Role of infection on the stability of a predator—prey system with several
response functions—A comparative study

N. Bairagi”, P.K. Roy™", J. Chattopadhyay“*

“Centre for Mathematical Biology and Ecology, Depariment of Mathematics, Jadavpur University, Koflata-700032, India
hﬂqmrmrnr af Mathematics, Barasat Government College, Kollkata-70010 24, India
“Agricaltiural and Ecological Research Unit, Indian Stavistical Institwte, 203, BT, Road, Kolkata-700108, India

Abstract

In this paper, we have proposed and analyzed a mathematical model of an infected predator—prey system with different predators’
functional response. The existence and uniqueness of solutions are established and solutions are shown to be uniformly bounded for all
nonnegative initial values. Our overall mathematical and biological studies reveal that if the prey population is infected by a lethal
disease, coexistence of all three species (i.e. host, parasite and predator) for any of three functional responses is never possible but
different interesting dynamical behaviors are possible by varving two key parameters viz. the mte of infection and the attack rate on
susceptible prey. Interplay between these two factors vields a diverse army of biologically relevant behavior, including switching of

stahility, »xtinction and oscillatioe-

Kevwords: Susceptible population; Inlectead population: Local stability; Global stability; Linear mass action; Holling tvpe 11 and T functional response

1. Introduction

Ecology and Epidemiclogy are major fields of study in
their own right but there are some common features
between these systems. The effect of disease in ecological
system is an important issue from mathematical and
ecological point of view. Researchers are paying more
and more interest to merge these two important areas of
research (Hadeler and Freedman, 1989; Freedman, 199();
Beltrami and Carroll, 1994; Beretta and Kuang, 1998;
Venturino, 1995; Chattopadhyay and Arino, 1999; Chat-
topadhyay and Bairagi, 2001; Xiao and Chen, 2001;
Chattopadhyay and Pal, 2002; Venturino, 2002; Hethcote
et al., 2004). Eco-epidemiclogy is a new branch in
mathematical biology which considers both the ecological
and epidemiological issues simultaneously. Successful

invasion of a parasite into a host population and resulting
host—parasite dynamics can depend crucially on other
members of a host’s community such as predators (Hall
et al., 2005). On the other hand, predation intensity can
dramatically shape community structure and ecosystem
properties (Sih et al., 1985). Predation becomes particularly
interesting in hosi—parasite systems because predation itself
can strongly alter population dynamics of hosts and
parasites (Ives and Murray, 1997; Hudson et al, 199%8;
Packer et al., 2003; Dwyeret al., 2004). Predators may even
prevent successful invasion of parasites into host popula-
tion. Also, in most theoretical studies of host—parasite—
predation interactions, predator behavior is simplified and
isolated from an ecosystem (Packer et al., 2003). Another
important point is the choice of functional response which
is defined as the amount of prey catch per predator per unit
of time. The functional response encapsulates attributes of
both predator and prey biology. It is affected by prey
escape ahility, structure of the prey habitat and by the time
predator require to subdue and consume prey before
beginning to hunt again i.e. predator’s hunting ability
JAlstad, 2001; Anderson, 2001). Here, we propose
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a host—parasite-predator model and study how the
dynamics of the system depend on the infection rate,
attack rate and alko on the nature of the predators’
functional response.

Venturino (1995) studied an 87 or 815 models with disease
spread among the prey when there is logistic growth on the
predator population as well as on the prey and the predators
eat infected prey only. Chattopadhyay and Arino (1999)
proposed a three species eco-epidemiological model, namely,
sound prey (susceptible), infected prey (infective), and their
predator and found the conditions for local stability,
extinction and Hopf-bifurcation. Hethcote et al. (2004)
modified a predator—prey model with logistic growth in the
prey with an SIS disease in the prey population, They
assumed that infected prey are more vulnerable to predation
to susceptible prey, and consumed prey (both susceptible and
infected) contribute positive growth to the predator popula-
tion. Deficiencies in these models are that predators eat
infected prey only and consumption of infected prey
contribute positive growth to the predator population. But
in general cases, predators not only prey infected preys but
susceptible preys also. Again, it is frequently observed in
nature that consumption of infected prey becomes fatal to
the predator population. In such situations, one must keep in
mind that consumption of infected prey will contribute
negative growth in the predator population.

The most commonly wsed functional response in a
predator—prey interaction is linear. If a predator’s handling
time for prey is zero, then predation term follow a linear
mass-action functional response, A(N) and has the form
hiN) =aN, o being the attack rate and N being the prey
density. It implies that there will be no upper limit to the
prey consumption rate of the predator, a prediction that is
too simple to reflect nature (but see Korpimaki and
Norrdahl, 1991). Although, the mass-action functional
response s mathematically convenient, predators often
become satiated in nature. Holling type I and 111
functional responses (Holling, 1959) have this satiated
property when prey density is high. The type 1l response, is
an asymptotic curve that decelerates constantly as prey
number increase due to the time it takes the predator to
manipulates its prey (i.e. the handling time). The asympiote
reflects the maximum attack rate. The mathematical
representation of most commonly used type Il form is
"j_"., a being the halfsaturation constant. The type Il
response function is sigmoid, rising slowly when prey are
rare, accelerating when they become more abundant, and
finally reaching a saturated upper limit. The mthemanc&l
representation of a type IIl functional response is —s
Holling (1939), in his classical paper, suggested that t,Ilme
type Il responses are characteristic of predators which have
no learning ability or when given only one type of prey for
which to search, whereas type 11l responses are character-
istic of vertebrate predators where switching and learning
are more common {Ricklefs and Miller, 2000).

