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Ahstract

A simple method based on polynomial approximation of a function is employed to obtain approximate solution of a class of
singular integral equations of the second kind. For a hypersingular integral equation of the second kind, this method avoids the
complex function-theoretic method and produces the known exact solution to Prandtl’s integral equation as a special case. For a
particular singular integro-differential equation of the second kind, this also produces an approximate solution which compares
favourably with numerical results obtained by various Galerkin methods. The convergence of the method for both the equations is
also established.
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1. Introduction

A hypersingular integral equation of the second kind, over a finite interval, as given by

22
poy 8 f Mr}?dr:f{x}, —lex<l, (1.1)
b 1 (f —x)°

with ¢v{ £1) =10, is a generalisation of the elliptic wing case of Prandtl’s equation. Here 2(= 00} is a known constant and
Six) is a known function. The integral in (1.1) is understood in the sense of Hadamard finite pant and is hypersingular.
The exact solution of Eg. (1.1) was obtained earlierin [2] in principle by reducing it into a differential Riemann—Hilbert
problem on the sliti—1, 1). However, the final result involves evaluation of an integral which may not be straightforeard
for a general f(x). Again, the Cauchy-type singular integro-differential equation

L ) ,
_E—zfl{r—ﬂdr—j{x}, —l=x=1, A=10, {1.2)
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with the usual understanding of the Cauchy principal value integral, was solved approximately in [ 1], with end conditions
1) =0, for a special forcing function f({x) = —x /2, employing three methods which are essentially based on
Galerkin's method afier recasting Eg. (1.2) into another one where the derivative occurs inside the integral. This
equation with f{x) = —x /2 arises in the study of a problem conceming heat conduction and radiation and in a number
of other situations involving solution of two-dimensional Laplace’s equation in a half plane, under special types of
mixed boundary conditions. In this paper both Egs. (1.1) and (1.2} are solved approximately by using a polynomial
approximation, which appears to be simple and swraightforward in comparison with the reduction o a differential
Riemann—Hilbert problem for Eq. (1.1) used in [2] and the Galerkin methods for Eq. (1.2) usedin [1].

2. Method of solution
The unknown function ¢y x) of the hypersingular integral equation (1.1) and Cauchy integro-differential equation
(1.2) with ¢h{£1) = 0 can be represented in the form
¢l =(1— ) Ppix),  —1<x<1, 2.1)

where tr( x) is a well-behaved unknown function of v inthe interval —1 = x = 1. Weapproximate the unknown function
i x) by means of a polynomial of degree n, as given by

L

b~ Y apd, (22)

J=0
where a’s (f =0, 1, ... n) are unknown constants, then the onginal integral equation (1.1) reduces o

L

" i i
Yool -2 aw]=Fw, —1<x<l, (2.3)
=0 "
whene
1— '”
Aplx) = f Ll £ = —mx,
(r—x)
1 1i2 i
1—1t 4 | 1 —1 I,I i+ 1)/2 :
Aj(x) g=) dr:—r:_r-"_|+E + ' T ,” ) i1, i=12,.... (2.4)
- ST T+
and
Foy=—tWo.  exed, (2.5)
(1—x2)l=
with A:I.{.r}l denoting the derivative of A;(x). Eq. (2.3) can be wrillen as
o
Y aiCilx)=Flx), —l<x<l, (2.6)
=0
where
. o .
Cilx)=x'——4 i(x). (2.7
M
The unknown constants a; (f=10.1,.._, n) are now oblamed by putting x=3; (i =0, 1, .. .. n) in (2.6), where x;'s

are distinet and —1 = x; = | and are 1o be chosen suitably. Thus, we obtain a system of (r + 1) linear equations, given
by

Y aCi=F. i=01....n, (28)



whiene
C_,I'J' = c_,l' (x), Fi= (2.9)

This determines the unknowns a;(j =0, 1,. ., n) in principle.
Using a similar approximation for ¢ x), the Cauchy integro-differential equation (1.2) becomes

