted), θ ∈ Θ∗ would be estimated by a linear combination of θ̃(1)

and θ̃(2). The resulting estimator would agree with θ̃ given by Rao’s approach,
only for special cases of θ which, for obvious reasons, are of interest to us. The
following lemma clarifies the matter and motivates the definition that follows.

Lemma 2.1. Let θ ∈ Θ∗. Then θ̃ = (1 − α)θ̃(1) + αθ̃(2) for some α if and
only if θ=p′rδ/2τ for an eigenvector p of the matrix A=r−δ/2NN ′r−δ/2 and
then, α= λ/[λ + (1 − λ)ρ], where λ is the eigenvalue of A corresponding to p
and ρ=σ2

2/σ
2
1.

Definition 2.1. A treatment contrast θ = q′τ is called a basic contrast if
q=rδ/2p for some eigenvector p of A.

It can be seen that canonical contrasts defined in Roy and Shah (1962) as
well as their extension in Bhattacharya (1981) are basic. It is also interesting to
observe that in all instances of combining θ̃(1) and θ̃(2) for θ ∈ Θ∗ by Yates, θ
was a basic contrast. The term ‘basic contrast’ was introduced by Pearce et al.
(1974) where it refers to a contrast vector q ∈ Rv rather than the correspond-
ing treatment contrast q′τ and is used to clarify the computational methods
of Tocher (1952), Kuiper and Corsten [Kuiper(1952) and Corsten (1958)] and,
Wilkinson (1970) for intra-block and inter-block analyses in the general case of
a block design. It can be seen that all eigenvalues of A lie in the closed interval
[0,1] and that rδ/21v is an eigenvector of A corresponding to the eigenvalue 1.
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Let {p1, . . . ,pv} with pv =n−1/2rδ/21v be a complete set of orthonormal eigen-
vectors of A and let λi be the eigenvalue corresponding to the eigenvector pi.
Let θi = p′ir

δ/2τ , i= 1, . . . , v − 1. It can be seen that if θ is a basic contrast
belonging to the eigenspace of λ then, it is estimable from intra-block analysis
if and only if λ 6= 1 and from inter-block analysis if and only if λ 6= 0. Let
I={i : λi 6= 1}, J={i : λi 6= 0} and K=I ∩ J . Then it can be seen that

(θ̃(1)i )i∈I ∪ (θ̃(2)j )j∈J ∪ (S1, S2) is an array of independent elements

such that θ̃(1)i ∼ N(θi,
σ2
1

1−λi
), θ̃(2)j ∼ N(θj ,

σ2
2

λj
) and Sl ∼ σ2

l χ
2
el
,

. . . (2.5)

and is a minimal sufficient (but not complete) statistic forM [Graybill and Weeks
(1959), Roy and Shah (1962) and Bhattacharya (1981)]. Since (θ1 . . . θv−1) is
a basis for the space of all treatment contrasts consisting of basic contrasts
only, we can modify Yates’ approach by restricting its application to θi’s and
generating estimate of any other contrast from its linear representation in terms
of θi’s. This leads to a flexible class of procedures including variants of Rao’s
as well as others not covered by Rao’s approach, by removing the constraint on
α of Lemma 2.1 for combining intra-block and inter-block estimates of θ’s. Let
W =(Wj)j∈K where Wj =λj(1− λj)(θ̃

(2)
j − θ̃

(1)
j )2. Note that

(S1, S2)
⋃

W is an array of independent elements such that
Wj ∼ [λjσ

2
1 + (1− λj)σ2

2 ]χ2
1.

. . . (2.6)

Then it can be seen that every procedure (with appropriate modification in the
case of Yates’) of estimating treatment contrasts with recovery of inter-block
information proposed in the literature can be represented in the following way:

(i) It is determined by an array g=(gi)i∈K of measurable functions from Rs+2
+

to R.

(ii) Estimate θi’s by θ̂i =


θ̃
(1)
i if i ∈ I −K

θ̃
(2)
i if i ∈ J −K

θ̃
(1)
i + (θ̃(2)i − θ̃

(1)
i )gi(S1, S2,W ) if i ∈ K

.

