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Abstraci— In this paper, a pipelined version of genetic al gorithm,
called PLGA, and a corresponding hardware platform are described.
The basic operations of conventional GA (CGA) are made pipelined
using an appropriate selection scheme. The selection operator, used
here, is stochastic in nature and is called SA-selection. This helps
maintaining the basic generational nature of the proposed pipelined
GA(PLGA). A number of benchmark problems are used to compare
the performances of comventional roulette-wheel selection and the
SA-selection. These include unimodal and multimodal functions with
dimensionality varving from very small to very large. It is seen that
the SA-selection scheme is giving comparable performances with
respect 1o the classical roulette-wheel selection scheme, for all the
instances, when quality of solutions and rate of convergence are con-
sidered. The speedups obtained by PLGA for different benchmarks
are found to be significant. It is shown that a complete hardware
pipeling can be developed vsing the proposed scheme, if parallel
evaluation of the fitness expression is possible. In this connection
a low-cost but very fast hardware evaluation unit is described.
Results of simulation experiments show that in a pipelined hardware
environment, PLGA will be much faster than CGA. In terms of
efficiency, PLGA is found to outperform parallel GA (PGA) also.

Kevwords— Hardware evaluation, Hardware pipeline, Optimiza-
tion, Pipelined genetic algorithm, 5A-selection.

[. INTRODUCTION

Genetic algorithm (GA) [ 1], [2] s known to be an effi cient
search and optimizaton technique which incorporates the
principles of evolution and natural selection. GA forms a
basic tool of a new field of research called Evolutionary
Computation [3], [4]. There have been several attempts [2],
[3]. [5]. [6] for reformulaton and customization of GAs.
Because of their parallel search capability, they form a class
of the most widely accepted technigques for solving complex
problems. For enhancing the capabilities of GAs, their inherent
parallelism can be exploited to develop parallel GAs. Several
parallel implementations of GA (PGA) exist in literature [6],
[71. [8]. [9], [1O9. [11], [12].

Most of these parallel methods maintain the basic serial
nature of GA operations. They simply divide the population
into a number of sub-populations and execute genetic opera-
tions for each of the sub-populations separately. After parallel
exccutions in all the processing units, at intervals of several
generations, the newly developed information regarding the
best solution chromosomes of these units are exchanged

through migration phase. Such kind of parallel execution
is supported by distributed processing environments or in a
multiprocessor system. It is however possible to attain the
speedup of a multiprocessor in a uniprocessor system if a
proper pipeline can be developed.

In this paper, the design of a pipelined genetic algorithm
(PLGA) is described that uses simulated annealing (SA)[13]
based SA-selection. This SA-selection scheme (explained in
Section II-A) eliminates the dependency for a complete pool
of candidate solutions required in conventional methods at the
selection stage and hence allows us to develop a pipeline using
the basic operations of GA. Use of SA-like selection functions
in GAs 15 not new [14], [15], [16], [17]. Goldberg [16]
proposed a Boltzmann Toumament selection. In [17], another
form of the SA-selection scheme has been used. Here, a simple
SA-selection scheme is used which is exactly similar to the
one used in conventional simulated annealing. A temperature
schedule, where the temperature varies as a function of the
generation number of GA, is defi ned. This temperature sched-
ule is described in Section III-A. The motivation behind using
the SA-selection scheme is to maintain the basic genertional
nature of the GA in its pipelined execution too. Some FPGA
based GA-pipeline can be found in literature [ 18], [19], [20],
where hinary tournament selection is used in such a way that
one achieves only a non-generational GA.

In order to demonstrate the effectiveness of the SA-selection
scheme, in comparison to the well known roulette-wheel selec-
tion scheme, simulation experiments are performed with vari-
ous functional optimization problems of varying complexities.
For these functional optimization problems, both unimodal and
multimodal functions with dimensionality varying from 1 to
125 are considered. The performance of PLGA, in terms of
rate of convergence, speedup and effi ciency, 15 compared with
conventional GA (CGA) and parallel GA (PGA).

It is realized that a pipelined algorithm can not be properly
used without a comesponding pipelined hardware. Recently,
rescarchers are trying to develop different hardware imple-
mentations of GAs [18]. [19]. [20]. [2]1]. In these schemes,
attempts are made to implement GA in FPGA platforms
which support reconfi gurable hardware design for selection,
crossover, mutation and evaluation parts. A major problem, in
this regard, is the peed to develop a new evaluation circuit for
each different problem. Sometimes this task may be very time
consuming and in some cases it may not be possible implement
the evaluation circuit due to some FPGA limitations. Hence,
one needs a general purpose hardware evaluation unit that can
be used for any optimizaton problem. One such evaluation
unit and its gemeralized versions are presented in [22], [23],



[24]. Use of this circuit can fulfi 1 the purpose of the proposed
pipelining scheme.

The organization of this paper is as follows. In Section 1T,
some conventional selection schemes and the seral genetic
algorithm are described. Section [T deseribes the S A-selection
method and the proposed pipelined genetic algorithm. In
Section IV, design of the pipeline is presented. A possible
hardware evaluation unit for GAs is described in Section V.
Section VI, deals with the selected benchmark functions and
experimental results. A conclusion i dmwn and direction to
further research is cited fi nally in Section VIL

IT. CONVENTIONAL GA AND SELECTION METHODS

In conventional GA (CGA), parameters of an optimization
problem, comesponding to a possible solution, are encoded to
form a chromosomes. A collection of % such chromosomes s
called a population or pool. The initial population is generated
randomly or using some domain specifi ¢ knowledge. The basic
operations of a serial GA are selection, crossover, mutation and
evaluation. The selection operation selects better chromosomes
from current generation pool for generating the next generation
pool. By crossover, features of two selected chromosomes
(mates) from the parent population are mtermixed o gen-
erate child chromosomes. Mutation is uwsed for fi ne tuning
the solutions. Crossover and mutation are done with certain
probabilities. The processes of selection through evaluation are
repeated for several generations until a stable pool of solutions
is found.