L

Y aiBix)=G(x), —l<x=<l, (2.10)
j=0
whene
o Amx
By(x) = — I Ty + } :
-1 : +1 ]
Jrl =t =i+ 1! A ;
‘ — i =1 'l
B{x) ! Y +2,-’1J.{.r}l, i=1L2.... (2.11)
and
(x
Gix) = # (2.12)
The unknown constantsa; (j =0.1, ., n) are now obtained by putting x =x; ({=0,1, ..., n)n (2.10) where s

are distinet and —1 <= x; = 1. Thus, we obtain a system of (r + 1) linear equations given by

n

Y ajBp=G, I=0.1,....n, (2.13)
j=0

wherne
Bj=Bj(xp), Gi=Gx). (2.14)

We now illustrate the method for some special forms of fix) in{1.1) and (1.2).

3. IMusirative examples

The hypersingular integral equation { 1.1) reduces to Prandil’s equation for

T

%= T f=0 (3.1)
and
f@) =202, (3.2)
i
where § and k are constants. Thus,
2nk 3
F(x)=— (33)
f
and
. | 1 ¥ .
Cilx)y=x!— EAJ;{I}, F=0;000 (34)
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Table 1
WValue of rix) at x

Xy 1.0 0z L4 .6 LIk} 1.0
ixg)

Present method (LA H6E .61 LR (0.029 L]
Method of [ 1] (L.069 067 1116 L7 (028 i

Substituting (3.3) and (3.4) in(2.6) and comparing the coefficients of like powers of x from both sides of relation (2.6),
wi oblain

ai 0 (3.5)
=, )=tz == 1 ]
= Ypogs T
s Lhat
4k ¥ ¥
=5 - (1372, (3.6
hix) T Eﬁfﬂ{ ) )
This agrees completely with the result gquoted in [2] (with a rivial comection). It may be noted that the collocation
mthod Lo oblain the unknown constants a; (=0, 1., ... n) in (2.2} for this problem can be used. For simplicity we
choose for (3.3) Fix) = 2rn ichoosing k = 1, f§ = 1). Choosing n = 10 in expansion (2.2), the unknown constants
aj (j=01,..., 10y are determined from the linear system
10
Y aiCii=F, i=01,..., 10. (3.7)
=i
If we choose the collocation points as x; = :l:{-|;|-]lr', i=10,1,...,5, then the linear equations {3.7) produce
ap=244406, ai=ar=---=ap=0 (3.8)
so that (2.1) reduces to
ix) = 2.44406(1 — x )12 (3.9)

which is the same as (3.6)foar k=1, = 1.

For the linear system (2.8), the choice of the collocation points are somewhat arbitrary except that these are distinet.
Equispaced collocation points is chosen for convenience. Non-equispaced collocation points can also be chosen to
solve this problem. It is verified that use of non-equispaced points produce almost the same result given by (3.9).

For the limear system (2.13), we again choose n =10, and the collocation points as xp =—0.924, 1 =—-0807, x:=
—0.663, n=—0408, 13=—0223 =0, x=0209, r;=0.388, xx=0545 x=0.702, r;p=0.96landi=1.
Asin [1], wechoose fixv) = —x/2in{12)s0that Gix) = —x /4. The system of linear equations (2.13) now produces
ap =0.070, a; = 0000, ar =—0.024, a: =000, a3 = -0, as=—0.008, az=-—0.035, a; =0.011, az =
0.061, ay =—0.011, ajp = —0052. Using these coefficients, the value of ¢dix) at x = 0.2}k, k=01, .., 5, are
presented in Table 1. The values of ¢b (x) obtained in [ 1] atthese points are also given for comparison. It is obvious that
the results obtained by the present method compares favourably with the results obtained in [1]. The present choice
of collocation points which are not equispaced helps in casting the original problem of integro-differential equation
1.2y with fix) = —x/2 into a system of algebraic equations where appearance of ill-conditioned matrices have been
avoided altogether.

