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SUMMARY. A life distribution F is called NBUE-NWUE if for some to € (0, 00), its mean
residual life function e(t) = Er(X —t|X > t) satisfies e(t) < e(0) for 0 <t < to and e(t) > €(0)
for t > tg. If the inequalities for e(t) are reversed on these time intervals, it is called NWUE-
NBUE. Using a characterization of such distributions in terms of the scaled total-time-on-test
transform (STTT), we first give tests of exponentiality versus NBUE-NWUE or NWUE-NBUE with
to unknown. This extends the work of Klefsj6 (1989), who devised tests assuming that py = F(to) is
known. Then, assuming that F is either NBUE-NWUE or NWUE-NBUE, we give point estimates
and asymptotic confidence intervals for 2o and po. The point estiamtes are asymptotically normal.
We rely heavily on the theory of the empirical STTT process discussed in Csdrgo, Csorgo and
Horvéth (1986).

1. Introduction

Let F denote the set of absolutely continuous strictly increasing c.d.f.’s on
R with F(0) = 0 and f*° 2?dF(z) < co. For F € F define the mean residual
life function e(t) = Ep(X — t|X > t) = [F(£)]! f° F(z)dz,t > 0 where F(t) =
1 — F(t). F is said to be “new better than used in expectation” (NBUE) if
e(t) < e(0) for t > 0 and “new worse than used in expectation” (NWUE) if
e(t) > e(0) for t > 0. These classifications of life distributions are useful in
reliability theory. See Barlow and Proschan (1981).

Let £ denote the family of exponential distributions (ie. F € £ implies
F(z) =1— e 2 > 0 for some A > 0). Recently, Klefsjo (1989) has proposed
tests of Hy : F' € € versus either of Hpw : F € Cgw or Hyg: F € Cwp, where
Cpw = {F € F: there exists a to > 0 such that e(t) < e(0) for 0 <t < to, e(t) >
e(0) for t > to} and Cwp = {F € F: there exists to > 0 such that e(t) > e(0)
for 0 < t < to, e(t) < e(0) for t > to}. Distributions in Cpw (Cw ) are called
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NBUE-NWUE (NWUE-NBUE). t, is called the transition point, po = F(t) the
transition quantile. To obtain his tests, Klefsj6 assumed that pg is known. In
most applications this is an unrealistic assumption.

In this paper, we first develop tests of Hy versus Hgw and Hwpg which do
not require any assumptions about t; or pg. Next, given that F € Cpy N

F*or F € CwpNJF* (F* as defined below), we obtain point estimates and

asymptotic confidence intervals for ¢y and py. The point estimates are shown
to be asymptotically normal. Throughout we assume that we have a random
sample X3,...,X, from F € F (or F*, where F is unknown.

The rest of the paper is organized as follows. Section 2 contains the main
results. Section 3 contains a real-data application of these methods. Section
4 contains proofs of the theorems. The proofs of all lemmas are omitted here
for brevity, but may be found in the technical report by Hawkins and Kochar
(1992) (henceforth HK92).

To push through our asymptotic results we rely heavily on results of Csorgo,
Csorgo and Horvath (1986) (henceforth CCH). These results require the follow-
ing condition of F' (here f(z) = F'(z)) :

_ L (-
T= S )

for some function g satisfying g(t) > 0,0 < t < 1,q symmetric about t = 3, q(t)
nondecreasing on [0, ;) and

< 00 .11

1/2
/ tlexp{—eq*(t)/t}dt < oo for all € > 0. ...(1.2)
0

Functions ¢ satisfying (1.2) are called Chibisov-O’Reilly weight functions; see
CCH p. 22.

Note that any F € & trivially satisfies (1.1) with g(u)l for 0 < u < 1.
However, any lognormal cdf Fry satisfies Fry € Cpw (see Klefsjé (1989), p.
566), but does not satisfy (1.1); see Lemma 0 in HK92. For later reference,
define F* = {F € F : F satisfies (1.1) }.

2. Main results

We introduce the so-called scaled total time on test (STTT) transform (in
centered form)

b . Fd(u)ﬁ‘tdz 0<ugl 2.1)
¢F(u)—;/o (t)dt —u, 0<u <1, (2

where p = e(0) = [° F(t)dt. Bergman (1979) and Klefsj6 (1982) have shown
that
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Fe€ iff gp(u) =0, 0<u<1,
Fis NBUE iff ¢r(u) >0, 0<u <1, ...(2.2)

F is NWUE iff p(u) <0, 0 <u < 1.