Many biological factors ought to alter the form of
predator’s functional response and thereby alter the

dynamics of the predator and prey populations. Since
functional response encapsulates attributes of both pre-
dator and prey biclogy, so handling time, search efficiency,
encounter rate, prey escape ahility, ete. should alter, in
general, the functional response (Alstad, 2001; Ricklefs and
Miller, 2000). Therefore, predators’ functional response
may be different when a particular predator preys different
prey having different escape ability. Again, if a particular
prey be predated by different predators, the functional
response may be different due to their different hunting
ability. Furthermore, structure of the prey habitat is also
responsible to alter the functional response. The type 11
response function describes a situation in which the
number of prey consumed per predator initially rises
quickly as the density of prey increases and then level off.
Type 11l functional response also levels off at some prey
density. However, the type Il functional response curve
behaves differently than the type Il curve when the prey
density is low. A heterogeneous habitat may afford a
limited number of safe hiding places, which protect a larger
portion of the prey at lower densities {Ricklefs and Miller,
2000). This heterogeneous habitat reduce predation rates
by decreasing encounter rates between predator and prey
{Anderson, 1984; Sih, 1987). Thus, a predator which
follows type 11 response function in homogeneous hahitat
may follow type 111 in a heterogeneous medium. Anderson
(2001) observed experimentally in a predator—prey (kelp
bass-kelp parch) interaction for none and medium amounts
of habitat structure, the type Il functional response had a
better fit than linear models. However, for the highest
amount of habitat structure a type 111 functional response
had a better fit. His experiment provides evidence that
response function of a particular predator to a particular
prey may hbe different depending on the structural
complexity of the prey habitat. Therefore, a model could
be more realistic from ecological point of view and
interesting from mathematical point of view if one
considers different predators’ functional response and
compares the dynamic effects of these functional responses.
Let uws now think of an ideal situation where these
ecological and epidemiological characteristics can be fitted.
Consider a large aquatic region having different fish species
{prey) with different sizes having different escape abilities.
Assume that different fish-eating birds (predator) having
different hunting abilities prey on same/different fish
species with different sizes. It is also quite natural that in
a large aquatic body there exists habitat complexity which
causes the asymmetric predator—prey interaction and thus
providing prey refuges for different species to different
degree. This idealized predator—prey interaction ought to
be modelled with different predator’s response function.
MNow if the prey population is infected by some parasites,
infection may spread into the predator population through
predator—prey interaction and it may cause death of both
prey and predator populations if the infection be kethal
In this paper, we propose and analyze a mathematical
model which has the aforesaid eco-epidemiological
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properties. The aim is to study and compare the dynamics
of the proposed eco-epidemiological model to explore the
crucial system parameters and their ranges in order to
obtain different theoretical behaviors predicted from the
interactions between susceptible prey, infected prey and
their predators.

The organization of the paper is as follows: Section 2
deals with the mathematical model; existence, uniqueness
and boundedness of the solutions are presented in
Section 3. Stability analysis are presented in Sections 4, 5
and 6 for linear mass-action law, Holling type 11 and 111
response functions, respectively. Mumerical simulations
and discussion are presented in Section 7. Moreover, a real
life problem on grouse population has been considered as a
case study in Section 7.

2. Development of the model

ST epidemic model A typical §f model with an open
system of variable size can be written as follows:

RS

F i Seh(8) — i S, 1),

df

E:@{S,I}—p.ﬂ (2.1)

where § and [ are the densities of susceptible and infected
population respectively, ¢5) is the intrinsic growth rate of
the susceptible population, (5. f) is incidence of the
disease i.e. the rate at which infections occur and e is the
sum of the death rate due to disease and the natural death
rate. It is assumed that all susceptible population are
equally susceptible and all infected population are equally
infectious. It is also assumed that the disease is transmitted
by contact between an infected and susceptible population
following the law of mass action, so that 8, f) = 181,
where £ is known as (pair wise) infectious contact rate ie.
the rate of infection per susceptible and per infective.

Predator—prey model: A general predator—prey model in
its classical form is represented by

dn — .

E = Jh'!_f{h]— .P;I{Jﬁ'i ],

dr _

— = OPh{N) — &P, 2.2
T i N) (£.2)

where N and P are, respectively, the densities of prey and
predator population. [{N) is the per capita growth rate of
prey in the absence of predation and 4 is the food
independent predator mortality, which is assumed to be
constant. Here Al V) is the functional response and the term
thi N} is known as the numerical response of the predator,
! being the conversion efficiency. We assume that the
function fgrows logistically with intrinsic growth rate r and
carrying capacity K so that fiN)=r(l — %].

Now we are in a position to formulate the basic eco-
epidemiological model combining the Sf epidemic model
{2.1) and the predator—prey model (2.2).

Eco-epidemiological model. The following assumptions
are made in formulating the basic eco-epidemiological
model:

{Al) In the absence of infection and predation, the prey
population grows logistically.

{A2) In the presence of infection, the prey population are
divided into two disjoint classes, namely. susceptible
population, 8, and infected population, [.

{A3) It s assumed that only susceptible population, S, are
capable of reproducing with logistic law and the
infective population /, dies before having the cap-
ability of reproducing. However, the infective popu-
lation, /, still contributes with 8 to population growth
towards the carrying capacity.

{A4) The mode of disease transmission follows the simple
law of mass action. The disease is spread among the
prey population only and the disease is not genetically
inherited. The infected population do not recover or
become immune.

(AS5) It is assumed that predator cannot distinguish the
infected and healthy prey, they consume both the
susceptible and infected preys at the rates h(S) and
gi 1), respectively. Feeding on infected prey enhances
the death rate of predator and is considered to
contribute negative growth where as feeding on
susceptible prey enhances the growth rate and is
considered to contribute positive growth.

{A6) Since infected preys are weakened and become easier
to catch (Moore, 2002; Murray et al., 1997; Hudson
et al. 1992ab), we assume for simplicity that
predators’ handling time for infected prey is zero.
Therefore, the predation term for infected prey
follows a linear mass-action functional response (Hall
et al., 2005) i.e. g(f) = f1, f§ being the attack rate on
infected prey. However, as mentioned in the intro-
duction, it would be theoretically interesting to
investigate the effects of different response functions
for susceptible prey. In particular, we assume the
predator response function, fi(S), for susceptible prey
as linear, Holling type-11 and II1.

