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Abstract

Using first and second order supersymmetry formalism we obtain a class of exactly solvable potentials subject to moving boundary condition.
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1. Introduction

Time dependent Schrisdinger equations appear in many areas of quanium mechanics. Among the various time dependent prob-
lems, those subjected to moving boundary conditions are very interesting. Such a system was first considered by Fermi [1] in
comnection with the siudy of cosmic radiation. Subsequently quantised moving boundary problems have been studied by g number
of authors [2-11]. However, in most cases exact solutions have been obtained for a particle in a constant or harmonic oscillator
potential subjected 1o moving boundary condition. In view of this it is of some interest 1o oblain other exactly solvable potentials
subject o moving boundary conditions.

A standard approach to the moving boundary problems is to transform them to problems with fixed boundary. In case the fixed
boundary problem is exactly solvable then the original problem also becomes exactly solvable. However, there are not many time
independent potentials which are solvable over a fixed segment of the real line. On the other hand, it is well known that the class of
exactly solvable potentials can be enlarged using, for example, supersymmetric (SUSY) or Darboux formalism [12,13]. In the case
of time dependent problems it is possible o enlarge the class of exactly solvable potentials by directly applying the time dependent
Darboux ransformation [14-16]. However here we plan 1o follow a somewhat simpler procedure. More precisely we shall first apply
the first (and second) order time independent Darboux trans formation and subsequently use the separation of vanable technigue to
obtain new time dependent potentials. In particular, we shall start with the square well potential with a moving right boundary and
construct exactly solvable moving boundary potentials using first order as well as higher order SUSY formalism. The organisation
of the Letter is as follows: in Section 2, we outlineg separation of vardable approach o moving boundary problems; in Section 3,
we apply SUSY formalism to construct new exactly solvable moving boundary problems and finally Section 4 is devoted to a
conclusion.
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2. Separation of variables approach to Schridinger equation with a moving boundary

The Schridinger equation

[— "_1 4: Hx.r}]yfr{x,r} =fw (1)

dx
endowed with the boundary condition
Ui, 1) =0, Y(L(r),1)=0 (2)

describes the moving boundary problem in quantum mechanics. Here L(r) defines the expansion of the boundary.
We shall now use the separation of variable technique [ 17,18] to transform Eg. (1) to a problem with fixed boundary. To do this
let us transform the vadable x+— g as

sk
L)’
We now consider the potential to be of the form

q O0=g=<1. (3

Vig.t) = g(O)Vig) + Ulg.1) + gol1). )
Let us now transform the wave function as
Wig, 1) — 9% (g.1). (5)
Using the transformations (3) and (3), Eq. (1) becomes
o : P a2 i 2 : .
e el [—2.‘,-"5-' + fqi{f}ur}] +x [—I L (-‘,’-'f-') } +i2 gL L) —iL2() ‘f?]
dg-  dg de - dg dg dat
. 8 )
+xL2O[s0V (@) + Ulg. 0] =i T L20) — LADgo (D1 (6)

For separability, the coefficient of %ﬂ; should be a function of g. Thus we get

&
dig.t)= ﬂ{f}l? + bBlg) + cit), 7

where air) = %i{r}L{r}. Let us choose big) =0 and
'
cft) = —i fg:]{x}ld:.' - :1’ log L{t). (&)
0
On using (7) and (8) in Eq. (6) we get

HZ
P,

o2 [&LJ’U}EU}:{E +U(g.0L2(t) + g(r) P{:;}Ll{r}]x =i d}f LA, (9)

Now writing

x(g.1) = 0(g)T(r) (10)
we oblam from (9)
e . L3 0ie® + L20en Vig) + LAOU( r}—'fLI{r} (11)
0 1 q £ q gq.r)y=i T s

where primes represent derivative with respect to g. Now two cases may arise depending on the choice of Uig . 1):

Case 1: Let us consider Uig, 1) = 0. In this case Eq. (11) separates if

(1) gir)= (12)

L2ty
5 e 0 - _{I
(2) LP’{r}L{r} =const=¢p, 1e., Lit)= 1I'.I'I.Jq_lfl + put +v,  whereeop = Av — 'II (13}
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1t may be noted that in this case the boundary is moving with non-uniform velocity. Now from Eq. (11) we get

d*Q
dg?