It follows in a similar way that

¢r(u) > (<)0, 0<u<po
FeCpw(Fe Cwap) iff ~ ...(2.3)
ér(u) < (>)0, po <u <1, po = F(to)-

Following Klefsjo (1989), we introduce the functional

P _ 1
v = [ Gewdu- [ Grwdn 0<p<1 29
0 P
All inferences in this paper are based on ¥r.

2.1.  Hypothesis tests. For F € £,¢p(p) = 0 for all 0 < p < 1. How-
ever, for F € Cpw it follows from (2.3) and the fact that dipzpp(p) = 2¢r(p)
that ¢r(p) is increasing for 0 < p < po and decreasing for po < p < 1, with
r(po) = sup{wr(p) : 0 < p <1} > 0. Similarly, for F € Cw s, $r(p) is, respec-
tively, decreasing and increasing on these intervals, with ¥r(po) = inf{9r(p) :
0 < p £ 1} < 0. These observations suggest the following test statistics:

for Hy vs. Hpw: T2¥ =nisup{yr(p):0<p <1},

for Hy vs. Hwg: TY? =niinf{¢r(p):0<p<1),

where F,(z) =n"! Z I(X; < x) is the empirical cdf. Now it follows from result
i=1

4, p. 65 of CCH and the Skorokhod continuity of the integral functional in (2.4)

that

sup{[¥5,(p) — Yr(®)|: 0<p< 1} =0p(n7H), FEF, ...(2.5)

Thus, TEY and TWB will lie close to zero under Hp, but TBW (T¥B) will be
large positive (negative) under Hpw (Hwg).

The exact distributions of 5% and TV ® under Hy are intractable, so their
limit distributions are obtained in the following result. In this direction, let
Z= {2(11) : 0 < u < 1} denote a mean-zero Gaussian process with covariance

(Z()Z(u)} = 1w - 0®) — 3(u? + o) + 2w? — w0’ + Hloro<v<u<gl.
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THEOREM 1. Under Hp, as n — oo,TfW—£*Z$ =: sup{é(u) :0<u<l}
and T,Y/BAZI =: inf{é(u,) :0<u<1}.

TABLE 1. APPROXIMATE CRITICAL VALUES

B | 90 95 .99
Z.5 | 050 057 0.74

Table 1 contains Monte-Carlo-estimated 1003 quantiles Z 3 of the distribu-
tion of Z;, obtained in Hawkins and Kochar (1991). The test for Hpw rejects
Hy at level o if TBW > Zs1-o- The test for Hyp rejects Hp at level «a if
TWB < Z;.,. (Since Z;= — Z,, we have Z10 = —Zs1-a)- :

A brief Monte Carlo study comparing the power of the TBW test with the
test of Klefsjo (1989) for F lognormal is given in HK92, and shows basically
that the price of not knowing ty or py is a slight loss in power.

2.1.1. Computing the test statistics. One easily checks that ¥, (p), 0 <
p < 1is almost surely continuous, and defining Anx = ((k—1)/n,k/n),1 <k <
n, that

X, (p) = 2038) — 13(1) + Xal — PP)s P € Aus .(26)

where X, = % Z X; is the sample mean, X(;) denotes the j-th order statistic,
i=1
X(Q) =:0 and

P Fol(w)
) = / 0 / C R0
S u= t=

j=1 I=1
m,(p)

+(np —[np]) Y (n—1+1) Xy — Xg-1)]
=1

(np] 3
— n°? {Z Z(n — 1+ 1) [Xy — Xq-n) ... (2.7

(Here [s] denotes integer part of s, and m,(p) = min([np] + 1,n).) It follows
from (2.6) that

d
(—II—)lﬁF,.(P) = 2{Un —p}, P € A, ...(2.8)
where for 1 < k <n,
k-1
U = (nX")’l {(n —k+ I)X(k) + Z X(J-)} ... (2.9)
=1
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From (2.8) and (2.9) it follows that for p € A,

d >0, if p<Un
S¥r@) s ¢ =0, if p=Un ...(2.10)
P <0, if p>Uu

Since %wpn('p) = —2 < 0 for p € Ay, it follows from (2.8) - (2.10) by or-
dinary calculus that any minimizer of ¢ (p), say P, almost surely occurs in
the set G, =: {£ : 0 < k < n}, and that any maximizer, say p}, a.s. falls
into £}, = G, U {Upx : Upn € Api}. In fact, a closer look shows that the set of
possibilities for  is even smaller.