Based on the above assumptions we have the following
equations as our eco-epidemiological model:

s S+1
L ,-5(1 _L) _AIS — WS)P,

di K
ar

o = S — BIP — ul,

‘fi_! — —OfIP — 3P + Oh(S)P. (23)

System (2.3) has to be analyzed with the initial condition
S=0, H=0, POY=0,

with three different forms of i 5) viz. linear, Holling type-
I and III. Model conceptual schematic diagram is
presented in Fig. 1.
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Fig. I Schematic diagram of the eco-epidemiclogical (2.3

Chattopadhyay et al. (2003) studied this eco-epidemio-
logical problem, where they assumed predators’ response
function as type Il only. Keeping in mind the importance
of such problems it is essential to study and compare the
results rigorously with different functional response.

Empivical and experimental evidences: Salton Sea in
California has come in the limelight for its massive fish
and fish-eating bird mortality event due to bloom of
botulism bacteria. Each year millions of birds are
paralyzed or die after consuming infected fish. It is well
known that fish species are infected by a vibrio class of
bacteria. Asthe fish struggle in their death they tend to rise
to the surface of the sea and become more vulnerable as
well as attractive to different fish-eating birds. Predatory
birds get disease only from eating infected prey; also the
disease does not spread from one predator to another.
Infected fish dies off within a few days, thus removing the
chances of reproduction by the infected fish but still they
contribute to the carrying capacity. Vibrio is passed from
one infected fish to another susceptible fish; the more fish
that are in the sea, the more chance that a large number of
them will be infected by the disease. This causes terrible
bird mortality events at the Salton Sea (for details see
Gonzalez et al., 1998; Steve Horvitz hitp:/ 'www sci.sdsu.
edu/salton,/Salton % 208ea % 20Description.html).  Salton
Sea is over crowded with different fish species and so we
can assume that the reproduction process is continuous
and thus meeting several assumptions of continuous time
models. Thus the eco-epidemiological situations of the
Salton Sea are meeting most of the assumptions made for
the model formulation.

Hudson and his colleagues made a series of field siudies
and experiments on an eco-epidemiological problem of
upland estates in England and Scotland. Intensive studies
on red grouse (prey) and their predator (mainly fox) reveals
that prey vulnerability increases with the parasite burden in

prey (Hudson et al., 1992ab). Different experiments and
observations confirm that predators capture a disproportio-
nately high number of grouse infected with parasites (Hudson
et al., 1992a.b). Population studies show that the red grouse
exhibit cyclic changes with average cyde lengths 4 to 5 years
in population density in some estates (Potts et al., 1984),
although it does not occur in all estates (Hudson and
Dobson, 1990). Numerical study of this eco-epidemioclogical
system will be performed in Section 7 as a case study.

3. Existence, uniqueness and boundedness

The right-hand side of Eq. (2.3) are smooth functions of
the variables 5, /1, P and parameters, as long as these
quantities are nonnegative, so local existence, uniqueness
and continuation properties hold in the positive octant for
some time interval (0, ¢7). In the next theorem we show that
the linear combination of susceptible prey, infected prey
and predator population is less than a finite quantity or in
other words, the solution of system (2.3) is bounded.

Theorem 3.1. The solution y(1) of (2.3), where v = (5,1, P),
is uniformily bounded for v, e R,?L {s
Proof. We define a function W{r): Ry, — Ry by
1
Win=5+1 +ﬁF_
Observe that W is well defined and differentiable on some
maximal interval (0, 7).
Now, for any n=10, we have
dw(e) K(r+n'
di 4y
If we assume that, (<t p < minig, d), then there exists B =0
such that
dW
de
Let G(t,y)= B — ny, which satisfies Lipschiiz condition
everywhere. Clearly,

% <B— W) = G W)

Let

dx
5 = Git,x)=B—nx and

This ordinary differential equation has the solution

, ] F
+n W= {.ﬂ—fi'}f—{ﬁ—'i']ﬁ-

+aWi)=EB foreach t € (L)

for all ¢ £ (0, ¢r).
0= W) = Wy.

B
x(t) = E{l —e )+ Wye ™"

It is clear that x{) is bounded on (0,¢;). By comparison
theorem (Birkhoff and Rota, 1989)
W(n<x(n = §{1 —e )+ Wee™ ¥t e(0,1)

n
MNow suppose i< oc. Then Wit )= x(ir)=oc, but then the
solution exists uniquely for some interval (0, ¢) by the
Picard-Lindelof Theorem. This contradicts the supposition



14 N. Bairagi et al. [ Jownal af Theoretical Biology 248 { 2007 ) 10-25

that ¢r<oc. Therefore, W{f) must be bounded for all
nonnegative § and thus w9 is uniformly bounded on Ry .

In the next section we first consider the commonly used
linear mass-action functional response.

4. Linear mass-action functional response

For type | response function, system (2.3) takes the
following form:

ds S+N .

s ,5(1 _ _K") — JST—aSP,

df

& aspogrpear

= f i

dpP

o = —0BIP— 5P+ 0aSP. .1)

Applying the transformations s =3,i=£,p=£,1=iKr
we have the following dimensionless form of the model
equation (4.1). Henceforth, we will replace © by ¢ for
notational convenience.

d.
e bs( 1l — (54 i) — si — my 5p,

L‘l

d_ = & — dip —ei,

%-? = —ldip — gp + Om,sp, (4.2)
wher&b:T,nn_% f:%, -%&ndq:%.

4 1. Eguilibria and local seability

System (4.2) has the following equilibria: E = (0,0,0),

E =(1,0,0), B =(e%3,0), Ef = G£,0, ”‘—*TL”"’,* ) and

Ei = (&%, ", p*), where,

+  bd0+mel+bg+g
T Oibd + Beny + 2my)

p st — g
il ;
i ¥
i i

and s* 4+ i*=1. (4.3)

The last condition of (4.3) is due to the fact that s(¢)+
i=1,%=0.