(iii) Estimate an arbitrary treatment contrast θ=q′τ by θ̂=q′r−δ/2
∑v−1

i=1 piθ̂i.
In fact most procedures (including Yates-Rao and others using Rao’s approach
but differing in the method of estimation for ρ but excluding that in the last
paragraph of Stein (1966) and some in Brown and Cohen (1974)) proposed in
the literature use

gi =λi/[λi + (1− λi)g], i ∈ K . . . (2.7)

where g is a measurable function from Rs+2
+ to R such that g(S1, S2,W ) is the

prescribed estimator of ρ. For i ∈ K, let T i =(Ti,j)j∈K , i ∈ K where

Tij =Wj +δij [λjσ
2
1 +(1−λj)σ2

2 ]V∗ with V∗ ‖ (S1, S2,W ) and V∗ ∼ χ2
2, . . . (2.8)
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Gi =gi(S1, S2,T i) and γi =λi/[λi + (1− λi)ρ]. . . . (2.9)

Then the following is a basic result which is applicable to all procedures proposed
in the literature.

Theorem 2.1. Let {i, j} ⊆ K. Then
(i) E(θ̂i − θi)2 <∞⇔ EG2

i <∞⇒ Eθ̂i =θi.
(ii) max(EG2

i , EG
2
j ) <∞⇒ cov(θ̂i, θ̂j)=δijV (θ̃(1)i )[1 + E(G2

i /γi − 2Gi)].

Proof. Easy noting that E[f(S1, S2,W )Wi]=EWiE[f(S1, S2,T i)] for any
f [as in Lemma 2.2 of Brown and Cohen (1974) or statement (2.5) of Khatri
and Shah (1974)] by the identity “xh1(x) = h3(x)” where hm stands for the
chi-square density with m degrees of freedom and using Stein’s theorem [Stein
(1950)] [as in Lemma 6.1 of Roy and Shah (1962)].

In the following we shall refer to the procedure determined by g as g. The
procedure g=0 will be referred to as g0. G

(j)
i will denote the value of Gi when

g = gj . We then have, from Theorem 2.1, the following general theorem for
comparing two procedures.

Theorem 2.2. g1 is better than g2 for estimating θ = q′τ ∈ Θ iff (Ai):
E(G(1)

i − γi)2 ≤ E(G(2)
i − γi)2,∀i ∈ Kq ={i : q′r−δ/2pi 6= 0}. g1 is better than

g2 iff (Ai) holds ∀i ∈ K.

We now introduce :

Definition 2.2. The procedure g is good for θ ∈ Θ if g is better than g0

for estimating θ. g is good if g is good ∀θ ∈ Θ.
Let

Hi =Gi/γi and νi = inf
γi∈(0,1)

EHi/EH
2
i , i ∈ K. . . . (2.10)

Then, Theorem 2.2 implies

Theorem 2.3. g is good for θ=q′τ ∈ Θ iff (Bi): supγi∈(0,1)EH
2
i <∞ and

νi ≥ 1
2 ∀i ∈ Kq. g is good iff (Bi) holds ∀i ∈ K.

We conclude this section by quoting an inequality from Bhattacharya (1984).

Theorem 2.4. Suppose u, v, w are functions of random variables x1, · · · , xn

such that v is positive with a finite expectation and E(wv) > 0. Let ‘Erf ’
(r= 1 . . . n), denote the conditional expectation of f given (x1, · · · , xr). Let ‘f
SD h |xr’ mean that either both f and g are non-decreasing in xr or both are
non-increasing in xr. Let fr =Er(wv)/Erv and hr =Eru/Erv. Then

(i) fr SD hr |xr ∀r ≤ n⇒ E(wu)/E(wv) ≥ Eu/Ev

(ii) fr OD hr |xr ∀r ≤ n⇒ E(wu)/E(wv) ≤ Eu/Ev
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3. Results

For the Yates-Rao procedure the prescribed estimator of ρ is that obtained
by equating the error SS and adjusted block SS in the ANOVA for (2.1) to their
respective expectations under (2.3) or 1, whichever is larger [since ρ ≥ 1 under
(2.3) assumed by them]. The two SS involved can be easily seen to be same as
S1 and S2 +