In parallel versions of GA (PGA), generally the population
15 divided into subpopulations. Each subpopulation is then as-
signed to one processor in a network of processors. Individual
processors execute CGA using their respective subpopulation,
and exchange genetic information (chromosomes) obtained
by them at specific intervals. Generally Master-Slave, Mesh
Connected or Cyclic processor networks are used for PGAs
[12]. The objective of PGAs is to benefit from both speedup
and guality of solutions points of views.

The selection operator is responsible for selection of the
fi ttest candidates (chromosomes) from the pool Pigl of the
current generation (y) in the population to be represented in
the pool Pip | 1] of the next generation (g | 1). Obviously,
selection of a chromosome depends on its fi gure of mert
toward optimization of the objective function. Here, two well
known selection schemes, commonly wvsed in conventional
GAs, are described briefly.

Roulette-wheel selection

This is the most commaon selection scheme. Here, a chromo-
some g with fi tness value %) from the current population
is selected based on the probability values () such that

Y
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Tournament selection

In tournament selection, we select the best chromosome out
of aset of some randomly chosen chromosomes from the pool.
This process is repeated % tmes, ¥ being the population size,
to create a completely new next gencration pool.

]

From the description of the above two schemes, it is clear
that both of them require a completely evaluated pool of
chromosomes before the selection process starts. When these
schemes are wsed, the operations of the genetic algorithm,
within a generation, becomes serial in nature and follows the
pseudo code given in Algorithm 1 below.

Algorithm 1 : Qutline of Serial genetic algorvithm.
begin
g=1
initialize population Fig)l;
evaluate chromosomes in Pig);
repeat
select N chromosomes to generate Py | 1] ;
crossover selected chromosomes pairwise;
mutate each crossed chromosome;
eviluate each mutated chromosome:
g g+l
until convergence;
end

From the above selection schemes and the senal genetic
algorithm, it is seen that the selection operation needs a fully
evaluated pool of chromosomes. Of course, this is true for
generational GAs only. In case of steady state and other non-
generational GAs the above restriction does not hold. In the
following section, a stochastic selection scheme is described
that allows us to pipeline a generational GA without affecting
any of its basic features.

ITI. SA-SELECTION SCHEME AND DESIGN OF PLGA

The SA-selection method which is generally used in simu-
lated annealing (SA)[13] is described below. In SAL at each it-
eration, an alternative solution ¥ is selected from a set of alter-
natives. The solution ¥ is accepted if f{v] < fix). where x is
the candidate solution selected in the previous step, otherwise
it will be accepted with probability exp [—{fi¥] — Flx))/T].
At each iteration of the process, the parameter (temperature)
T is reduced by a small amount. The above function is used
in the selection stage of PLGA. The selection method and the
pipelined genetic algorthm are described below.

A, Use af SA-selection for pipelining GA

In S A-selection method, a chromosome 3, with value f{x;)
is considered from a pool IPig) of generation ¢, and is selected
based on Boltzmann probability distribution function. Let,
fm,.f, be the fi mess value of the chromosome selected in the
most recent past. If the next chromosome is having fi tness
value fix;) such that fix) > fapp then it is selected.
Otherwise, it is selected with Boltemann probability

Fr = exp —{ fumep — Fl2:))/T)

where T' — 13,{l — a)* and & — {I00L]. g is the current
generation number, and its maximum value is represented by
r. The value of o« can be chosen from the interval [I]I, 'I}, and

(1)
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SAMPLE EXECUTION OF STOCHASTIC SELECTION
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T may be selected from the interval 15, 100]. These choices
are in the line with those in SA. From the above expression,
it is clear that the value of T will decrease exponentially or at
logarithmic rate with increase in g, and hence the value of the
probability My This is signifi cant in terms of convergence. As
computation proceeds toward ¥ = (), the fi nal state is reached,
i.e., a4 near-global solution is achieved at this point.

In comventional selection schemes, before starting the selec-
tion process, all the chromosomes in the earlier generations
must be evaluated. But evaluation is the most time consuming
process and is a bottleneck in attaining a pipeline of the
genetic operators. The new selection scheme eliminates this
bottleneck. One can express the new selection operator as a
function of the input chromosome [x]. Let, x.,, . be the fi tness
of the chromosome selected in most recent past. Then the
selection operator, expressed functionally, is

x ll {fx = f'rr.'.";.-}
Selerf(x) = ¢ x if {fa = finepd A (P = Pry)
Xarp i {fx £ frurp) A (Pr £ Pry)
where, I'v) = ravdomn 1,1}, Let us consider an example,
for describing the operation of the selection scheme, with a
population of size 6. Let, after the {3 — Lith gencration, the
fi mess value of the chromosome selected in most recent past
is 45.0). This valee is stored in the vanable _f,.m.r_. and is used
in generation & also. In any generation, the value of f,.,
is altered whenever a chromosome with a greater fi tness is
encountered (and selected). Note that, using elitist strategy,
one reserves the best chromosome, in a generation, along

with its fi tness value in the very first location of the pool of

chromosomes. Table T shows how chromosomes are selected
for generation g.

A pair of selected chromosomes may be used for crossover,
mutation, and evaluation and then put into the population pool
for the pext generation. When a chromosome is evaluated,
it is put into population pool along with its fi mess value
for the next generation. Thus the processes corresponding to
selection, crossover, mutaton and evaluation in a particular
generation can work simultaneously, in an overlapped fashion.
It is interesting to note that the generations are also overlapped.
This leads to reduction of appreciable amount of execution
time as compared to conventional GA. The pseudo code
showing the streamlined operations of selection, crossover,
mutation and evaluation, within a generation of PLGA, is
given in Algorithm 2 below. Note that in this algorthm, within
each generation, an inner loop is inserted which considers 2
chromosomes at a time and performs operations of GA over
them before the other chromosomes are taken into account.

Algorithm 2 : Outline of Pipelined genetic algovithm.

begin
n=1;
create initial pool Py and initialize temperature T

evaluate initial population;
repeat
for i — L to % in steps of 2 do
begin
select a pair of chromosomes from pool F(g);
cross the selected pair;
mutate the crossed pair;
evaluate the mutated pair and put in Pig + 17;
end
g g+ 1L
lower temperature I';
until convergence;
end

Mote that, unlike the senal CGA, in PLGA two chromosomes
are selected at a tme, instead of a complete set of N
chromosomes. Therefore, only two evaluated chromosomes
are needed for the selection operation to start. The restriction
of 2 chrosomes is implied by the fact that a crossover operation
requires two selected chromosomes.

