Gene ordering in partitive clustering using microarray expressions
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A central step in the analysis of gene expression data is the identification of groups of genes e xhibit similar
expression pattems. Clustering and ordering the genes using gene expression data into homogeneous groups was
shown to be useful in functonal annotation, tissue classificanon, regulatory mouf identification, and other applications.
Although there is a rich litermure on gene ordering in hierarchical elustering framework for gene expression analysis,
there is no work addressing and evaluating the importance of gene ordering in panitive clustering framework, to the
best knowledge of the authors. Outside the framework of hierarchical clustering, different gene ordering algorithms are
applied on the whole data set, and the domain of partitive clustering is still unexplored with gene ordering approaches.
A new hybrid method is proposed for ordering genes in each of the clusters obtained from partitive clustering solution,
using microarray gene expressions. Two existing algorithms for optimally ordering cities in travelling salesman
problem (TSP), namely, FRAG GALK and Concorde, are hybndized ndividually with self organizing MAP to show
the importance of gene ordering in partitive clustening framework. We validated our hybrid approach using yeast and
fibroblast data and showed that our approach improves the result quality of partitive clustering solution, by identifying
subclusters within big clusters, grouping functionally correlated genes within clusters, minimization of summation of
gene expression distances, and the maximization of biological gene ordering using MIPS categonization. Morcover,
the new hybrid approach, finds comparable or sometimes superior biological gene order in less computation time than
those obtained by optimal leal ordedng in hierarchical clustering solution.
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1. Introduction

The present article deals with the tasks of ordering genes

The recent advances in DNA army technologies have
resulted in a significant inerease in the amount of genomic
data. The most powerful and commonly used technique is
that involving microarray, which has enabled the moniworing
of the expression levels of more than thousands of genes
stmultaneously. A key step in the analysis of gene expression
data 15 the dentificanon of groupsiclusters of genes that
manifest similar expression patterns. This translates o the
algorithmic problem of clustering and orderng of gene
expression data.

within clusters obtained from self-organizing map (SOM)
(Tamayo ef af 1999). Although there is a rich literature on
gene ordering in hierarchical clustering framework (Eisen
ef al 1998; Biedl e af 2001; Bar-Joseph ef ol 2001), there 1s
no work addressing and evaluating the importance of gene
ordering for gene expression analysis in partitive clusternng
framework, to the best knowledge of the author. Paritive
clustering methods determine unique clusters but do not
order genes within cluster and the relationships among the
genes in a particular cluster are generally lost. To obtain
this relationship among genes in clusters, we propose a
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novel hybnd method where, an existing pure gene ordering
algorithm called “FRAG GALK™ (Ray ef af 2007), is used
i order genes in cach clustenng solution of SOM ( Tamayo
et al 1999). For the purpose of companson, instead of
FRAG GALK, an existing travelmg salesman problem
(TSP) solver Concorde (Applegate ef af 2003) using linear
programming, and optimal leal’ ordering in hierarchical
clustering solution (applied over the whole data set not
partitive clusterimg solution) by Bar-Joseph er af (2001},
are also used. Utlity of the new hybnd algonthm is shown
m improving the guality of the clusters provided by any
partitive clustering algorithm by,

identification of subclusters within big clusters,
grouping  functionally correlated  genes  within
clusters,

e the maximization of biological gene ordering using
MIPS categonzation, and

e using less computaton tme than those obtained
by optimal leaf ordering in hierarchical clustenng
solution.

2.  Existing approaches
2.1 Distance measioe

The most popular and probably most simple measures for
finding global similanty between genes are the Pearson
correlation, a statstcal measure of lincar dependence
between random variables.

LetX=x,x,,...,: x and Y=y, y,, ...,y bethe expression
vectars of the two genes in terms of log-transformed
microarray gene expression data oblamed over a series
of & experiments. Using Pearson correlation the distance
between gene X and ¥ can be formulated as

c,~1-P,, 0
where P represents the centered Pearson correlation and is
defined as

15— X||y-F
== - = : 2)

where X and a_are the mean and standard deviation of the
gene X, respectively.