LEMMA 1 For any absolutely continuous F,pM € L, =: {1}U{Upnk : Unx €
An} a.s. .

A FORTRAN program for computing T.2% , TW2 and all other statistics in
this paper is available from the first author.

Finally, one notes from (2.6) and (2.7) that ¥ (p) is scale-invariant, and
hence is distribution-free over £.

2.2.  Point estimation of ty and p,. Here we assume that F € Cyy, ==
Cpw NF* or F € Cyyp =: Cwg N F*, and that we know which is the case.

For F € C}y, in view of (2.5) and the fact that ¥z (po) = sup{yr(p) : 0 <
p < 1}, it is natural to estimate py by any value, say p2¥, which maximizes
¥, (p) over 0 < p < 1. It may be checked that the values of ¥r, (p) for p € F,
are a.s. distinct, so that this maximum will be uniquely attained a.s. Hence,
for F' € C},, we define the point estimate p3" of py by

Vr, (Bay ) = sup{¥r,(p) : 0 < p < 1}

Since to = F~1(py), it is natural to define a point estimate of ¢y by 5" =:
F1(08")-

By similar considerations for F € Cy,p it is natural to define the point
estimates py.? and £iB of py and ¢, by ¥, (B} 5) = inf{yr,(p) : 0 < p < 1} and
tn? =2 F'(Bg.7)-

The following result shows that all of these estimators are asymptotically
normal. Let Q(t) = F71(t),h(t) = 1/f(Q(t)),0 <t < 1. Let P, denote either
PBY or p¥B, and let ty, denote either p¥ or {8, as F € Chy or F € Cyy 5.

THEOREM 2. As n — 00,
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(5) 13 {Bon — po} >N (0,¥2(F, po)), where
Y(F,po) = {(1—po)h(p)—p}?
Q(po)
x {(1 ~ o) [(1 - Q) + [ m2dF<m>}
(1 = po)*[2Qpo)(po) + Poh?(p0)] )
~200 = ) [QU) + 1 = po)oteu)] + 5 [ mzdF(m} .

(if) nt {fon — to} S N(0, 72(F, to)), where

72(F,t0) = (1,1)ILSIp (1)

Jr is the Jacobian of the function T in (4.16) and £ = (0y; : 4,5 = 1,2,3)
with

on = F(to)[l - F(to)], 012 = [1 — F(to)]{to — pF(t0)}, .

013 = to[l — F(to)], 09 = [1 — F(to)lt2 — u®F2(to) + A Q% (y)dy,
F(to)

o5 = to[l — F(to)]fto + u] + A Q*(y)dy — 4*F(to), o33 = Var(F).

2.2.1.  Monte Carlo results. To verify the asymptotic results in Theorem
2, a small Monte Carlo study was undertaken. A parametric family of distribu-
tions in Chy,, was constructed based on the scaled total time on test transform

(STTT : ¢p(u) = s foQ(u){l — F(t)}dt in general)
do(u) = (f‘:) ud — Po+1)(30-1) ,

u +sou, 0<u<l,
Po Do

where 0 < pg < 1 is the transition quantile, s; = #5(0) € (1,dp), do = 80/ (8 —1)
and & = (pg + 1)?/3py. One may check that ¢, corresponds to the distribution
F; on [0, 00) with quantile function

Fy ' (u) = ayu + agu’ + asln(1 — u),0<u<l,

where a; = (2po — 1)(s0 — 1)/po, a2 = —2(so — 1)/po and a3 = a; — so. The vec-
tor (po, 80) acts as the parameter indexing the family. Each distribution in this
family has mean one. Verifying that Fj has finite variance and a positive den-
sity is straightforward. Varifying condition (1.1) is easy using CCH’s sufficient
condition on p. 63 and the relation j;)l(l — u)/ FAQ(u))du = 12 [} [# (w)|*du,
which holds for any distribution F with density f, quantile function @, mean u
and STTT ¢.
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TABLE 2. MONTE CARLO RESULTS FOR POINT ESTIMATORS (n = 100)