B. Basic operators of the pipelined algorithm

Using the selection strategy mentioned above, the concept
of pipelining can be incorporated within the genetic algorithm
framework in order to make it faster. Let us call this algorithm
as pipelined genetic algorithm (PLGA). Note that it is possible
to implement this algorithm wsing appropriate hardware for
selection, crossover, mutation and evaluation operations. The
functional forms of selection, crossover and mutation opera-
tions of the PLGA are formulated below.

Selection operation:

As mentioned earlier, selection operation is responsible for
reproduction of better chromosomes from pool iy} into pool
Ply — 1 In case of PLGA, the pseudo code of Algorithm
3, for selection of pairs of chromosomes for the crossover
operation, is suggested .

Algorithm 3 : Selection procedure.

procedure selection(i, T')
begin
for j
begin
if { frnep - pool[g].fi tness) < 0
then select chromosome § from Pig)
and update [, © pool[f].6 tmess

itor+ 1 do

else
if exp [-{ finrp-pool[f1.6 mess) T = randorr]i), 1)
then select chromosome j from Fig)
and update _f,.m.p o pool[j].6 tness
else select chromosome comesponding to _f,,,,..;,
end
end



Crossover operation:

The crossover operation takes two selected chromosomes
(called parents) 3 and - from the current generation pool
gl and exchanges genetic informations between them to
produce two offspring (called child) ¢, and oz for the next
generation pool £{g+ L. Crossover takes place with a proba-
bility £,. In the present implementation, single point crossover
is used as mentioned in [25]. The crossover procedure is
provided in Algorithm 4 below.

Algorithm 4 : Crossover procedure.

procedure crossover(py, fa. o1, ¢)

begin
if revaedenri), 17 <5 K
begin
CP0R foUEr_point = randont chromosome length)
for ¢+ =1 o chranrosanre longth do
begin
if & = eroysocer _poand
begin
new _pool[ey |Lbit[{] = pool[j, | bit[£]
new _pool[rg ] bit[{] = pool[js]. bit[:]
end
else
begin
new _pool[c) |bit[#] = pool[pa]. bit[#]
new _pool[ce | bit[¢] = pool[y ] bit[f]
end
end
end
end

Mutation operation:

Mutation operation introduces new genetic structures within
the crossed child chromosomes. Mutation for binary chromo-
somes s done by bit complementation. Whether a bit will
be mutated or not is determined by the mutaton probahility
£ This type of mutation is called uniform mutation [25],
[26]. After the mutation operaton a child chromosome is
evaluated and enters the pool for generaton Py 1) if
selected. A pseudocode for the mutation operation is presented
in Algorithm 5.

Algorithm 5 : Mutation procedure.

procedure mutation (0, cz)
begin
for each of the chromosomes ¢ € {¢), 02} do
begin
for i =1 to chronosane Length do
if randomii, 1] < &,
pool[«].bit[i]= complementinew _pool[e].bit[])
else pool[r].bitl{|= new _pool[r].bit[{]
end
end

S L C » M *':E

Population Pool <

Fig. 1. Pipeline stages for the GA. Here 5, O, M and E stand for selection,
crossoyer, mutation and evaluation respectively

MNote that, using the above procedures, the structural paral-
lelism of GA can be converted imto a pipelined framework,
where the four basic operations of GA can be performed in
a streamlined and overlapped fashion through a pipe of four
stages.

IV, DESIGN OF THE PIPELINE ARCHITECTURE

In this section, the structural parallelism of GA that are
hidden in its strictly serial use of genetic operators can be
explored which streamline these operators so that they can
function in an overlapped fashion. The motivations behind
PLGA are twofold. First, there is an advantage in terms
of higher speedup as a result of overlapped execution in a
pipeline. The second is the chance of incorporating more
population and thus increasing the diversity among them, when
execcuted in a hardware platform.

A. Architecture

There are four major functions that are identified as: (i)
selection, (i1) crossover, (i) mutation and (iv) evaluation. Thus
a four stage pipeline can be constructed, where each stage
corresponds to one of these functions, as shown in Figure 1.

The selection operation should be performed in two parallel
units 5o that it can provide two selected chromosomes to the
crossover unit in doee time. Mutation and fi tness evaluation
should be done in multiple units that operate in parallel as
shown in Figure 2. The number of units for mutation is
determined by the kength of a chromosome. In most of the
cases, evaluation is a time consuming process compared to
the other operations, and the number of units is determimed
by the complexity of fi tness function.

Let us assume that a chromosome consists of T number of
genes each of which represents a vanable 25 (1 < § < [)
in binary form having equal number of bits. Let, §,, €, A,
and L be the stage times for selection, crossover, mutation
and evaluation operations respectively. Among them, &) is
normally found o be the minimum. Let us call this minimum
time as one T-cycle. Let, 8 = &%, M, = mlh and
Ey = 0% Therefore, the mtio of 5, €3, 3% and F; becomes
& 1 :m e That is, g e and ¢ number of T-cycles are
required for selection, mutation and evaluation operations re-
spectively. Thus for one crossover unit, for effi cient utilization
of resources, one needs to use 3 m and ¢ pairs of units for
selection, mutation and evaluation respectively. Here chromo-
somes are counted as pairs because one crossover needs two
selected chromosomes. But g, and ¢ may not be integers.
Thus for one crossover unit, the number of pairs of units to
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Fig. 3. A possible design of the pipeline for an example one-dimensional
prohlem

be allocated at the respective stages will be the next nearest
integral values, i.e., [#]. [m] and [£]. For sake of simplicity,
let us consider, from now on, 8 = [s]. e = [m] and & = "g].
From the above ratio, it is clear that, if the crossover unit takes
I Tcyele to perform one crossover, the selection, mutation
and evaluation units take s, and & $-cyeles to perform
one selection, mutation, distribution and evaluation operations
respectively. Thus for proper and effi cient utilization of the
resources, &, iy and ¢ pairs of respective units should be used
for one crossover unit. An example of such confi guration is
shown in Figure 3, where it s assumed 5 = 1. e = 4 and
e =6 for a single crossover unit. This means that, the time
required o compute one mutation is four times to that required
for a selection or a crossover and one should use four pairs
of mutation units for one crossover unit. Similar is the case
for the evaluation units. In practice. for complex problems, the
values of wm and ¢ may become very large and wvariable. So
in such situations, we need to incorporate large and variable
number of units at the corresponding stages.