The equilibria £ and E] exist for all parameter values.
EY exists if e<1. E} exists if m > % The interior
equilibrium £ exists if

g+ dit

gzl iy + )

my }% and (E‘,ﬁ) < g =
Observe that £ arises from E’ fore = 1 and persists for all
e= 1, whereas E:’ arises from E:’ for m| = £ and persists for
all >4 If e=1 and m, =~g then E. and E. wil
approach E! which biologically means eventually eradica-
tion of mfﬁ:[ﬁi population and predator population.

The variational matrix about any arbitrary equilibrium
E(s, i,p) is given by

h—2hs —hi —i—mp —bhi—s —n &
i s—dp—e —di
my g —dilp —dlli — g + m s

MNow we state and prove the following theorems:

Theorem 4.1, System (4.2) is unstable around EY) for all

wrameiric values. (The proof is oboious.
M 2

Theorem 4.2, Sysiem (4.2) is locally asymptotically stable
around E{ ife=1 and m <4 In fact, then the system is
globally asymptotically stable.

Proof. The characteristic roots corresponding to E! are
given by

Lh==b &,=1-¢ and & =mb—g.

e

Thus £ is stable if ¢>1 and m; <4 In fact, in this case E|
becomes globally stable, as stability conditions of Ef
eliminate the existence of E, Ei, El In this case, all
solutions initiating on the ip-plane approach Ef’, and all
other solutions with initial values R&ﬁ{ip—pl&ne} will
approach Ef as we have %{ﬂ and %"F'::{} whenever
conditions of Theorem 4.2 hold. Hence the theorem. [

Theorem 4.3. Sysiem (4.2) is locally asymprotically stable

around EY if e< 1 and m; < #Lq_i_mml_‘]] In fact, EL i

globally asymptotically stable.

Proof. Observe that when .ﬂl:r-{} {i.e. e< 1) and .ﬂl{{}
(i.e. my< ), then system (4.2) admits Ej, E] and E} as its
equnlnhnum points. Clearly, E’ is always unatable and E" is
unstable with sp-plane and i-axis as its stable and unsl:ahle
manifolds.

Studying the variational matrix corresponding to E£ one

can observe that the eigenvalue in the p-direction is given
Mﬂll —a)

by .fq s = myefl —
."nﬂ-!'ﬂl—:

and it is negative if m < ﬁ[_,r+
LBI—en  Other two engen!.'alue-; are the roots of the
qu&dranca:[uatmn

&t bel + be(l —e) =

Obviously, both roots of this quadratic equation are real
negative or complex conjugate with negative real parts.

Henoe E} is locally asymptotically stable if

< - Ltj + Mﬂrﬂ].

Hole that when E| becomes unstable with i-axis its
uru;l:al::le manifold and sp-plane its stable manifold, then
still &3 jc::'[]' and £ becomes locally asymptotically stable.
Since .ﬂlcc:(} (ie. my =5 implies ";,—'"::ﬂ from the third
equation of (4.2), hence all solutions initiating in the
interior of the positive octant will approach si-plane. In
fact, £2 will be globally stable in this case if the conditions
of Theorem 4.3 are satisfied. [
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]I‘.=_1 1 <0fie. e=1)and ¢ .ﬂ 1 =0 (ie. m = &) then system
(4.2) admits three equilibria viz. L’ E’ E’ ]n this case E!
is saddle with si-plane its stable mam[‘uld and p-axis as
unstable manifold, whereas £ is always unstable saddle.
Thus, only solutions with initi&l values in the si-plane
approaches E! and those with initial values in the interior
of the sp-plane will either approach E! or a stable limit cycles
surrounding £} if it is stable or unstable in the sp-plane. In
the next theorem we will observe this phenomenon.

Theorem 44. The sufficient conditions for  asympiotic
stability of EY ism) = Lor my = according ase <1l ore= 1.

Proof. The characteristic equation corresponding to £} is
given by

(—E—dp—e+ SHE 4+ bE+ nr-i'ﬂ:rp] =

. . 3 ome - - uf
The eigenvalue in the i-direction is S =s—dp—e=
LT

. - " ol
i we e The sufficient condition for C5; to be

negative is my > £ The other eigenvalues .3{13 and .E_{J are the
roots of the quadratic equation & + b& + nii0sp = 0. The
roots of this equation are either real negative or complex
conjugate with negative real parts. Also, the existence
condition of E’ is m) > 5. Hence the sufficient condition for
the stability of L‘ 15 #1 ) := max(£,9). Note that max(£.9) =

%ﬂr;{aocﬂrdmgawaorfpl Smoeu,{{}{ne e=1), we

ha'ue . < 0. Hence all solutions initiating in the interior of the
poanm'e octant will be drawn towards the sp-plane and
eventually approach E. Hence the theorem. [

Observation 4.1. In this case. sp-plane is always stable
manifold of £ which restrict sp-plane from having a limit
cycles in the sp-plane. If -.;rpl&ne would have been an
unstable manifold OFE’ with & .ﬂ - = (1, then there would be a
stahle limit cycles surrounding ﬁ;_ We will observe this
phenomenon in Theorem 5.4 in case of Holling type 11
response function.

Theorem 4.5. System (4.2) is abvays unstable around E for

all parametric values.
Proof. Observe that from first two equations of system
(4.2), we always have

dis+ i)
di

=hs(l — (s + 1)) — msp — dip
—ei<hls + i1 — (s + ).

Hence from Lakshmikantham and Leela (1969), we have
limy o fo(8) + i 0} < 1. Thus we have s* + i* < | and the last
condition of (4.3) is always satisfied. It is also true for type
IT and type 11 response functions also.

The variational matrix corresponding to Ef is

m{, mf; m{;
F* = m£| mgj ’"53

m{l mi, mi,

where

iy =—bs* (<0), miy=—(b+ 15" (<0),
s e

JI”'-'I =i (=0, ’”53 = —di* (=0}, m_:l =mflp* (=0,
"“. = —ildp® (<0), H!'rﬂ = m;_q = 0.

The characteristic equation corresponding to this varia-
tional matrix can be put in the form

I; +."I||=, +‘I‘.u,+‘h—ﬂ {‘f“*}

where

A= J'H'h P
A= _':"”53"“;3 +m_{|m{3 +m{3m£|],

J‘I] =n ||!H§3H‘i§2 = "“{2’“;”"53 S J}!{HJHEHH;J.