+ gl =0, (14}

where v, (g) = Vig) + ‘-41:;1 and ¢ 15 the separation constant, and

T i€

e (13}

T L=it)

1.e.,
I
i 1

T{f} = L’_‘FT[”. where T{f} = f LI_M dx. flﬁ}

0
Case 11: We now take
1 G
Uig. 1) =—:4L{f}|£.{f}l.rr. (17}

MNote that unlike in case 1, the moving boundary is not subject 1o any particular law and may be chosen according to a particular
situation. Then using (17) in (11} it can be shown that the condition of separability requires gir) = F—’llT] Therefore from Eq. (11)
we again obtain two equations, one of which is

d*Q

dg?

+Vig)Q=¢Q (18)

and other is identical with Eq. (13).

Thus in the first case if vy (g) is solvable potential then the original time dependent potential is also solvable. In the second case
the original tme dependent problem is solvable if ';"{q}l is a solvable potential. However in the second case there is a larger family
of separable (consequently a larger family of exactly solvable) models as U{g, 1) % 0. In either case the wavefunctions are of the
form

Vix. )= cue® D Qulx, T, (1), (19)

L

3. Construction of potentials via SUSY

Here we shall construct some potentials appropriate for moving boundary problems using SUSY formalism [12,13]. In order 1o
have a fairly general class of potentials we consider U (g, 1) # 0 and for simplicity we choose go(1) = 0.
As mentioned in the last section it is now necessary o choose Voand we consider a square well potential of unit length [12,13]

Vigl=—n?, 0<g<l. (20
The energy spectrum and eigenfunctions of this potential are well known and are given by [12,13]

en=nin+2)x° and Qulg) x sin[{n + l}Irq]. (21)
Then from Eq. (10} it follows that

g, 1) = OQuig)Tit) o sin[{n b l}l.ﬂ'q]e_‘.‘c“' L (22)
where () is given by Eq. (16). Then from (4) the ime dependent potential is found 1o be
g By s
Vix.t)=— x°, O=x<g L(t). i23)

LY1)  4L()
The wavefunctions can be found from (5) and are given by
1 dLay 2 . n+1imx
5, 1) o s F 16T i 02 DX
Lit)

LAt

where in obtaining (24) we have used @ig.1) = ii{r}L{r ::Iql — .l_, log Lit). Thus under the moving boundary condition (2) the time
dependent Schridinger equation (1) 15 exactly solvable with the potential (23).

(24}
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3.1, New potential via first order SUSY

In first order SUSY formalism [12,13] two Hamiltonians Hp | = ATAT are inlertwined through two first order differential
operators of the form A~ = :l:% + wix), wix) being the superpotential. The two potentials Vi = (w® 4 w’) are isospectral except
perhaps the ground state. To cast the potential (207 into the SUSY form, we consider the superpotential to be of the form

wig)=—mcolimg). (235)
Then the partner potentials are of the form

V_ig)= wl{q}l —w'(g) = = (26)

Vilg)=wig) +w'ig) :..1'2[2 cosec (mTg) — 1]. (27)

1t is seen that V_ig) is a square well of unit length as in Eq. (20). Also the wavefunctions of Hy | are related 1o each other because
of SUSY and using (21) the wavefunctions of V. {g) are found 0 be

d
Onslg) x |:d_q + wl[rf}]QmT-n-l[q}- (28)
From (5) and (10} the wavelunctions are found o be
by Pl 2 . + 2im T + 27
g (X, 1) Lf’«m'l et (n42) uns(u) - cn[( e ) sin( ( }Tr) ; (29)
NIATY Lit) Lit) Lit)
where €,4 = €y =1(n + 1)(n +3).
Thus the time dependent potential is given by
x? Af TX E{r} 4
Vilx.Hl=— 21.'0!5‘41"( -1 - x=, 0= x= Lir). (30
L=(r) Lir) 4L01)

This 1s the new potential which solves exactly the Schrddinger equation (1) under the moving boundary condition (2).
3.2 New potentials via second ovder SUSY

In contrast to the previous case, in second order SUSY formalism the intertwining operators are second order differential opera-
tors of the form [19-21]

d* d
=—— + Blgl— +riB),
dg- dg
A (el — N0l @0), (9
= W) +1(q)
RN R B et
Y{ﬁ}'—_ﬁ'F(E) +?+I—(T) i (31)

where Q? are eigenfunctions of Hy (the Hamilonian corresponding to the exactly solvable potential Vy) comresponding o the
cigenvalues f? and W; ;41 =( Q‘j Q‘jil - Qil].’ Q?T.l} is the associated Wronskian. Then the isospectral pariner potential Vaig) of
Volg) obtained via second order SUSY formalism is given by [19]

:Z
Va(q) = Volg) =2

log W j+1ig). (32)

g
The wave lunctions Q?{q} and Q_l;{q} corresponding o Hy and Hz are connected by
0 0 0
| @; @i & |
g 0%, 0f | Joi+1#k (33)
i o i
g_.l' g-4-.'i_|l'+ | QR
The eigenfunctions obtained from Q‘j and Qiu]'-;-l are given by

}I -D }t] g e TRETLL
Qiig) Qilg) W 410@) |

i3 Q"
Fl o —I-——, 2lg) o B o (34)
Wi is1lg) Wi is1ig)
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Here the eigenfunctions fig). glg) in (34) are not acceptable because they cannot be normalised.