MNote that, in Figure 3, a buffer (population pool) is used
to store children chromosomes along with their fi tness values.
By wsing multiplicity of processing elements, we actually get
a pipeline where each chromosome will occupy a particular
stage for one T-cycle on the average. The pipeline shown in
Figure 3 s a simple one, and is designed for an example
one dimensional problem only. The reservation table for the
example pipeline (Figure 3) can be constructed as shown in
Tahble II. In this table, T-cycles are numbered from 01-17, and
chromosomes are numbered from 01-12 respectively.

A pool of 12 chromosomes is considered in this example in
order to keep the table smaller. The entries in meth column (ie.,
at grth 1'-cyele) indicate the chromosomes being processed
by a stage comesponding to the row. For example, at the
lst T-cyele, chromosomes | and 2 in the population are
being processed at the stage &, while all other stages remain

TABLE I
RESERVATION TARLE FOR THE EXAMPLE PIPELINE

Stage | T-cveles and associated pairs of chromosomes

O1-02-03-04-05-06-07-08-08- 10-11-12- 13- 14-15-16-17

b O1-03-05-07-08-11
(2-04-06-08-10-12

C 01-03-05-07-08-11
(2-04-06-08-10-12
O1-01-01-01
2-02-02-02

(3-03-03-03
(-0 004

M 05-05-05-05
(6-0r-0r-03

O7-07-07-07
(- (K- (K- (s

(R- (- (-
10-10-10-10

11-11-11-11

12-12-12-12
O1-00-01-01-01-01
2-02-02-02-02-02

(3-03-03-03-03-03
(-0 O OO0

T 05-05-05-05-05-05
(65-(06r-(hr-(hr-(h3-(03

O7-07-07-07-07-07
(- (i -(hs -0 R -8 -008

(- (- (- (- (- (fd
10-10-10-10-10-10

11-11-11-11-11-11
12-12-12-12-12-12

idle. Once the pipe is filled up, all the stages will be active
simultaneously.

It should be noted that, as problem dimension increases,
more mutation and evaluation units must be added in parallel.
For example, for a two variable fitness function of similar
form, & pairs of mutation units and 12 pairs of evaluation
units are needed. However, the other two stages may remain
unaltered.

We can use lesser number of units at the mutation and
evaluation stages. In such a sitwation, the frequency of pipeline
initiation will be reduced and hence, lesser speedup results. If
the number of units in the 34 and & stages be reduced by a
factor »» — 2, the pipeline needs to be initialized at intervals of
2 P'eyeles. The modifi ed reservation table, for this situation,
15 shown in Table IT1. As seen from this table, now 24 Feyeles
are needed to complete a generation (with 12 chromosomes
only) instead of 17 T-cyeles (as shown in Table IT).



TABLE I
MODIFIED RESERVATION TARLE FOR THE EXAMPLEPIPELINE WITH
REDUCED STAGE MULTIPLICITY
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B. Speedup

Assuming identical stage time at each stage, the speedup of
a general pipeline is defi ned as
. Iwp
= 7

2)

where e (= wk, n = number of executions and & — number
of stages) and Ty (= e + & — 1) are computation times (in
terms of number of T-cycles) required for non-pipelined and
pipelined systems respectively. Equation (2) s valid for the
suggested pipeline as well, because the difference in stage
times are tackled by wsing multiple units in parallel. In our
case, it is assumed that the crossover time is equal o one
Pegyele. As selection time is 5 times that of the crossover
time, & pairs of selection units are considered in parallel, in
order to make the average selection time per chromosome as
one T-cycle. Similarly, for mutation and evaluation stages, ¥
and ¢ pairs of units respectively are required. This is the ideal
hardware confi guration. In owr case, v = population size
number of genermtions.

For the pipeline, (2 + 1+ — &) 4 -cycles are required o
get the first pair of children chromosome. After obtaining the
fi rst pair of children, the remaining children will come out in
pairs at each successive T-cycles. Therefore, the number of

T-cyeles required for the remaining pairs is II% —1]. Since

one pair of chromosomes is always needed for a crossover

operation, the value of & is set to 1. Thus, the total number of

T-cyeles required for the pipeline is
i

1 i
» |1|m|c|(§ I)=1 el :: (3)

For a non-pipelined system confi gured with me sanw -

tiplicity of stages (as that of the pipelined one), the number
of T-cycles s
L TR PR
T_?\'_{-' = E —+ E E i =21 {4]

Consider the pipeline of Figure 3, where » = |, it = 4 and
e = 6. Here,

i
I‘P - 11 - il
So, the speedup attained is
G Ine _
T Tp Ll

Since i is large compared to 11, 5 s= -1 This is the ideal
speedup.

Since, in case of non-pipelined execution, stage imes cannot
be directly measured in units of T-cycles, Equation 4 should
be replaced by Eguation 5, given below, for calculation of
equivalent non-pipelined execution time in units of 1 -cycles.

L
(e T — eyele fime’ o

Ti
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As mentioned earlier, we can use less number of units
at mutation and evaluation stages. Let, for any arbitrary
confi guration, pif and ¢f be the number of pairs of units used at
mutation and evaluation stages comesponding to one crossover
unit and one pair of selection units. Here, yinf < roand ef <2 ¢,
i.e., the number of units at the mutation and evaluation stages
are less than that needed for full multiplicity of these stages.
Letr,, — wt] and v, — [e¢ ., ie., r, and r, are the factors
by which multiplicity is reduced at the comesponding stages.
We defi ne the reduction factor for a pipeline as the maximum
of ¢, and ., 1e.,

reduetion fartor, v — marir g, v

When + = 1, the pipeline has full multiplicity and is referred
to as a full pipeline. For v = 1, it is called a reduced pipeline.