BW BW
Pap i
menn Var mean VR
Po 20 %%) Var(F) NM Arym. Emp. Asym. Emp. Asym, Emp. Asym. Emp.
25 133 -0.5 LT2 008 250 258 026 027 284 299 038 058
166 -1.0 277 000 250 248 007 oL 280 261 005 o1
192 -14 383 000 250 244 005 008 27 254 .00L 005
.50 150 0.5 120 108 500 488 087 048 88S 735 108 240
200 1.0 147 o0 500 512 OLL D17 636 873 015 054
238 -14 LTL 010 500 514 007 008 818 837 003 019
5 200 05 091 293 150 e 082 018 122 129 33 ans
3.00 -1.0 087 190 750 758 010 008 1.06 1.i6 oM 089
378 -14 0.86 437 150 759 007 007 084 1.08 010 082

123

Table 2 displays the results for n = 100 and a selection of (po, 39) choices,
based on 1000 replications. Graphs of the corresponding STTT’s appear in
Figure 1. As it is intuitive that estimation should be easier when the criterion
functional ¥r(p) has a more distinct peak at p = py, we have chosen sy to
maintain particular values of ¥ (po) = 2(so — 1)(po — 1). Also included is the

variance of Fy(Var(F)).

—aria

CODE

STTT'S WITH P0=.25

Y T T T T Y T T T T

0.00.10.20.30.40.50.60.70.8¢0.91.¢
U
"""" 1 2 3 4

1:80=1.33, 2:80=1.66, 3:50=1.92. 4:STTT=U
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STTT'S WITH P0=.50

333
=

T T T T T Y T T T T T

0.00.10.20.30.40.50.60.70.80.91.0
U
CODE  ===m=== 1 2 3 4

1:50=1%50, 2:50=2.00. 3:S0=2.38. 4:STTT=U

STTT'S WITH P0O=.75

KRR
o

T T T T T T T T T T T

0.00.10.20.30.40.50.60.70.80.91.0

U
CODE  =====-= 1 2 ———3

1:$0=2.00, 2:50=3.00, 3:50=3.76. 4:STTT=U

When the peak of 95 (p) is not steep (¥, (po) is small), the empirical function
Yr,(p) tends with positive probability to be nondecreasing on [0,1], with no
maximizer in (0,1). This results in p37 = 1. As the peak gets steeper (Y, gets

more negative), this probability decreases. We include an empirical estimate of
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this probability of no interior maximizer (PNM) in Table 2. When p3¥ =1
occurs, in our opinion the estimation has failed and we have evidence that either
: (1) po is near 1 or (2) ¥#(p) has a poorly-defined peak. An examination of
1r, (p) can help shed light on this question in practice.

The rate of convergence in Theorem 2 also (apparently) depends on the
steepness of 1r(p) at po. When ¥%(po) is large negative, the empirical means
and variances are in closer agreement with their asymptotic counterparts than
when ¥} (po) is nearer to zero. The agreement of the empirical with the asymp-
totic variance is particularly sensitive to this situation, due to the occurrence
of p2% = 1 noted above. For this reason, the empirical mean and variance
estimates in Table 2 are from those replications where 8% < 1; i.e. in those
cases where the estimation is considered “successful”.

REMARK. Estimation of py, and t; was attempted for the lognormal cdf
prior to (and actually motivated) our discovery that Fry ¢ F*. The results
were striking : the empirical function vyr, (p) was increasing on 0 < p < 1 in
almost every Monte Carlo experiment we ran, regardless of the lognormal pa-
rameters, resulting in g = 1 in almost all cases. In other words, Theorem 2
failed completely. These results support the conjecture that condition (1.1) is

not only sufficient for the CCH-results we used to prove Theorem 2 (see section
4), but may be almost necessary.

2.3.  Interval estimation. Again we assume that F € Chy, or F € C} 5,
and that we know which is the case. The discussion is in terms of the generic
Pro and fn, since all the results are the same for F € Caw or F € Cyy 5.

The idea is to construct consistent estimators of y2(F,py) and 72(F, t,), from
which large-sample confidence intervals follow by Theorem 2 in the usual way.
These consistent estimators, 42 and 72, say, are formed by substituting pg,
for po,ton for to, X, for p# and F, for F in the formulae in Theorem 2. The
only troublesome part is estimating h(po) = 1/f(F~'(po)) = 1/f(to), which
apparently requires estimation of the density f.