From Routh-Hurwitz criterion, £! is locally asymptoti-
cally stable if and only if

A=0, A;=0 and A4 — A;3=10.

From the signs of those defined, m;.,i,j =1,2,3, it is easy
to verify that 4, =0 but 43 <0 for all parametric values.
Thus system (4.2) is always unstable around E.. This
completes the theorem. [O

When & .=_j 1 <0 (ie. e>=1) and ¢ Hl =0 (ie. m =1), then
system (4. 2) admits all the five equilibria E! E’ E! E! and
E!. Here E}, E{ are saddle and £ is also unstable. Heroe
all solutions initiating in the interior of the positive octant
will drawn either towards the si-plane and eventually
approach E! or towards the sp-plane and eventually
approach Ef (or approach a limit cycle surrounding E!
in case of Holling type 11) depending on whether the initial
value of the system is contained in the invariant set which
contain the equilibrium point £} or £}, respectively.

In the next section we study the saturated Holling type 11
functional response.

5. Holling type 11 functional response

For type 11 response function, system (2.3) takes the
following form:

as_ ,-5(1 o 5; I) gy 2P

de a+ 8

ddf = ASf — fiIP — ul,

dr ) xSP

E:—I‘J‘ﬂfﬁ'—ﬂf’ TS (5.1)
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Applying the same transformations as before we have the
following dimensionless form of the model equation (5.1).

ds ; . ntasp

— =bsl — (s — 5 ——,

P ) (54 ) — 5i 1

o i — dip — ei

d S

dp . nasp .
qiT —”ffﬁl'?—.ffﬁ+m~ (5.2)
where mi =2 and / =% Note that / the ratio of the

Al i’

carrying capacity to the half-saturation constant, will be
assumed to be greater than unity in the future study.

31 Eguilibria and local seability

System (5.2) has the following equilibria: EY = (0,0,0),
E =(1,0,0), Ef=(47.0. Ef =30,

Iz —gl— R Ry T e
(Bim—gl }ﬂnd 'E'L _{:' N ]. where

s 1 [mafls? -
“a0|i+i Y

Mote that p* =0 as s* = ¢, otherwise { — () from the second
equation of {5.2) and * =0 as ‘—I"J-:%:- =g, otherwise p — 0

from the third equation of (5.2). #* is the positive root of
the equation

bdls** — s*[bd0(] — 1) + bgl + gl — my0(b + 2)]

— (el +bg 4+ g+ bdlh =0
and must satisfy the inequality s* + *=1. The sufficient
condition for existence of a unique positive * is
My = 5‘% Thus, the system has a unique positive
interior equilibrium (%, *, p*) if
g{f; 1) S glih + :}:;—f:;’;){.f -1

o
—, L
miafl — ;ﬂ] €=

and
&
&£ > max |:r.-',

The equilibria £ and EY' exist for all parameter values.
EY exists if e<1 and EY exists if my> #5H). Observe that
EY arises from EY for e =1 and persists for all e<1,
whereas EY arises from EY' for my = ﬂ;ﬂ and persists for
all my > 20 Also observe that the existence of EYY implies
the existence of the equilibria EY and EY.

WVariational matrix studies around each equilibrium point,
as in the previous section, lead to the following theorem.

Theorem 5.1. System (32) i
(1) unsiable around E,;; Jor all paranetric values,

(i) globally asymptotically stable around EV if e=1 and
= ‘-L!;"”,

(iti) globally asymptotically stable around EY if e<1 and

my< L [g+255r,

(iv)
\ 2 N ; I .r 14+al)
(a) asymptotically  stable  around  EY if 5% =

gl eap I—1 .l i1+
my< 5P with 5 <e<l or 852 <m < ey

with =1 and

(b)) possesses a stable limit cyeles in the sp-plane when

iy = ‘-%‘II_"'I? with e> 15},
(V) unstable around E i; Jor all parametric values.

Now we are in a position to consider the saturated
functional response type 111,

6. Holling type 111 functional response

For type 11l response function, system (2.3) takes the
following form:

ds S+1 . 257 P

T hcpel e TN e B

& ( K) T A

dr .

E:A.‘ﬂ—ﬁﬂ:‘—p!,

d 02S2P

— = —{} —a i AL )
= OfIP — 5P + P (6.1)

Applying the same transformations we have the following
dimensionless form of the model equation {6.1).

dy 2 . HF_’-I.‘I_:'_P

E:b.'n{l —{s+ 1)) —si— 14 P22’

di :

i dip — ei

dp s p

a = e —ar+ pa el
Ka

where my; = 2%

A=

6.1, Equilibria and local siability

System (6.2) has the following equilibria: EXY = (0,0,0),
E" =(1,0,0), E"=(e,%.0), E=(4,0,2C=4,

BT *
where A4 = /(1) and E' = (s*,i*,p*), where,
o 1 [ maalhs?
=@l
A _.'r‘ -

e i

Mote that p* =0 as s* =¢, otherwise { — () from the second
equation of (6.2) and =0 as ﬁ‘%‘; =y, otherwise p —
from the third equation of (6.2). s* is determined from the
cubic equation
bdi*05* + [(b + 2)0m; — (bd + gb + g)F**

+ (Bl — enyNs® — (Bl + gb + g) = 0

and must satisfy the inequality &* + * < 1.
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This cubic equation has a unique positive root if
coefficients of +** and s* are both positive. For this we
must have “T-_.—"M”ﬂm]"" b

<my= " Thus, system (6.2) has a

unique positive interior equilibrium (s*, i*, p*) if
g(1 + ) [g(b+ 1) + bdi)i*
(. b+ 2)

{
< My < —

max
&

and

& = max|e, L,) ., e<l.
II |:E J(m;f)—;ﬂ' ¢

The equilibria EM' and E¥ exist for all parameter values.