∑
i∈K Wi respectively. Hence using (2.5) and (2.6) the prescribed

estimator of ρ is

g=max(1, g∗) with g∗=
−λ0S1 + e1(S2 +

∑
i∈K Wi)

(e2 + s− λ0)S1
. . . (3.1)

where λ0 =
∑

i∈K λi and s = #[K]. From (2.7) along with (3.1) gi’s for the
Yates-Rao procedure are given by

gi =1/max(λ−1
i , bi + ci(S2 +

∑
j∈K Wj)/S1) . . . (3.2)

where

bi =1− (λ−1
i − 1)λ0/(e2 + s− λ0) and ci =(λ−1

i − 1)e1/(e2 + s− λ0) . . . (3.3)

Let V1 = S1/σ
2
1 , V2 = S2/σ

2
2 , and Vij = Tij/[λjσ

2
1 + (1 − λj)σ2

2 ], j ∈ K. From
(2.8) note that

∑
j∈K Vij does not depend on i and let

V0 =V2 +
∑

j∈K Vij , V =V0/V1, Uij =Vij/V0 and Ui∗=
∑

j∈K λjUij . . . (3.4)

Then from (2.10) along with (2.9) and (3.2), we have

Hi =1/max(αi, R
−1
i ) . . . (3.5)

where

Ri =1/[dV (1− Ui∗)(1− αi) + {biλi + dV (1− λi)}αi] . . . (3.6)

with

d=e1/(e2 + s− λ0) and αi =γi/λi. . . . (3.7)

From (3.4) along with (2.5), (2.6) and (2.8) note that

V ‖ (Uij)j∈K , V ∼ fe2+s+2,e1 and (Uij)j∈K ∼ ds(
1
2
1′ + e′i,

1
2
e2) . . . (3.8)

where ei stands for the i-th column of Is. We shall use the following conditions:
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(C): e2 + s ≥ 3 and (Di): γi ≥ γ0/(e2 + s) for i ∈ K.
We first prove two lemmas which are applicable to any proper block design.

Lemma 3.1. Supγi∈(0,1)EH
2
i <∞⇒ (C).

Proof. From (3.5) and (3.6) note that

Hi → Fi a.s. where Fi =[dV (1− Ui∗)]−1. . . . (3.9)

Hence, if (C) does not hold then using (3.8) and Fatou’s lemma supγi∈(0,1)EH
2
i

≥ lim infγi→0EH
2
i ≥ EF 2

i =∞.

Lemma 3.2. EHi/EH
2
i ≥ 1 ∀γi ∈ [λi, 1).

Proof. Follows from 0 < Hi ≤ 1 ∀αi ≥ 1.

From now on, unless otherwise stated, we assume that both (C) and (Di)
hold and consider values of γi in (0, λi) so that αi ∈ (0, 1). From (3.3) note that

(Di) ⇔ bi ≥ 0 ⇒ Ri ≥ 0 ⇒ Hi =min(α−1
i , Ri). . . . (3.10)

Lemma 3.3. {H2
i : αi ∈ (0, 1)} is uniformly integrable.

Proof. From (3.10) and (3.6) note that (Di) ⇒ Hi ≤ Hi∗ ∀αi ∈ (0, 1) where
Hi∗=[dV min(1− Ui∗, 1− λi)]−1 is integrable by (3.8) along with (C).

Lemma 3.4. EFi > ERi ∀αi ∈ (0, 1).

Proof. We shall prove that (i)E(Fi/Ri) > 1 and (ii)EFi/ERi > E(Fi/Ri)
from which the desired result is obvious. To prove (i) note that Fi/Ri =1+(Di−
1)αi where Di = [1 − λi + biλi/(dV )]/(1 − Ui∗) and then using (3.3) and (3.8)
note also that EDi = [1 − λ0/(e2 + s)]E(1 − Ui∗)−1 > 1 since E(1 − Ui∗)−1 ≥
(1−EUi∗)−1 and by (3.8) and (Di), EUi∗=(λ0 +2λi)/(e2 +s+2) ≥ λ0/(e2 +s).
To prove (ii) apply Theorem 2.4 with n= 2, x1 =Ui∗, x2 = V, u=Fi/Ri, v=
1, w=Ri. We have f1 =E(Ri|Ui∗) ↑ Ui∗, h1 =E(Fi/Ri|Ui∗) ↑ Ui∗, f2 =Ri ↓ V
and h2 =Fi/Ri ↓ V which, by that theorem, imply (ii).