MNow, let us a consider a reduced pipeline where #,,. v, and r
represent reduction factors for mutation, distribution, evalua-
tion stages and that for the whole pipeline. By defi nition, at
least one of v, and +; 15 equal to # and the others are less
than or equal to ¢ So, two different situations can arise:

« case 1: v, — r. — 1. In this case, we can initialize
the pipeline at an interval of v ¥-cycles, with a pair
of chromosomes. And the pipeline will produce outputs
(child chromosome pairs) at intervals of ¢ T-cycles.

« case 2: rp. = v oand v, < . Here, for streamlined
operation of the stages, we have to initialize the pipeline
at intervals of v eyeles and outputs are also generated
at intervals of ¢ 1-cyeles. However, some of the units
in the F-stage will remain idle for some T'-cycles. This
results in a lower speedup than the full pipeline.

« case 3: . = poand rp, <0 v As in case 2, here, some
of the units in the A -stage will remain idle for some
T-cyeles. and hence, a lower speedup is obtained.

For both erss? and eesed we obtain lesser speedups than

that of a uniformly reduced pipeline. It is, however, notable
that, due to mitialization latency of » T-cycles, speedup is



reduced in both the cases. Again, if we employ more number
of units than are necessary at a particular stage, lower speedup
results,

Let rpp, and v be the reduction factors of a reduced pipeline
at the mutation, distribution and evaluation stages. For such a
reduced system we get

T = 1l4+1l—m+e+ [% — l) ¥r —2—m+a+ (% — J.) T
(6)
ang LN TR n
T‘N'P:§+E+§x1';.;.i+gxf'e [?jl
or, n b1l 1 i T =€
Tnp §+§+§X[E-|+§>< E-l (8)

If the pipeline is a uniformly reduced one with »,, =r, =r,
we have,
Fop B + mE T
EETaS e 2
Now, in our example system, if the reduction factor be r = 2,
then we get,

i9)

i

'T‘,-:IE—(E—'I) x2=10+n (10)
und 1 i i i
.'Ir _ i o 3 ) :! "
Twp i}+2+2><z.‘+2>=: in (11}

Therefore, speedup & = 3 for n >> 10, On the other hand,
if rpp =2 and ., = 1, then also v = 2, but now we have,
T ) it
g=atety
Similar will be the situation with »,,, — 1 and », — 2.

Further simplifi cation for a fi xed hardware setup s also
possible. Let us consider that we have a fi xed hardware setup
having s/ = 1 and et = 1. Also let for a particular
problem, the requirements are 5 = 1LC, = 10 M, =
20 and £y = A0 Assuming one T-cyele = 10 units of time,
we get, 8 = L,e=1,m = M and ¢ = 1. Here, v, = 2 and
r. = 1. So, the pipeline should be initialized at intervals of 4
2-cyeles. Here,

n
x'2+§=2.£m. (12)

T,,=ﬁ-z+(g—'|)x4=2-n+58 (13)
and

_ nonon  Won A0

T_r\-+-—§+§+gxm+§xm_-ln (14}

Therefore, speedup & == 2 for v >> 28,

However, if we have another problem where, & = 10,{% =
10, M4 = 200 and Fy = 200 and hence s = 1,c=1,in =
200 and ¢ = 20, then the pipeline becomes a uniformly reduced
one with reduction factor » = 2. In this case,

T;-—ﬁﬂ—(g—l)xﬂ—ﬁ+5ﬂ (15)
and
Fioonow 2 w20
T ittt (Hoen 16
eismmaly gy Wgmegmemdns WlN]

Therefore, speedup becomes 9 &= 3 for i = > S,

MNote also that in the non-pipelined system, termination of
the process is checked at the end of each generation. On the
other hand, for pipelined system, once the pipeline is activated,

there is no necessity of such termination checking. Moreover,
the pipeline is designed in such a manner that one can add
or remove a number of units from A7 and F stages according
to the complexity of the problem concerned. This will ensure
maximum use of all the units keeping the speedup at the same
level, and hence ensures scalability of the proposed design.

V. A POSSIBLE HARDWARE IMPLEMENTATION

Recently hardware platforms for GAs are being developed.
Without a proper hardware platform it is not possible to realize
the true benefits of PLGA. In the proposed pipeline, different
number of units are needed at different stages of the pipeline.
Here, two selection units and one crossover unit are used,
because a crossover needs two selected chromosomes, Number
of mutation and evaluation units depend on the comesponding
computational complexities at the respective stages. Use of
general purpose computers for each of the stage units may not
be cost-effective. Hence, use of simple and dedicated hardware
units is necessary. In the following subsections, some of the
hardware design schemes for different units is presented. The
evaluation unit, presented here, is absolutely suitable for the
proposed pipelined design.

A. Selection, crossover and mutation units

Hardware selection units for binary tournament selection
have been proposed in literature. However, a hardware unit
for the SA-selection is needed. Although it seems to be a
bit complicated, it can be developed with suitable hardware
components or using reconfi gurable memory devices (FP-
GAs). Bitwise crossover and mutation units are very ecasy
to implement, and a number of such devices are found in
literature. But, regarding evaluation units, many efforts to de-
velop reconfi gurable devices are found, one for each different
application. Thus, it is necessary to develop a general hardware
evaluation unit. One such unit has been presented in [23],[24].
For convenience, the said scheme for hardware evaluation and
the comresponding hardware unit are illustrated here briefly in
the following subsection. For detailed operational features, the
cited reference may be consulted.

B. A simple stack based hardware evaluation unit

A simple stack based hardware evaluation unit can be used
to evaluate a fi tness expression, if it is assumed that the expres-
sion is converted to its postfi x form a prion. Postf x evaluation
technigue is generally employed in simple calculators where
numerical values of the operands are present in the expression
itself.

In the circuit used here, the symbolic postfi x expression is
maintained in a buffer, and actual numeric parameter values
replace the symbolic parameters for the purpose of evaluation.
A diagram of the proposed scheme is shown in Figure 4. In this
fi gure, x; represents the ith symbolic variable and +; represents
its numeric value.