2
EI exists if e<1 and EY exists if my> 45D,
Mow we state the following theorem:

Theorem 6.1. System (6.2) is

(i) unstable around EY for all parametric values,
(ii) globally asymptotically stable around E if e=1 and
My =< EI%F:',
(iil) globally asympiotically stable around E;" i e<1 and
Lt | e}
my< e [g + =0, .
2at

(iv) asymptotically  stable around EY i my = o~ or

>
g S ) - L
my = (8 +5) according as 1> or 1<
(v) unstable around E'™ for all parametric values.

Proof. One can easily prove (i)—iii) and (v) by studying the
variational matrix, so we give the proof of (iv) only. The
characteristic equation corresponding to the equilibrium
E is given by (4.4) where

A= —{mﬂ; = mi‘r I

Ax = —m‘{‘;'rmw 4 mﬂ;mﬂ!,

Ay = niﬁ;:n;;f:n;g "

with  milf = b(1 — 24) =2 plll — _ 4(1 4+ B) (<0),

140 A4

Il BA{ | —A
mil = -5 (=0),mt =4 _—:: ' emfll =
21 —A) I el AL |- A) i i
TeEar (GOumi = 2= (<0),my = myy =
i 4
mi =0and 4 = — ).
EX J{.'rjj,ﬂ—g_r.f']

From Routh-Hurwitz criterion, E;” is locally asymptoti-
cally stable if and only if 4, =0, 43=0 and 4,4; — A;=0.
See that 4, 4; — A3 = miim{ m¥ — mi (¥ 4+ .

From the signs of those defined, mfj”,i,j =1,2.3, it is
easy to verify that 45 will be positive if and only if m <0.

Also, A, will be positive when (m{! + ni') is negative with

m* <0. Then two cases may arise (1) either m! is positive
or (2) mil! is negative.

Case 1: If mi! =0, then sign of (m!{¥ m{¥m!¥) is negative
and {mm(m + mlll)} is positive. Thus (4,4, — 4;)
becomes negative, which violates R-H criterion of stability.
So the system will be unstable when ml! =10.

Case 2: If mf <0 then (4,42 — 43) becomes positive. So
the system is stable in this case. The sufficient conditions

. . A2 .
for m{! to be negative is my> . Also, m¥ will be
T 2 . .
negative if m3 > (% 4+ %) It is to be noted that E exists

when m;}{%:+gl. Thus, E_{” is stable when msy=
max[(40), (4 + L), (4" + §]. Note that max[(40), (4 +

9] zi‘-j?f as /=1. Therefore, E is stable when m;>

mx[{;‘ﬂﬁ],{‘"’ﬂﬁ+ﬁﬂ. Now, m&x[{l‘ﬂﬁ],{%f+:i{—ﬂ]] is Q‘RL’G or
{%+:§’ﬁ] according as />1 or /<l This proves the
theorem.

7. Numerical simulation and discussion

From the existence conditions and stability analysis of
the equilibria, the parameters ¢ and m;,i=1,2,3 are
recognized to be important. But, we cannot compare the
dynamics of the model (2.3) in the e—m; parameter plane as
my are different for different i. So, we first rewrite all the
conditions of different theorems in the original system
parameters in Table 1 and compare the result in the o2
parameter plane.

For all three functional responses, it is observed that the
trivial equilibrium is always unstable saddle for all
parametric values. When i< §, E| is globally asymptoti-

. - K Mer+ K 11{¢|2+R'23 .
cally stable if 2< . 0< Z5 and o< = for linear,

Holling type 11 and 111 functional responses, respectively.
Mote that the net reproductive ratio, Ry, for all three cases,
is given by R = ’J—f This £y gives the number of new cases
acquired directly from a single infected prey. If By <1, the
disease dies out, but if Ry=1, it remains endemic in the
host population. Also observe that the net reproductive
ratio increases in direct proportion to susceptible popula-
tion, 8. Thus, if the basic reproductive ratio be less than 1
even at maximum host level K (ie. ’J—f <1 or i<y), the

infection cannot spread in the host population. Biologi-
cally, it imphes that if both the infection rate and the search
rate of susceptible prey be low, the infected and predator
population cannot survive and the system converges to the
equilibriom where only healthy prey exists.

We present an example to confirm and visualize the
observed results. We choose the fixed parameter values as
described in Table 2 and wvary only one ecological
parameter x, predators’ attack rate on susceptible prey,
and one epidemiological parameter 4, the rate of infection.
For the above set of parameter values we ohserve that £,
will be stable if » be less than 0.003, 0.3, 0.25 for linear, type
IT and III, respectively, when A<0.0053. We select 1=
0.003 and the value of » as 0.004, 0.2 and 0.15 for linear,
type 11 and III, respectively, and observe that all
trajectories with different initial conditions [(30,10,15),
(15,20,100, (10,5,35)] converge to the equilibrium where
susceptible prey, 8. exists in the form of a stable
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Table |
Comparisen lable for stability of the equilibria in original parameters

Functional resp. — equilibria | Linear type Holling type-11 Holling type-111
Ey Always unstable Always unstable Always unstable
E, Globally stable if Cilobally stable il Gilobally stable if
A -q':—!; A {% .-'.-q%
. & {ﬁlﬂ + K) ot + K4
TR0 Ki T Ep
E: Gilobally stable il CGilobally stable il Cilobally stable if
B oo oo
J.Z'-‘FK . J.Z'-‘PK. . J.Z'-‘PK
y {:i i rpAiK — ) al+p o rfNAK — ) atit 4 [ rfiAK = )

7| T
Globally stable if

7 R Y 3
Gilobally stable if

150 |““7 T rrIk
Gilobally stable if

.. et L
A E A E A E
& i K +“],, {:ﬁ{K + ) }Eﬁ
=Ko K C'ChE—a S
Cilobally stable il Cilobally stable if Gilobally stable if
Es . g . Mn yu B
3 A>— L L A= —
g Fli<y— =
i Sad + p) K +a) 5 atanr
* }_tbl'.l il = I{I.I{K — ) x},ﬂ g [
Limit cvele does not exist Limit cyele exists il Limit evele does not exist
a4 K)o
* }IJ{K oy a
el 2i
iR
E* Always unstable Always unstable Always unstable
Table 2