2.2 Gene ordering methods

Hicrarchical clustering does not detenmine unique clusters.
Thus the user has to determme which of the subtrees are
clusters and which subtrees are only a part of a bigger
cluster. So in the framework of hierarchical clustering a
gene ordermg algonthm helps the user to dentify clusters
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by means of visual display and interpret the data ( Bar-Josceph
ef al 2001), whereas, in patitive clustering clusters are
identified by the algonthm automatcally and the solutions
are robust and not sensible to noise (Tamayo er al 1999)
like hierarchical clustering. For partitive clustering based
approaches as well as for hierarchical clustering approaches
microarray gene ordering (MGO) withm clusters using
gene expression information s necessary for the following
rCAsOns:

(1)  Gene ordenng helps to dentify subclusters in big
clusters by means of visual mspection of the ordered
gene expression data (Bar-Joseph er af 2001).

(1) Genes that are adjacent in a linear ordering are
often functionally co-regulated and involved in

the same cellular process (Bar-Joseph et af 2001).
Biological analysis is often done in the context of
this linear ordering.

(1i1) The relationships among the genes m a particular
cluster generated by partitive clustering algorithims
are generally lost. This relanonship (closer or
distant) among genes within clusters can be
obtained using gene ordenng approaches.

{iv) It provides smooth display of clustered genes,
where the functionally related genes are nearer in

the ordering.

Ideally, one would like to obtain a linear order of all genes
that puts similar genes close to cach other; such that for
any two consecutive genes the distance between them is
small. So, gene ordering problem is similar to TSP (Pal ef af
2006) where, cities are ordered mstead of genes (Bied] er af
2001; Ray et af 2007; Tsai ef of 2004). Let {1.2, ..., n} be
the labels of the n cities and € = [¢ | bean n = n distance
matrix where ¢, denotes the distance of traveling from city
i to city j. The TSP is the problem of finding the shortest
closed route among # cities, having as input the complete
distance matrix among all cities. The total cost 4 of a TSP
tour is given by

A(n)= ZC +0,,. (3)

The objective is to find a permutation of the » cities, which
has minimum distance. Similarly, an optimal gene order
can be obtained by minimizing the summation of gene
expression distances (or maxmizing summation of gene
expression similanties) between pairs of adjacent genes in
a hinear ordermg 1.2, 7. This can be formulated as {Biedl
efal 2001)

Fm =Y, Cpuis (4)

d=l
where » is the number of genes and € 18 the distance/
sumlarity between two genes @ and @ + 1 obtained from
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distance/similarity matnx, The formula (eq. 4) for optimal
gene ordering is the same as wsed o TSP, except the
distance {rom the last gene o first gene, which is omitted,
as the tour is not a circular one. In the related investigations,
FRAG GALK (Ray ef af 2007) and HeSGA (heterogencous
selection genetic algorithm { Tsal ef af 2004), was applied to
order genes of the whole dataset, and consequently clustering
information was missing from the ordenng solution.

A method of ordenng genes for a partitive clustenng
solution is currently missing. Here, we define the summation
of pene expression distances for a paritive clustering
soluton as

F(m=32 Ch )

where £ is the total number of clusters, n is the number of
genes i clusterj, and € isthe distance/similarity between
two genes @ and i + 1 in cluster /.

In this mmvestigation we have used two different gene
ordering algonthms, FRAG GALK (Ray ef af 2007) and
Concorde’s TSP solver (Applegate ef af 2003), o order genes
of individual clusters found by SOM, as they can obtain the
optimal order of cities to many of the TSPLIB instances; the
largest having 13,509 and 15,112 eities, respectively. While
FRAG GALK is a genetic algorithm (GA) (Pal et af 2006)
based TSP solver, Concorde 15 a linear programming based
TSP solver and much slower than FRAG GALK. Here we
briefly discuss the varous steps used in FRAG GALK,
which are also available in Ray er af (2007). The steps are:

Step [: Create the sting representation (chromosome of
GA) for a gene order (an aray of » integers), which 1s a
permutation of 1, 2, - | » with nearest-neighbor (NF)
heunstic. Repeat this step o form the initial population of
GA.

Step 2: The NF heunstic is applied on each chromosome
probabilistcally.

Step 30 Each chromosome is upgraded to local optimal
solution using chained LK heunstic { Applegate ef af 2003)
probabilistcally.

Step 4 Fitness of the entire population is evaluated and
clitism is wsed, so that the fittest siring among the child
population and the parent population is passed into the child
population.
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Step 5 Using the evaluated fitness of entire population,
lincar normmalized selection procedure is used.