The hardware is designed keeping it in mind that, in a
GA process, the same function is evaluated for a number of
times with different operand values at each instance. Here, the
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postfi x expression is generated before the GA process starts
and loaded into the postfi x buffer. The symbolic chromosome
is stored in the chromosome-value buffer beforehand. Each
time a numeric chromosome enters the hardware unit (in the
value buffer), a mapping unit replaces the symbolic operands
in the postfix expression with the corresponding numeric
valve. The final numeric postfix expression can be easily
evaluated in the simple hardware unit.

The evaluation unit described above is able to handle only
one simple algebraic expression. In [23], it 15 shown that by
decomposing a complex expression into a number of simpler
expressions and aranging them in a hierarchy, evaluation of
any general expression can be performed in this circuit. Here,
the evaluation scheme for any general expression is described
briefly.

In the circuit (Figure 5), a chromosome-value buffer and
a posthi x expression buffer are used. The chromosome-value
buffer is intended to hold the symbolic chromosome vector
x = {iay,ra---ex b oand the comresponding numeric value
{vy, 20, e} There are extra space in the
chromosome-value buffer to hold extra values, These values
are represented by components of a symbolic vector ¥y =
{-;,r. Rt ~}, where, g;% hold computed values of different sub-
expressions. Initially the value buffer locations for this y vector
are undefi ned, but as soon as a sub-expression corresponding
tooa g i evaluated, its value is placed in the value buffer
s0 that it can be used for evaluating the next higher levels of
sub-expressions. A separate block of buffers is also required
to hold a number of postfi x sub-expressions. These buffers
hold sub-expressions for different levels in the hierarchy in a
suitable order. One of these expressions are taken, at a ime,
to the postfi x buffer for execution. However, to simplify the
hardware, it is assumed that the main processor is responsible
to send the sub-expressions of the hierarchy in proper order,
to extract the computed values of these sub-expressions and
to load them in the chromosome-value buffer (y-locations).
In the hardware, one can add other evaluation units like those
for modulus computation( %), comparison( > ) and others(o), as
shown in Figure 5.

vector v =

V1. EXPERIMENTAL RESULTS

Here, the effectiveness of PLGA, along with its comparison
with conventional serial GA (CGA) and parallel GA (PGA),
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Fig. 5. Ewaluation unit for general optimization

are demonstrated on various benchmark functions. This sec-
tion has two parts. In the first part, the selected benchmark
functions are described. Results of comparison of the selection
schemes used for PLGA (5A selection) and CGA (Roulette-
wheel selection) are provided in the second part. This part also
includes comparative measures of speedup and effi ciency of
PLGA with respect to CGA and PGA.

A, Some Benchmark Optimization Problems

The selected benchmark functions are available in literature
[2]. [3]. [27]. Since basic GA considers only binary repre-
sentation of a chromosome, ten functions are selected whose
arguments can be represented in binary in a straightforward
manner. These functions may be found in [2], [3], [27]. Out of
these ten functions, the function f; s wsed by Michalewicz,
Ja and [fi: are De Jong's test functions. 5 is a 2-dimensional
complicated sine function, [ is the Goldstein-Price function,
JF is the Rastrigin’s function. fo and fir are Rosenbrock’s
function and Ackley’s function respectively and f; and fr are
Schwefels test functions. Note that fe, fo, foro fo. fr and
Fooare multimodal in nature. Except fa, fo. frooand fyoall
other functions are of variable dimensions and can be tested
by varying their dimension (or complexity ).

l. A binary function:

Faix) z b,

where b; € {01, 1L} indicates the ith bit in the binary represen-

tation of r. This function was originally used by Goldberg.

The function is considered over the interval [0.2%% — |,

The normalized range of & is [0, 1]. Normalization is done

by dividing any r-value by 27", The function has only one

parameter ;. The minimum value of this function is 0 at 5y = (.
2. A simple sine function:

feir)

This multimodal function was originally used by Michalewicz
[3]. Here also the function contains a single variable & which
can be encoded as a chromosome of 25 bits. The problem is
to find x in the interval [—1, 2 which maximizes the function
Flai It is known that the maximum value of foz) = 285
at g = 180

aoained Lsoe) — L0



3. Sphere Model function:

3
Joix) = Z £y
=1

The range of »; is =512 < a5 < 512, This function has its
minimum value of O at g = 0,545
4. A complex sine function:

Solryx2) = sin® o) - sin® () — 00 exp(— 0% — (2)7)

The range of 0y is =10 < 27,0q <0 0. This function
attains its minimum valoe of 0.9 at (w20 = 0,05
5. Cloldaleire — Price function:
felegma]l = [1 + i +ar+ 1%
(1% — 1y + :izr:f — ldpy 4+ By my — :hﬁ }]
b [3'] o I_'?,‘E] — Bt }‘}X
Q18 A2 11203 | HRae o 3mas | 2723)]
The range of 2. ae 15 2 < 2.0 < 2. This function
attains its minimum value of 3.0 at {& .00 = {l,—1].
6. Rastrigi's function:
!
Jrix) =3 |17 — Weos{2mr,) + 10]
i—1
The range of w; s —3.12 < oy < 5,140 This mult-modal
function has its minimum value of O at x; = 1), %
7. Rasendrock’s function:
i

o) = 3 [L00rs 1 — ) — - 17
i—l )
The range of »; is =512 < 55 < 512, This function has its
minimum value of (0 at 3 = 1, %
B, Aekley's function:
v oo f ! ;
fu(x) = —Ylexp (—u.zw v r.f.)

el
—exp {137 cosmai) +20 - e

The range of »; is =512 < a; < 512, This function has its
minimum vialue of 0 at x; = (%
9. Schaiefel’s function 1:

!
fiix) = Z Ty + HE:]_|:}_:1:|
i

The range of &; is =512 < 95 < 512, This function has its
minimum value of O at g = 0%
10, Sehowe fel’s function 2:

E
I

Lxy=)Y"

i

_‘,T-J-
i—1 41
The range of »; is =512 <, < 512, This function has its
minimum vialue of 0 at &; — (), ¥

MNote that, ke fr and [, [y s also multimodal. All

the functions except fir, fr and fyr, have their minimum at
a; = 1, % £, The function fp attains its maximum at = = 1L.533
. The function fg have its minima at (rq,00]) — (0,-1)
and the function fs has a minima at r; 1. % i For all
these functions, varables are coded using 25 bit binary code.
However, larger binary codes may be used to increase the
accuracy of the numbers represented.