Therefore by using different consecutive levels of the exactly solvable potential Vyig) we can construct different Va{g). Then the
exactly solvable time dependent potentials Vi(x, 1) and Vaix, 1) can be obtained from (4). The wavefunctions of the comresponding
time dependent potentials are given by

1’!r_;:r]—{_r r}l—,-_u-‘iﬁi'.lr :]Q:]?(L{ }) Teit) imsj. i+ 1) (35)

Here we can generate a large class of exactly solvable time dependent potentials as we can use any two conseculive levels.
To obtain new potentials, we take the starting potential Vyig) to be the same as Vig) in (20). The comresponding time dependent
counterpart of Vo(g) is Volx, 1) and states "(x, 1) are the same as in Egs. (23) and (24), respectively.

3.2.1. Construction of Valg) for j=10
From (21) we find
Of =sinirg) and @ =sin(27g) (36)
s0 that using (32) and (33) we get

Valg) = (6 cosec’ (mg) — 1), (37)
Qﬁ{q} =2 sin[{n + 1}..1':;] {3 cosec (mg) — {n: +2n+ 3}} —3n+ I}II'ZL'Ul{IIq}L'US[{J'! 4 l}l.n'q]. (38)
Therefore in this case the exactly solvable time dependent potential is
7? 5
A g ﬁmscuz( mx) q]-L£9 2 0< x <L), (39)
> L=(t) Lit) 4Lt

and the corresponding wavefunctions are found o be (using Eqs. (35) and ( 38))

i Al gL v ienrmf . | (n+1mx af mx o
Yrolx ) o et Ll e sinf ———— |{ 3cosec”| — —{n‘ +2n+3)

& L) Lir) Lit)
—3(n+ l}le( {x}) *m[%]) n#£0,1, 40

whem epp=6mp=¢, = Tn (n+2).

3.2.2. Construction af Valg) for j =1
For the construction of the potential Va{g), here we shall require the first and second excited states of the potential Vyig) and
they are given by
OV =sin(2rg) and QY =sin(3mg). (1)
Thus from (32) we find

Vata) w2[135 4 160cos(2mg) + dcos(dmg) + cos(6mg)] cosec” (mg) 42)
q)= 2
A 2(3 + 2cos(27q) )2

and
T .
ToeosecT(mg) 4 . 2 i
2 (g) = cos{mgil (™ —3n+ 2)sin|in+ 4mg |+ (n~ +Tr + 12)sin| (n — 2)mg
0@ = 35 3 cosarqyy (T )sin[(n + 4)mq] + )sin[(n —2)7q] |
“+ 2{:13 +2n — 8) sin[{n + l}l_rrq]}_ (43)
The corresponding exactly solvable ime dependent potential and wavefunctions are found o be
2 imx dmx (iR e
T-[135 + 160cos( 5= ) + 4 cos( =) +Lm{—}|u.w:d_—{—}l Fir
Valx.t) = Lir) Lir) Lin Lir) (1) .I’I, 0<x< L, i44)
2(3 +2L{’}5{1El]}} AL(r)

and

2 rvoand X
o 1 Lipp 2 oo T eosee| ) TX n+ dymx
Wi, 1) o PRt i —hrl( |: ]I {HI —3n42) sin[g

W Lt} 2(3 + 2cos( "“}} Lir) Lir)
+ (n2 +7n+12) .‘-t-in|:{" L{‘};’T r]I 2(n2+2n —8) sm|:{" Llri“]), (45)

where epx=eup =€y =n{n +2),n£1,2.



LK. Jana, F A 2373

4. Conclusion

After transforming the moving boundary to a fixed one we oblained a number of exactly solvable potentials with moving
boundaries using SUSY formalism. In partticular, we have applied first as well as second order SUSY formalism o the square
well potential and obtained a number of exactly solvable potentials with moving right boundary. We believe the present method
may be applied 1o other potentials to generate new exactly solvable potentials with moving boundary.
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