To avoide density estimation, we note that

Vo) = 26r(p), ¥r(po) =0,

] L (211)
V) = 285(p) = 2067 (1~ p)h(p) 1),
and hence that for p near py,
Vr(p) = Vo) = 5EE0)(p — po)? + ol(p — po)?). . (212)

Expressions (2.11) and (2.12) suggest estimating h(p,) as follows. First,
estimate 3 =: ¥7(po)/2 using the empirical analog of (2.12):

TPF,.(%) — ¥F,(Bon) = ﬁn(% — Pon)’, I% — Pon| < An. ... (213)
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Then estimate h(py) (ala (2.11)) by

o = {1+ Ba} X/ (1 = on)- L (214)

This is a convenient approach since : (1) the quantities on the left side of (2.13)
are already computed as by-products of the computation of fp,; and (2) (2.13)
has the form of a linear regression model. The sequence A, in (2.13) must be
chosen carefully to make ﬁn, and hence iz,., consistent. Since we only need [3,, to
be consistent for 3, for simplicity we take the ordinary least squares estimate

B = Y0 — P 0 (5) ~ e, Gon)}/ 3 — pon)’

i€A, i€A,
where A, = {i: | — pon| < An}. The right rate for A, is given by

LEMMA 2. If F € Chy (or F € Clyg) and Ap = O(nitd) for some § > 0,
then Bni*ﬂ as n — oo.

In practice, we find that taking A, = 5n+ works reasonably well for finite n.
The following result gives the desired confidence intervals. Let I, and .J,

denote the intervals py, & n_éza /2¥n and ton £ n_éza /2Tn, Where zg denotes the
10083 quantile of N(0,1).

THEOREM 3. If F € Chy (or F € Clyp) and A, = O(ni*d) for some
6> 0, thenk as n — 00,

(i) Plppe I} = 1 —a.
(ii) P{to € Ju} = 1~ a.

2.3.1. Monte Carlo results. To check the performance of our confidence
intervals, the intervals (with A, = 5n¢) were computed along with the point
estimates in the experiments reported in Section 2.2. The resnlts are.given in
Table 3. Since the standard error estimates 4, and 7, cannot be computed
when p8Y = 1, the results in Table 3 are, as in Table 2, only for the replications
in which pZ% < 1. Also, the “plug-in-type” variance estimates 42 and 2 can
occasionally be negative, so we simply took the absolute value, which of course,
preserves consistency.
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TABLE 3. MONTE CARLO RESULTS FOR ASYMPTOTIC 95% CONFIDENCE INTERVALS

(n = 100)
Po to
Po 50 t/;E'm) Var(F) PNM | cov. prob. median length | cov. prob.  median length
.25 1.33 0.5 1.72 .009 .828 588 .828 721
1.66 -1.0 2.77 .000 .862 324 .854 279
1.92 -1.4 3.83 000 873 .255 867 136
.50 1.50 -0.5 1.20 .109 900 955 916 1.885
2.00 -1.0 1.47 .027 949 600 979 .948
2,38 -1.4 1.71 .010 953 471 991 609
.75 2.00 -0.5 0.91 293 941 625 975 1.983
3.00 -1.0 0.87 190 923 .361 974 .780
3.76 -1.4 0.86 137 .900 291 .889 373 .

The result in Table 3 show that the performance of the confidence intervals
is sensitive to the peakedness of ¥z (p), with coverage probabilities and median
lengths generally improving as this peakedness increases (i.e. ¥%(py) becomes
more negative).

3. Examples

ExAMPLE 1. Figure 2 displays the empirical mean residual life function
(i.e. e(t) with F replaced by Fy) of post-heart-transplant survival data for 174
patients treated by the Stanford Heart Transplant Center during the years 1976-
1985. For the purpose of illustrating our methods, the estimates in Figure 2 and
the ensuing analysis ignore the presence of a small amount of censoring in these
data, primarily for the years 1983-1985. l.e. censored cases were deleted.