T |
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Fig. 6. Convergence of fa using roulette-wheel and 5A-selection

B. Results

For empincal investigations with both conventional GA
(CGA) and PLGA, the same values for the control parameters
are used, viz., population size, & — A}, F. =06, F, =005,
=005 and T}, = 50. The individual values in the chromosomes
are encoded in 25-bit binary for all the selected problems.
The genetic search spaces for individual functions are already
mentioned in Section VI-A. Experiments are done using the
roulette wheel selection scheme for conventional GA and the
SA-selection scheme for PLGA. Regarding mutation, the bit
complementation strategy mentioned in [25] is used for both
CGA and PLGA.

Comparison  of SA-selection and Roulette-wheel

selection schemes

For all the selected benchmark functions simulation exper-
iments are performed to illustrate the rate of convergence of
SA-selection and Roulette-wheel selection schemes. Figures 6
to 15 show the rate of convergence of CGA (using Roulette-
wheel selection) and PLGA (using SA-selection), when they
were executed for 2000 generation, for the selected benchmark
problems. The varation of fitness values are shown against
generations number. Functions [y and [g are executed for
high dimensions (=125} also. Due o higher problem complex-
ity, convergence rates are slower in these cases. Hence, curves
are plotted for 10,000 number of genemtions. The rate of
convergence for these high dimensional benchmark functions
are shown in Figures 16 and 17 respectively. The observations
show the usability of the SA-selection scheme for GAs.

Table IV provides the optimal values for the objective
functions which are reached by the respective algorithms when
executed for 2000 generations, and they are found to be almost
equal.

PLGA vs. CGA

Speedups of PLGA compared to CGA are measured in two
different situations, viz., when a similar hardware platform
(like the pipeline itself) is used for CGA, and when a single
uniprocessor is used only. For the former situation, results are
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when problem dimension = 125

shown in Table V and for the later results are presented in
Table VI. The stage times given in Table V' are proportional
to the time required for two selections, one crossover, two
mutations and two evaluations respectively. This is because,
this ime PLGA is executed for 10O generations over a
population size of 50, and sum of the comesponding stage
times are measured. So it can be assumed. without any loss
of generality, that entries in Table V' are proportional to the
time required for one selection, one crossover, one mutation
and one evaluation respectively.

It is observed that the stage times of crossover, mutation
and evaluation functions increases almost proportionately with

TABLE IV
PERFORMANCES OF STOCHASTIC AND ROULETTE-WHEEL SELECTION
SCHEMES ON FUNCTIONS [y — 'y {AVERAGED OVER 30 RUNS EACH
WITH 2000 GENERATIONS ). "MEAN BEST” INDICATES THE MEAN BEST
FUNCTION VALUES AND “5TD DEV” MEANS STANDARD DEVIATION
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Fig. 17. Convergence of fi+ using roulette-wheel and SA-selection
when problem dimension = 125

increase in the number of vartables (Table V), but selection
time remains almost fi xed. Thus it can be said that the number
of crossover, mutaton and evaluation units to be used depends
on the number of variables. For example, for a single variable
problem, the time needed for different stages may be as
follows. Let 50 units of time is needed for each of selection
and crossover stages, 150 units for mutation stage and 350
units for evaluation stage. Therefore, assuming one T-cyele =
S0 time units, 2 5-units, 1 C-unit, 6 M-units and 14 E-units can
be wsed. For problems with higher dimensions, more number
of AT and F units should be used. The above number of units
are needed at different stages of the pipeline to attain full
benefit from it. However, it is already mentioned that one can
allocate lesser number of different units at the cost of minor
losses in speedup. For function fa, as seen from Table V, the
number of T-cycles needed for different stages may be found
to be in the matio of 1:1:2:4 (this is obtained by allocating 50
units of time to each of & and (7 stages and allocating required
time to the A7 and F units in multiple of 50s), where, one T-
cycle = 50 units of time. Therefore, for using this function, 2
S-units, 1 C-unit, 4 M-units and & E-units can be used.

For calculation of speedup. for each function, let us consider
that the total number of chromosomes to be processed through
the pipeline be suffi ciently large. It is also considered that
the non-pipelined system has the same hardware components,
i.e., the stages are having the same multiplicity as those for
the pipelined one. Now two different situations may occur
Considering that suffi cient amount of hardware components
are available for each of the stages such that one pair of
chromosomes will come out from each stage on the average,
at each T-cycle. the maximum speedup can be attained.
Otherwise, if a fi xed hardware setup is only available, for
example, with 1 pair of 5 unit, 1 & unit, 5 pairs of 1 units
and 10 pairs of & units, speedup may have a lower value.

In Table ¥V, crossover ime is also seen to increase with the
number of variables. This is because a chromosome is repre-
sented here in an army structure. However, with a linked list
representation or in case of proper hardware implementation,
crossover time would become constant. So while computing
specdup from experimental data, a maximum crossover ime
of 50 units only is considered here.



The speedup is found to be less than that obtained in Section
IV-B. This is due to the fact that in computation of 1’ in
Section IV-B, extra times have been allocated to all the units
for synchronous operation of the pipeline stages. However,
selection and crossover could be done in less amount of time
than that allocated (30 units). For example, the crossover unit
for function f4 (Table V) needs T wnits of time, although
50 units is allocated to it. Thus the actual crossover time
i5 very less than that is allocated. Similarly, for mutation
and evaluation stages, the execution times are kess than those
allocated. That is, the execution time for each of mutation and
evaluation, for a population of size n, is less than n T-cycles.
If it is considered that selection and crossover units require
half of the allocated time (i.e., 23 units), then we can wnte,

'_.t},'.-_px%+1_r—tvﬂ+n A (17)

2
Thus the actual speedup that will be obtamed in such a case
is approximately 3, which can be easily verifi ed from the
observed results (Table V). In the following, let us show how
to compute the speedup for function 4. As mentioned earlier,
for this function, sy re=1:1:2: 4. Therefore,