4. Error analysis

d.1. Forthe hypersingular integral eguation {1.1)

Substitution of ¢x) in terms of f{x) given by (2.1) into Eq. (1.1) produces an equation for {x), which can be
wrilten in the operator form

(I —aHWix)=glx), —-l<x<l, (4.1)
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where [ is the identity operator and H is the operator defined by

1 d (' (1—mb2
Hul(x) = - —f Qn{r}dr, -l =x=1. (4.2)
mdxJ _; f—x
Let Ly ix) = sinin 4+ 1)/ sin f with x = cos ! be the Chebyshev polynomial of the second kind. Then
HU, =—(n+ DU, nz0. (4.3)

Relation (4.3) shows that the operator H can be extended as a bounded linear operator from L {p) to Lip), where
Ly{p) is the space of functions square integrable with respect to the weight function p(x) = (1 —x ' and Li(p)is
the subspace of functions u € L{p) satisfying

lellT =Dtk + 1), iy, < 0, (4.4)
k=0
whene
g 1fZ
¢y = (—) Us (4.5)
n
and
1
{ne, u}p =f i e () de. (4.6)
-1

Again, the identity operator { is obviously a bounded linear operator from L {p) to Li{p). Thus, if we assume that
g € Lip), then (4.1) possesses g unigue solution ¢ € L {p) foreach g £ Lip).
If we now use the polynomial approximation (2.2) for i, then

L

Wix) = pulx) =) ajx’, (4.7)
J=0
Since x/ (j=0,1,2,..., n) can be expressed in terms of Chebyshev polynomials L (x) (( =0, 1, ..., Jhas (et [4])
ARy ;
4 Rl _ :
x = Zl(i) (k_l)luj_m[x}, (4.8)
k=0
W can express g () given by (4.7) as
i
puix) = biUi(x), (4.9)
1=l
where the coefficients b (i =0, 1,..., n) can be expressedin terms of a; (f=0,1, ..., i) and vice versa. The rght

side of (4.9) is now denoted by

L

X =Y cppylx), (4.10)

k=0

whene

To determine an error estimate in replacing i by p,,, we note that

e — pullt = It — 2eeln. (4.11)
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Following the reasoning given in [3, p. 309], it can be shown that, if g € C'[—1, 1], then

€p
1% —ually <2, (4.12)

where cp 15 a constant and » = 0. In our case, g(x) was taken to be a constant and is therefore a €™ function. Thus, rin
{4.12) can be chosen to be any arbitrary large positive integer, and thus the error decreases very rapidly as n increases.
Hence, the convergence is quite fast. This is also reflected in our numercal compulations.

4.2, Forthe hypersingular integral equation {1.2)

In this case also we use a similar analysis (o show that the emor in approximating g (v ) by & polynomial p, decreases
very rapidly as n increases. Here i x) satisfies the equation

(D—%C):&:G, Shegl; 4.13)
where C, [, respectively, denole the operators defined by
1 i —pt?
Cuix)= — ;n{r}dr, —l=x=1, (d.14)

RS ¥—Xx
and

3. padu X

Duix)y=(1 —x7) dr—mu, —l=x=1. {4.15)

Let T (x) = cosnll with v = cos {! be the Chebyshev polynomial of the first kind. Then
CU,=—Tus1, nzl (d.16)

This shows that the operator C can be extended as a bounded linear operator from L(u) to L{p) where L) is
the subspace of functions square integrable with respect to the weight function gix) = (1 — x2)~"? and L(g) is the
subspace of functions n € L) satisfying

Oo
Nt =Dtk + D o ) < 00, (4.17)
k=il
wherne
2 12
r.iu=(—) T; (4.18)
m
and
1
{u,u}_ﬁzf gl (u(r) de. (4. 19)
-1
Again,
B ita) AL TS ash (4.20)
HplX) = ——————— =Ty lx), nz=zl. 3
" {l—xl::ll'"“: n+1

This shows that I can be extended as a bounded linear operator from L () to L{g). Assuming G € L), we find that
Eq. (4.13) possesses a unigue solution o € Ly (p) for each G € Lip).

Following the same arguments as given in Section 4.1, we can prove that the error in approximating v (satisfying
(4.13)) by a polynomial p, can be estimated as

cl
"f:':"_f?n"l"-:n_r, i4.21)
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where o) s a constant and ris suchthat G € C'[—1, 1]. In our present computation G{x) is chosen as Gx)=—x /4 and
thus is a €™ function. Hence, r in (4.21) can be chosen very large so that the error becomes negligible as n increases,
and the convergence is quite fast
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