Step 6: Chromosomes are now distributed randomly and
modified order erossover operator is applied between two
consceutive chromosomes probabihstcally,

Step 7: Simple inversion mutation (SIM) is performed on
cach string probabilistically.

Step & Generation count of GA 1s incremented and 1f it is
less than the maximum number of generations (predefined)
then from step 2 to step 6 are repeated.

3. Materials and methods
3.1 Description of data sets

In the present investigation, data sets like cell eyele (Sherlock
et af 2001), yeast complex (Eisen ef af 1998; Bar-Joseph ef
al 2001), all yeast (Eisen ef al 1998, Website: Ewsenlab:
hitpvana bl gonv EisenData hin)  and  fibroblast  (Iyer
ef al 1999) are chosen. Table 1 shows the name of the data
sets, number of genes in each dataset, number of biological
gene categories, name of experiment types and number of
time points under each type, and finally the total number of
time points for a particular dataset. The first three data sets
of Saccharomyees cerevisiae consist of 632, 979 and 6221
genes, and 184, 79 and 80 time points, respectively. The genes
in the three data sets are classified according to the top level
classification {hierarchical structure) of Munich Information
for Protein Sequences (MIPS) (htip:Awwwmips.com) into
16, 16, and 18 categories, respectively. For the cell eyele
data, first we have downloaded 652 cell cycle regulated
gene names from the MIPS website. These gene names are
then uploaded in Stanford Microarray Database (Sherlock
ef af 2001) and corresponding gene expression values are
downloaded with default parameters by selectung all the cell
cyele, sporulation, heat shock and diauxic shift expeniments.
The fibroblast dataset consists of 517 genes and 18 tme
points related to the response of human fibroblasts to serum.
According to gene omnibus (GO) annotation, 517 fibroblast
genes are distributed in 1347 categories. Alier downloading,
the order of genes (along with their expression vectors) is
randomized in each dataset to remove initial gene order
bias.

Table 1. Summary for different microarray data sets

Dataset MNo. of genes  Category Experiments performed Total

Cell cycle 652 MIPS 16 Cell cycle 93 Sporulation 9 Shock 56 Diauxic shift 26 184

Yeast complex a4y MIPS 16 Cell cvcle Sporulation 7+4 Shock 6+4+4  Diauxic shift 7 79
I8+14+13

All veast 6221 MIPS 18 Cell cycle 60 Sporulation 13 Diauxic shift 7 it

Fibroblast 517 GO 1347 Serum Cwcloheximide 6 1%

response 12
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32 New hybrid algorithm for ordering genes in
partitive clustering

It 15 mentioned in § 2.2 that FRAG GALK is applied
separately on each of the gene clusters found by SOM 1o
identily subelusters within large clusters, and to group the
functionally correlated genes within clusters. The number of
nodes/clusters of SOM are chosen according to the number
of MIPS categories (p level of hierarchical tree) for yeast
data, and available information in Sharan ef af (2003) for
fibroblast data.

4. Biological inter pretation

In case of cell eyele, yeast complex, and all yeast data
the MIPS functional categonzation is available for most
of the genes. The categorization is hierarchical m nature
and allows a gene to belong to more than one category. A
biological score, that s different from the similanty/distance
measures, 15 used to evaluate the final gene ordering. Each
gene that has undergone MIPS categorization can belong
o one or more category, while there are many unclassified
genes also (no category). A vector Flg) = (v, v, ... . v])1s
used to represent the category stats of each gene g, where §
is the number of categories. The value of v 15 1 ifgene g is in
the jth category; otherwise is zero. Based on the information
about cateporization, the score of a gene order for multiple
class genes s defined as (Tsai ef af 2004)

M=l
S(n)= ZG(E_”E.HL]’ (©)
b=l

where V 1s the number of genes, g and g are the adjacent
genes and Glg, g, ) 1s defined as

G(g,:8.)= E’f'ig LV (Zi),s (7

dm]

where F(g) represents the kth entry of vector Vg).
For example consider the genes g, g, ... , g., which
are classified into 15 categories and represented by the
following vectors:

Mg, )= (1.0,1.1.0.0.0.0,0.0,0,0,0,0.0)

Flg, b= (1 L1, 1.0.0.0.0,0.0,0,0,0.0.0)

Hg,)=(0,0,1.0,0,0,0,0,1.0,0,0,0,0,0)

Meg,) = (0,0,0,1,1,0,0,0,0,1,0,0,0,0,0) and

Flg b= (00,00, 1.0.0.0.0,1.0,0,00.0).