T n-
To=[t=1+2+a4+ (2 -1)] xa0=[745 x50

and
n woo., o on B2 n 20 0w
T.'\,‘p=‘lé')(18|§><l EXIEIEKIT'ZEK-IGG
Thus,
106G
S — =112
all

As mentioned earlier, in a hardware implementation, the
crossover time will be same for any chromosome length. In
that case, if it 1% seen that selection and crossover can be
performed cach within 2% units of time, then one can set
one T-cycle to be 23 units of time and in such a situation
speedup will be substantially higher than the earlier. For all
of our selected functions, except fz. the crossover time is
found below 25 time units. Thus considering one T-cycle =
20, recomputed speedup for these functions are shown in Table
VL

From Tables V and VI the speedup may seem to he
relatively small. However, here it is assumed that both PLGA
and CGA are executed in the same simulated pipeline. The
difference between executions of PLGA and CGA in this
case is that, the former allows overlapping among operations
of different stages, whereas, the second does not allow this.
However, if we compare speedup of PLGA executed in the
proposed pipeline with respect to CGA executed on a senal
uniprocessor system, the speedup will be much more. The
corresponding speedups obtained (using Equations 3 and 5
and Table V) are presented in Table VIL These speedups are
computed assuming »o= [}, 700,

PLGA vs. PGA

As g part of the investigations, simulation experiments are
done on both PLGA and PGA for some of the selected

TABLE WV
STAGE TIMES OF PLGA AND CORRESPONDING S PEEDUPS OB TAINED FOR
FUNCTIONS fa — fr. THE TIMES {18 UNITS OF I CLOCK TICKS) S HOWN
ARE PROPORTIONAL TO ACTUAL STAGE TIMES . ONE T-CYCLE = 501,
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TABLE VI

STAGE TIMES OF PLGA AND CORRESPONDING SPEEDUPS OB TAINED FOR
FUNCTIONS fa fo. THE TIMES {1N UNITS OF 1P cLock TICKS) SHOW N
ARE PROPORTIONAL TO ACTUAL STAGE TIMES . ONE T-CYCLE = 25,
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SPEEDUP OF PLGA OVER CGA EXECUTED IN A SERIAL UNIPROCESSOR
SYSTEM WITH NO SPECIAL HARDWARE PROCESS ING ELEMENTS. THE
TIMES {IN UNITS OF 07 CLOCK TICKS ) SHOWN ARE PROPORTIONALTO
ACTUAL STAGE TIMES ., ONE T-CYCLE = 501
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benchmark functions using dimension 10 for each, in order to
compute the relative effi ciencies of the concerned algorithms.
Functions f,, fir, fro and fpe are selected out of this set of
experiments as their dimensionalities are small and fi xed. In
this case, PLGA and PGA are executed for a number of
generations needed to converge to a near optimal solution. For
each of the benchmarks a particular limiting value is selected
as the stopping criteria.

Here, the population size is considered to be 40, For the pur-
pose of executing PGA a four processor network is considered.
The population is distributed among the four processors, each
getting a subpopulation of size 10, The processors are com-
pletely connected and they can communicate chromosomes
after every five generations. During communication, each
processor selects four chromosomes, including the current
best, from self, and two from each of the other processors.
The results of comparison are shown in Table VIIIL

A more direct way to compare the performance of a parallel



TABLE VIII
COMPARISONOF PLGA AND PGAIN TERMS OF NUMBER OF
GENERATIONS NEEDED TO CONVERGE TO A CERTAIN STOPPING VALUE.
“"MEANT INDICATES THE AVERAGE OF NUMBER OF GENERATIONS AND
USTD DEVY MEANS STANDARD DEVIATION
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TABLE IX

COoMPARISON OF PLGA OVER PGA IN TERMS OF EFFICIENCY. DATA USED
FOR PLGA AND PGA ARE TAKEN FROM TABLES V AND VIII

Function PLGA POA
Efficiency | Efficiency
For 0.650 444
Ie 0.725 0.462
Fi 0.633 0.538
i 0.633 0.507
Fil (.60 0,472
L 0.675 0.652

GA is to derive an efficiency measure. The expression for
effi ciency may be developed as follows. Let us denote the
serial and parallel execution times by 2.0 and 1. o TE-
spectively. It is assumed that the execution ime is proportional
to the number of generations (ignoring the communication
overhead). Thus T, and Ty,,.-o0. may be replaced by the
corresponding average number of generations given in Table
VIII. Since, the coarse grain PGA is executed by equally sub-
dividing the population among the processors, actual parallel
execution time should measured as Ii% Here, £ is the
number of processors used. Now, cost of parallel execution is
defi ned as

T]’].'J."'.‘I.l'“'l:
r
Efficiency of the parallel system can now be defi ned as

Clast = i Bl Tﬂn:l.r.ll.ﬂ.'r'i-
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For the pipelined system, the effi ciency is
Speedup Affained
Aawitrim Attainablc Speedup

KT fredeney —

The values of computed effi ciencies of pipelined and parmallel
execution of GAs are listed in Table IX, which depicts the
superiority of the former.

VII. CONCLUSION

A pipelined version of the well known GA, called PLGA,
has been proposed in this paper. For designing PLGA, the
SA-selection scheme is used which does not affect GA's basic
features to reach the global optima. By use of proper hardware
units, one can implement an extremely fast hardware platform
for PLGA. In this regard, a possible hardware evaluation

unit for general function optimization using GA is presented.
In absence of a physical hardware, PLGA s executed in
software, on a uniprocessor working senally and iteratively,
and it is observed that with proper multplicity of different
stages a maximum speedup of 4 is attainable compared to
conventional GAs executed serially using similar multiplicity
of stage units. However, speedups of PLGA compared to a
uniprocessor based CGA are found to be much more. The
performance of PLGA is tested against a version of PGA
also. It is seen that PLGA outperforms PGA in terms of
effi ciency measures. Although, experiments are performed
using software simulation on a uniprocessor system, it is
realized that synthesizing a real hardware is essentially needed
and includes a part of further investigation. The authors are
working in that direction.
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