Figure 2 suggests (apart from the slight bump at time around 3500 days)
that the distribution F of post-transplant survival time falls into the Cy p fam-
ily. Further, the value of T/¥Z is -1.06, which by Table 1 has a p-value less than
.01, so the exponential model is strongly rejected. The point estimates of py and
ty (based on the raw data) are pn? = 0.603 and £y 2 = 1150.0, with respective
95% confidence intervals [0.39, 0.81] and [516.3, 1783.7]. In this situation, t =0
represents the transplant time and the interval (0, ty] represents the duration of
benefit of the transplant - i.e. the time post-surgery for which the population
mean residual life exceeds its value at transplant time. By our estimates from
these data, this duration of benefit is about £f.? = 1150 days (about 3.2 years).

The estimate .2 = .603 means that about 60% of the population dies during
this duration of benefit.

EXAMPLE 2. One of the referees asked us to provide an example of a distri-
bution in Cwp which is not in the IDMRL (increasing-decreasing mean resid-
ual life) family. The latter family, which as has been extensively studied (see
e.g. Guess, Hollander and Proschan (1986) and Hawkins, Kochar and Loader
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(1992)), is characterized by e(t) being strictly increasing (respectively decreas-
ing) for t < t* (respectively t > t*), for some change point t*. The following
example of such a distribution was constructed by Professor Ramesh Korwar.

EMPIRICAL MEAN RESIDUAL LIFE FUNCTION
OF STANFORD HEART TRANSPLANT PATIENTS

1600
L 14007
X 1
A
A 1200
R ]
5 1000
:
5 8007
U
R 600
¥ o400
F
E
200
011 T IR B ML S S O R S | T T T T
0 500 1000 15002000 2500 3000 3500 4000 4500 5000 5500
TIME (IN DAYS)
CODE — 4
Let
et 0<t<1
F(t) = e,1<t<2
e 2<t<3
etht>3.

Then the corresponding mean residual life function is

1+ (et + e d)e,0<t<1
§—t+;e-2 1<t<2
z+;e2(‘ 9,2<t<3
1,¢t>3.

e(t) =

One easily checks that F € Cwp with to = 3 + }(e2 —e™! —e73), but F is not
IDMRL sice e(t) is increasing for t € (0,1), decreasing on (1,2) and increasing
on (2,3).
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4. Proofs of theorems

All lemmas stated here are proved in HK92.

PROOF OF THEOREM 1. Since ¥r(p) =0for 0 < p < 1if F € £, we have
by (2.4) that ‘
mYR®) = nH{ye () - vr()}
P
= / sp(u)du —/ sp(u)du . (4.1)
0 r
= (Ts,)(p),

where s,(u) =: nt{@z, (u) — ér(u)},0 < u < 1 is the scaled total time on test
empirical process (see CCH, p. 10) and T : D([0,1]) — D([0,1]) by (Th)(p) =
JE h(u)du — [} h(u)du. Further, CCH p. 65 item (5) gives that for F € £(-
denotes weak convergence in D([0, 1])),

S W? ... (4.2)

where W° is a Brownian bridge process on [0, 1]. The result follows by the Sko-
rokhod continuity of T' and that of the “sup” functional, using the argument
following (4.7) in the proof of Theorem 1 of Hawkins and Kochar (1991). Q.E.D.

PROOF OF THEOREM 2(1). Assume F € Chw. The proof for F' € Cyyp is
almost identical. We write P, for ﬁfgv ,Eno for tfgv , etc. .
(i) First, by Taylor’s theorem for some p’, between po, and py,

nt {37 (Bon) — Br(po)} = B (ph)nt {Bon — po}, ... (4.3)
where )
Fe(p) = w7 (1= p)/T(F7' () ~ 1 = 59 (p) ... (4.4)

satisfies ¢ (po) = 19%(m) < 0 since py is a maximizer of Yz (p) by (definition
of Cpw). We next require

LEMMA 3. For F € Cyy,, UCyp, as n — o0,

1 { B (Bon) — br(P0)} = —ni{Br, (Bo) — $r(P0)} + 0,(1).