Lemma 3.5. infαi∈(0,1)[EHi/EH
2
i ]=infαi∈(0,1)ERi/ER

2
i =EFi/EF

2
i .

Proof. By (3.9) and Lemma 3.3, we have infαi∈(0,1)[EHi/EH
2
i ] ≤ limαi→0

[EHi/EH
2
i ]=EFi/EF

2
i . To complete the proof, we shall prove that EHi/EH

2
i

≥ ERi/ER
2
i ≥ EFi/EF

2
i which implies the reverse of the preceeding inequal-

ity. To prove the first inequality in the above statement apply Theorem 2.4
with n = 1, x1 = Ri, u = Ri, v = R2

i , w = Hi/Ri. Note that f1 = Hi/Ri =
min(R−1

i α−1
i , 1) ↓ Ri and h1 = Ri/R

2
i = R−1

i ↓ Ri. Hence by that theorem,
EHi/E(HiRi) ≥ ERi/ER

2
i which implies the desired inequality since Ri ≥ Hi

by (3.10). To prove the second inequality in that statement, we shall prove
(i)ER2

i /E(FiRi) ≤ ERi/EFi and (ii)EF 2
i /E(FiRi) ≥ EFi/ERi which imply

the desired inequality in view of Lemma 3.4. To prove (i) and (ii) apply The-
orem 2.4 with n= 2, x1 = Ui∗, x2 = V, u=Ri, v = Fi, w =Ri in the case of
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(i), and n= 2, x1 =Ui∗, x2 = V, u= Fi, v=Ri, w= Fi in the case of (ii). In
the first case, f1 = E(RiFi|Ui∗)/(Fi|Ui∗) = E[(dV )−1Ri|Ui∗]/E(dV )−1 ↑ Ui∗,
h1 =E(Ri|Ui∗)/E(Fi|Ui∗) = E[(dV )−1Ri/Fi|Ui∗]/E(dV )−1 ↓ Ui∗, f2 =Ri ↓ V
and h2 = Ri/Fi ↑ V . In the second case, f1 = E(FiRi|Ui∗)/E(Ri|Ui∗) =
E[(dV )−1Ri|Ui∗]/E[(dV )−1Ri/Fi|Ui∗] ↑ Ui∗, h1 = E(Fi|Ui∗)/E(Ri|Ui∗) ↑ Ui∗,
f2 =Fi ↓ V and h2 =Fi/Ri ↓ V . Hence, (i) and (ii) hold by that theorem.

Remarks 3.1. It was proved in Bhattacharya (1984) that if fα =1/[αx1+(1−
αx2)] where x1 and x2 are independent random variables such that max(Ex−2

1 ,
Ex−2

2 ) < ∞ and g(α) = Efα/Ef
2
α, then infα∈(0,1) g(α) = min[g(0), g(1)]. Al-

though the conjecture that the above result holds without the assumption of
independence still appears to be hard, the preceding Lemma is a nontrivial ex-
ample of the validity of the above result without the assumption of independence.

Let A0 =E(dV )−1/E(dV )−2, ψi =E(1−Ui∗)−1/E(1−Ui∗)−2 and note that

A0 =
{

[e1/(e2 + s− λ0)][(e2 + s− 2)/(e1 + 2)) if e2 + s ≥ 3
0 otherwise

Combining Lemmas 3.2 and 3.5, we have min(A0ψi, 1) ≤ νi ≤ A0ψi. Hence by
Theorem 2.3 along with Lemma 3.1. we have

Theorem 3.1. (i) For any proper block design and any θ ∈ Θ a necessary
condition for Yates-Rao procedure to be good for θ is that (C) holds.

(ii) If θ=q′τ ∈ Θ and (Di) holds ∀i ∈ Kq, then Yates-Rao procedure is good
for θ iff (Ei) : A0ψi ≥ 1

2 ∀i ∈ Kq

(iii) If (Di) holds ∀i ∈ K, then Yates-Rao procedure is good iff (Ei) holds
∀i ∈ K
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