Considering the gene order g,.2,.2,.8,.8..

Lﬁg,gl} =3, Lu{g_l,gj =1, Hg!,gJ =), E{gygjj =2, and

Sin)=Glg.g) + Glg, g Glgg )+ Glg.g)
=34+1+0+2=6
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Using sconng function S{n), a gene ordening would have
a higher score when more genes within the same group are
aligned nextto cach other. So higher values of S(n) are better
and can be used to evaluate the goodness of a particular gene
order.

5. Experimental results

Experiments of gene ordenng are conducted in Matlab 7 on
Sun Fire ¥V 890 (1.2 GHzand 8 GB RAM). The codes for Bar-
Joseph et al’s (2001) leaf ordering in hierarchical clustering
solution are downloaded from (Venet 2003). Performance of
the proposed FRAG GALK for gene ordering is compared
mainly with Concorde’s linear programming algonthm and
Bar-Joseph et al’s method. SOM i1s available in Expander
{Sharan ef af 2003) and used with 16, 16, and 18 clusters
for clustering cell cyele, yeast complex, and all yeast data
sets, respectively, as genes in these datasets are classified
according to MIPS into 16, 16, and 18 functional categories.
For fibroblast data SOM 1s used with 6 clusters as 6 gene
clusters are identified in Sharan ef af (2003). Finally FRAG
GALK and Concorde are applied separately on the gene
clusters obtained by S0OM, and Bar-Joseph et al’s method is
applied on the average Imkage based hierarchical clustering
solution for cach dataset.

5.1 Relevance of gene ordering in pavtitive clustering

To show the utlity of the hybrd method i identifying
different subclusters within big clusters and grouping the
functionally correlated genes within clusters, here for
illustraton, the visual displays are presented for fibroblast
{Figure la, b) and yeast complex (Figure 1e, d) data. Using
SOM fibroblast genes are first clustered in 6 clusters (stated
previously). Visual display of these 6 clusters is shown in
figure la. Observing this visual pattern no subcluster can be
identified in each cluster. After applying FRAG GALK on
cach cluster, closely related genes with similar expressions
are aligned next to each other as shown in Figure 1b. Gene
ordenng here suggests that 2 or more subclusters exists at
least in clusters 1, 4 and 6, and it will be useful o increase
the number of nodes of SOM to at least 9 for fibroblast data.
MNote that, lyer e af (1999) identified 10 clusters of genes for
this data using average linkage clustering,

Yeast Complex data is first clustered in 16 groups using
SOM. Visual display of first 6 clusters/groups s shown
in figure le. When the genes are ordered in cach cluster
with FRAG GALK, 4, 4, 5, and 2 distinct subclusters
are wdentified using visual display in clusters 2, 3, 4, and
5 respectively. Genes names along with their functional
categories (indexes) for each subcluster within cluster 4 are
shown 1n table 2 for the purpose of illustration. Names of
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(a) (b)

Figure 1.

(c) (d)

Comparing SOM with *SOM+FRAG _GALK’ for Fibroblast data (a and b respectively) and Yeast Complex data (¢ and

d respectively). The expression profiles are represented as lines of coloured boxes using Expander (Sharan er aof 2003), each of which

corresponds to a single experiment.

Table 2. Gene subclusters found by SOM+FRAG GALK and their functional category indexes in cluster 4 for veast complex data

Cluster Subcluster Gienes Functional index
4 1 YLROOIC, YNLI21C, YLRITOC, YMLII2W, YBRIGOW, YBRITIW, YLR3ITRC, i)
YMLO19W, YPL234C, YORO3 W
2 YEROGHC, YLLOSOC, YGL200C, YMLOI2W, YPL2ZIRW, YELOROW, YDROROC, 6 and 9
YMNLIS3C, YKLI122C, YLR292C, YGL112C, YLR268W YLR44TC
3 YBROTOW, YNLOZ1C, YBLOOZC, YDR225W, YDR224C, YNLOZOW, YBROODOC, 3.4, and 7
YBLOOZW, YPL2560
4 YILOZ3W, YPRIOIW, YMRO61W, YGR195W, YOR244W, YLRI105C, YDLMM3C, 4
Y PROSOW, YPROS TW
5 YGLI0OW, YMNL261W, YKL144C, YNLI51C, YILODEC, YER 148W T