WVariables and parameters used in the models of susceptible prev-infected prev-predator population interaction

Variable Parameters Units Drefinition Drelault value

5 Mumber per unit designated area Drensity of susceptible prey -

I Mumber per unil designated area Density of infected prey -

P Mumber per unil designated area Predator density -

r Per day Growth rate of susceptible prey 3

K Mumber per unit designated area Carrying capacity 45

i Mumber per unil designated area Hallsaturation constant 15

A Per day Force of inleclion -

] Per day Allack rate on susceplible prey -

B Per day Allack rate on inlected prey .05

I Per day Dreath rate of infected prev 0.24
Due e all causes excepl predation

1] Per day Conversion elliciency 0.4

i Per day Matural death rate of predator 0w

equilibrium (see Fig. 2). This indicates that the equilibrium
E| is globally asymptotically stable for all three response
functions. It is quite natural that in absence of predation
and infection the equilibrium density of the susceptible
population will approach to its carrying capacity (K)
asympitotically.

Fig. 3 illustrates the parameter regions for the asympto-
tic stability of the axial equilibrium £ in 4 — 2 parameter
plane. Regions R, R, B; depict the stability areas of E,
corresponding to linear, type 11 and 111 response functions.

It is to be noted that the stability region increases gradually
as we pass from linear mass-action response function to
type 11 through type 111. This indicates that the stability of
the equilibrium E, is stronger for type Il functional
response compared to other two responses.

From Table | one can observe, if the infection rate be
too high and the search rate of susceptible population be
moderate then the predator population cannot survive and
the system converges to the equilibrium where susceptible
prey and infected prey coexist in the form of a stable
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Fig. 2. Figures {a)-4{c) depict the time series solutions of the model equations .00, (3.1) and (6.1) for 50, and P, respectively, with initial values
[0, 10, LA) (15, 20, 10] and [10,5, 5] for the parameters a5 in Table 2. The values of @ are, respectively, 00004, 0.2 and 0,15 For linear, type 1 and 1 response

functions and 4 = 0.003 for all three response functions.
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equilibrium. For the above set of parameter values (see
Table 2) we observe that for the stability of £ the value of
4 should be greater than 00053, Choosing 4 = 0015, we
observe that o should be less than 0.0084, 2.71 and 2.63 for
linear, Holling type Il and [II response functions,
respectively. Thus, for £ = 0015 and > = 0.005,0.09,0.05
we observe that all trajectories converge to the predator-
free equilibrium £, where susceptible prey and infected
prey coexist in the form of a stable equilibrium (see Fig. 4).

This indicates that the equilibrium £, is globally asympto-
tically stahle for all three response functions.

From ecological point of view, when density of
susceptible population becomes high, parasite can infect
them quickly on a per capita basis because infection rate is
high (i.e. 1= g). As a result, the parasite quickly spreads
and § decreases when [ increases. This result is also
reflected in Fig. 4. Note that, the qualitative behavior of the
solutions are same in all three response functions. In this
case also, the parameter regions for the asymptotic stability
of the predator-free equilibrium £, increases as we pass
from linear response to type 11 through type 111 (see Fig. 3).

One can observe from Table 1 that the system can be
stable around £y when infection rate is low or high and
accordingly the predation rate must be low or high. For
convenience we tabulate (see Table 3) the corresponding
numerical ranges of 4 and z for £ for the parameter values
as in Table 1.

In case of lower infection rate, we observe that all
trajectories with default values as in Table 3 converge to
the disease-free equilibrium £3 where susceptible prey and
predator population coexist in the form of a stable
equilibrium (see Fig. 6). Again observe that all rajectories
with the default values in case of higher infection rate
converge to the disease-free equilibrium £; where suscep-
tible prey and predator population coexist in the form of a
stable equilibrium (see Fig. 7). This indicates that the
equilibrium Ey is globally asymptotically stable for all
three response functions with different infection and attack
rates.

It is to be observed that in Holling type 11 and 11 species
coexist in a stahle form with enhanced predator population
and depressed prey population levels, while in linear type |
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as in Table 2.

predator and prey population both are depressed. In the
last case prey population is maintained at densities less
than 2% of its carrying capacity. This clearly violates the
so-called “biological control paradox™ which states that we
cannot have both a low and stable prey equilibrium density
{Luck, 1990). Also the general view regarding predators’
increased search rate is to increase predator population is
not inevitable in our model. Increased attack rate on
susceptible prey can increase predator population level
significantly in type 1l and U1 response functions but fails

in case of linear mass-action response function (see Fig. 7).
Another important ohservation is that at higher attack rate
on susceptible prey, infection cannot persist permanently in
the system, even when parasite successfully invade host
population (i.e. Ry may be greater than unity or i> £). At
this stage, if somehow, predators attack rate on healthy
prey is decreased, the system will return to an equilibrium
where susceptible and infected population coexist. This can
be implemented by employing gamekeepers (Hudson et al.,
1992a.b). Figs. 8a and b illustrate the parametric regions
for the stability of the disease-free equilibrium, £, in o—4
parameter space for lower and higher infection rates,
respectively. It is observed that in both the cases type 11
has larger stability regions compare to other two. This is
not surprising because in a predator—prey interaction type
II1 response behaves as if there were some prey refuges.
This prey refuges reduce predation rates by decreasing
encounter rates between predator and prey and thereby
stahilize the predator—prey interaction for a wide range of
parameter values (Anderson, 1984; Sih, 1987). Therefore,
the stability of the equilibrium E; is much stronger in case
of type 111 response function compared to the other two.
The most interesting dynamic behavior is observed in
case of Holling type 11 functional response when the search
rate exceeds some critical value. From the Table | we
observe that when z = f?hrrtf: with 4= f}f; then system (5.1)
possesses a stable limit cyeles in the sp-plane. That is, when
the attack rate on susceptible population, =, exceeds the
critical ualue% with Ry=> or =1, system (5.1) exhibits a
limit cycle in the sp-plane. Ecologically, when attack rate
on susceptible prey is quite high, 8 decreases gradually and
this causes ! to decline and eventually be eradicated from
the system. At low [ or in absence of [, susceptible
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Table 3
Parameter ranges and delault values for lower and higher infection rate