Using Lemma 3, (4.3) and the fact (which follows from (2.5) by the argument ,

used in the proof of Theorem 2 in Hawkins and Kochar (1991)) that o, —2po, it
holds that

B —po} = —{Fpo)} It {dr () —Sr)} +op(1)

= —{r(Po)} " sn(po) + 0p(1),
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where s,(-) was defined following (4.1). The result follows by tedious but easy
calculations from (4.5) and the fact (see item (4) on p. 65 of CCH) that for
F e 7,

sn—Z(F) asn — oo, ...{4.6)

where Z(F) is a zero-mean Gaussian process with covariance (for 0 < s <t <1)

o9(s,t) = p20y(s,t) + u tR(s)dR(t)o1(1,1)
@)
—pu 3P (t)o1(s, 1) — p3¢(s)o1 (8, 1).

Here ¢%(t) = fOQ(t){ 1 — F(z)}dz is the total time on test transform of F, and
for0<s<t,

at) = GHE{Q) - ¢5(e)) — QE)EHE) + (1 - )[QE)P?
+ ] Q) Pdy + (1 — *h(){Q(s) — H4()}

0
+(1 = 8)’h(s){Q(s) — 85()} + s(1 — s)h(s){ D5 (t) — Pk (s)}
+(1 — 8)(1 — t)%sh(s)h(t).
...{4.8)
Q.E.D. (Theorem 2 (i)).

PROOF OF THEOREM 2 (11). Let Qn(t) = F;!(t),0 < t < 1 denote the
empirical quantile function. Then by Theorem D, p. 101 of Serfling (1981), we
have

£0n = Qn(ﬁOn)

. QGon) + h(Bon){Bon — Fa(@Gon))} + 0p(n~4). - 49)
Thus, since tg = Q(po), we have
ni{fon —to} +0p(1) = nH{Qu(Bon) — Qwo)}
... (4.10)

= nH{Q(Bu) — Q(p0)}(=: D1n)
+n% {Pon = Fn(Q(Bon)) Yh(Bon) (= Dan). ...(4.11)

We see that n%{tAo.,l — 1o} is the sum of Dy, and Dy, so we will need to obtain
the limiting joint distribution of (D1n, Dan)-

In this direction, define the empirical process E,(z) = nt{F,(z) — F(z)},
0 <z < oo. Then

Das nt {F(Q(Pon)) — Fa(Q(Bon) }r(Bon)

~h(po) En(Q(Ben)) + 0p(1),

...(412)
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since jio,rﬁpo and E, weakly converges. Further, by the differentiability of Q,
the delta method and Theorem 2(i), there is a finite constant K > 0 such that
in probability,

|En(Q(Bon)) — En(Q(m0))] < . suprEn(Q(Po) +3) — E.(Q(po))l, ... (4.13)

<s<K/y/n

which is py(1) by the tightness of the sequence {E,, : n > 1}. Combining (4.13)
into (4.12) gives that

Dyn = —h(po) En(Q(po)) + 0,(1). ... (4.14)

On the other hand, by Taylor’s theorem for o, between po, and py, and for
all sufficiently large n,

Din = h(ap)nt{fon — po}
{h(e)/ 8 (2)} 04 {Br (Bon) — Br(p0)}
~{h(e)/@(pr)} -t {Br, (po) — Br (po)} + op(1)
= —{h(e})/$r(B})}-3n(p0) + 0p(1),
where we have used (4.3) for the second equality and Lemma 3 for the third

one. We want to write Dy, in terms of E, to put it in the same terms as D,,
in (4.14). For this we need the following lemma.

... (4.15)

LEMMA 4. For F € F*,s0(po) = p {-(1 ~ P0)h(po) En(Q(po))

'Po 1
_ / En(Q(u))h(u)du + po / En(Q(u))h(u)du} + 0,(1).
(4] Jo

Now define the random vector

) 1 T
U, = [En(Q(po)), [ Bn@uintan, | En@(u»h(u)du] .
Then from (4.13)-(4.15) and lemma 4 it follows that

ni{fo, —to} +0,(1) =(11) [Dlz] = (1, 1)I(U,).

D |
where I' : R3 — R? by

T(t1, 3, t5) = [{%} {= (1 = po)h(po)ts — 12 +p°t3}] . ...(4.16)
~h(po)t:
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Further,

U, LU = [W"(po), /0 ” W (u)h(u)du, /0 1 W"(u)h(u)du],

where W° denotes a Brownian bridge process on [0, 1]. Of course, U is multi-
variate normal with zero mean, and the covariance matrix may be verified to be
Y as stated in the theorem. Q.E.D.

Acknowledgement. The authors are grateful to Patricia Gamberg, R.N.,
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