the functional categories corresponding to their indexes are
shown in table 3. These subclusters of highly coregulated
genes camnot be identified if SOM is used alone. For example,
all the 9 genes in the 3rd subcluster of cluster 4 (YBROLOW,
YMNLO3ZC, YBLOOZC, YDR225W, YDR224C, YNLO3OW,
YBROOOC, YBLOO2ZW and YPL256C) are involved in cell
cycle and DNA processing, transeription, and protein with
binding function or cofactor requirement. While using S0M
these 9 genes are distributed in the cluster 4, afier ordering
genes in cluster 4 of SOM with FRAG GALK, they (the
9 genes) are tghtly grouped and identified easily using
visual display. With all these ordered and clustered genes
one can easily zoom in a useful small subset of genes ina

cluster which cannot be done alone with partitive clustering
methods. In a similar way, subelusters within big clusters are
idenufied by Concorde for all the data sets.

52 Comparative Performance of Aleorithms

The ultimate goal of an ordering algorithm & 1o order the
genes in a way that is biologically meaningful. In this
regard, table 4 compares the performance of our proposed
two hybrd approaches using FRAG GALK and Concorde
with Bar-loseph’s (Bar-Joseph ef al 2001) leal ordering
in hierarchical clustering solution in terms of the F| value
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Table3. Indexes and corresponding functional category
Functional index  Corresponding functional category

1 Metabolism

2 Energy

3 Cell cycle and DNA processing

4 Transcription

5 Protein synthesis

[ Protein fate (folding, modification,

destination)
7 Protein with binding function or cofactor

redquirement
Protein activity regulation

9 Cellular transport, transport facilitation and
transport routes

Table 4. Summation of gene expression distances (/).
biological score (5), and computation time of ordering in seconds
{within parenthesis) for different algorithms

Diata sets

Algorithm Cell cycle  Yeastcomplex  All veast
SOM 442 494 34716 3446.00

i34 792 1730
SOM +FRAG 301.72 330.54 1914915
GALK 386(0.7) 1011 (1.13) 2356 (125)
S0OM 301.72 33054 191915
+eoncorde 386 (341) 1011 (1526) 2356 (2273)
Bar-Joseph 30051 330017 1920.82

381 (1) 1024(3.34) 2350 {1989)

{eq. 51 8 wvalue (eqg. 6), and computaon time. The
performance of an algorithm s better if F, value is smaller
and 8 value 1s larger. For Fibroblast data, no biological score
is provided as genes i the same biologieal group for this data
are rare. From the biological scores (table 4), it is evident
that FRAG GALK provides biologically comparable gene
order with respect to Concorde and sometimes supenor
gene order than ‘leaf ordering m hierarchical clustering
solution’ by Bar-Joseph e af (2001), for all datasets in least
computational time. For example, FRAG GALK took 125
seconds to order all yeast data (6221 genes) as compared to
Concorde and Bar-Joseph ef al’s method which took 2272
and 1989 seconds respectively.

6. Conclusion

A hybnd method of gene ordering in partitive clustering and
its utility in finding useful subgroups of genes within cluster,
grouping  functionally cormelated genes within  clusters,
maximization of biological gene ordenng using MIPS
categonzation, and minimization of computation time, are
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demonstrated. The hybrid approach not only determines
unique  clusters, but also  preserves  the  biologically
meamnglul relationships among the genes within clusters.
Morcover, the hybad method using SOM with FRAG
GALK not only requires less computation time (125 s for
18 clusters of all yeast data) but also less amount of RAM
(0.1 GB RAM for clusters with 1000 genes) than onginal
Bar-Joseph’s method (1989 s and 2 GB RAM for all yeast
data). With the hybrid approaches one can casily zoom ina
useful small subset of genes in a cluster, which cannot be
done alone with partitive clustering methods.

In FRAG GALK, parallel searching (with large
population i genetic algorithm) for optimal gene order i
gene clusters (closely related genes) 1s performed. While this
results in reduced searching time for FRAG GALK than
Concorde and Bar-Joseph's method, in terms of biological
score FRAG GALK 1s comparable with Concorde and
sometimes superior to Bar-Joseph’s method. It 15 evident
from the experimental results that, the combmation of
partitive clustering and FRAG GALK s a promising tool
for microarray gene expression analysis,
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