Functional response Range of i Drelault value of 2 Range of = Drelault value of =
A Lower infection rate
Linear A=(0053 0.003 x=0.005 0.007
Type 1 A= (L0053 0.003 03ca<045 (.35
Type 11 A=00160 0.003 xz=0.45 0.50
B. Higher infection rate
Linear A=00053 0.008 x=0.0075 0.3
Type 1 A=00053 0.008 033752 <045 0.4
Type 1 A=00160 0.017 x= 0 5098 08
140 160 b 140
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Fig. 6. Figures {a)-{c) depict the time series solutions of the model equations (.00 05,0 and (6.1, respectively, with inital values [30, 10, 13], [15 20, 10]
and [10, 5 5], The values of @ are, respectively, 0L007,0.35 and 0.5 Tor linear, tvpe 11 and U1 response Tunctions and 4= 0003 Tor all three response

functicns,

population § increases rapidly as much of their resources
remains unused. At that time, the increased attack rate on
susceptible prey causes predator population also to
increase. Once abundant, predator cannot completely
control susceptible hosts because predators become
satiated and begins to oscillate. Fig. 9 depicts a limit cycle
oscillations of system (5.1) when 2 = 0.5 (which is greater
than the critical value 0.45) and 4 = 0.008 with same nitial
values. We do not observe limit cycle oscillations in other
two functional responses. Thus, in a host—parasite system
with a type Il functional response and very high attack rate
on healthy prey produces complex but bicologically relevant
behavior in the host—parasite system.

For all three functional responses it is observed that the
interior equilibrium, where all three species exist, is
unstable for all parametric values. The interior equilibrium
becomes a hyperbolic saddle with stable manifold of
dimension two. This stable manifold separates the domains
of attraction of the §fand SP equilibrium points. Thus, if
the initial value of the system is contained in the invariant
domain which contains the equilibrium point Ei, the

solution will eventually approach E: under suitable
parametric conditions and if the initial value of the system
is contained in the invariant domain which contains the
equilibrium point £5, the solution will eventually approach
E5 under suitable parametric conditions.

Observe that the solution of (35.1) with initial value
(30,10.15) approaches a limit cycle surrounding EY in the
SP-plane indicating that the initial state is in the domain of
attraction of SP-plane (see Figs. 10a and b), while the
solution of (5.1) with nitial value (10,5,5) approaches the
equilibrium EY indicating that the initial state is in the
domain of attraction of S/-plane (see Figs. 10{c) and (d)).
Similar situation is alo observed for Holling type 111
response function.

Ecologically, instability of the interior equilibrium is
attributed to the harmful effect of the infected prey on the
predator. The predator population cannot coexist with the
infected population (note that the derivative of the rhs. of
the second equation of system (2.3) wr.t. P is always negative
for all three response functions) and this event forces the
interior equilibriom to be unstable for all parametric values.
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Fig. 7. Figures (a)—c) depict the tme series solutions of the model equations (4.0), (5. 0 and (6.1), respectively, with initial values [30, 10, 13], [15, 20, 10]
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Parameters are as in Table 2.

Our model gives several insights into switches between
oscillating and stable equilibria. It s observed that
infection may destabilize otherwise stable healthy preda-
tor—prey interaction, while predator may destabilize a
stable host—parasite system which is otherwise stable. The
specific behavior of the eco-epidemiological system de-
pends crucially on the infection rate and the attack rate of
the predator on susceptible prey. Our overall mathematical
and hiological studies reveal that in host—parasite—predator

system, where prey is infected by a lethal disease,
coexistence of all the three species is never possible
(contrary to Venturino, 1995; Chattopadhyay and Arino,
1999; Xiao and Chen, 2001), instead only healthy or
disease-free or predator-free or even a fluctuating disease-
free system can be obtained by regulating the two key
parameters. It is also observed that the biological control
paradox is not intrinsic to an eco-epidemiological model.
Our model also has wide applicability in a variety of
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Fig. 10, Solution of (5.1) with inital values [3000005] (Figs, 10@) and (b)) and [5055] (Fig. W) and (d) for & = 0008 and «= 03,

host—parasite—predator systems as it incorporates different
response functions. It is now worthwhile to study an eco-
epidemiological situations of upland estates in England
and Scotland.

A case study: The population biology of red grouse and
its predator for 10 years has been considered as a case
study. For this study the most of the parameter values have
been taken from the published papers and others have been
estimated. The per capita birth rate and the natural death

rate of grouse are (.15 and 0.0875 per month, respectively
{Dobson and Hudson, 1992). Thus, the per capita intrinsic
erowth rate of grouse is 0.0630 per month. Maximum
number of grouse observed per square kilometer is around
100 (Dobson and Huodson, 1992; Hudson et al., 1992b).
The value of carrying capacity is assumed to be 25% higher
than the maximum observed value, therefore the value of K
is assumed to be 125 grouse per square kilometer. An adult
fox takes on average one or two infected grouse a week
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Fig. 1. Changes in numbers of grouse and fox per square kilometer: (o) typical cveles with a time period of 45 vears for tvpe 1 response function,
(bl damped oscillation with low population densities for Lyvpe 1 response Tunction and (¢) stable population densities Tor tpe T response function.

{Hudson et al., 1992a), therefore 48 grouse per month.
Thus, we select # = 6 per predator per month. The value of
z s assumed to be 10 times smaller than f§, so that 2 = 0.6
per predator per month. Instantaneous death rate of
infected grouse due to all causes except the predation is
0.087525 per month (Jenkins et al., 1964), therefore, we
select ¢ = 0.0876. The range of infection rate is 1.6 x 107!
to 0.6 per host per year (Dobson and Hudson, 1992), so we
assume 4 = 0.0317 per host per month. The instantaneous
death rate of predator (§) is assumed as 0,075 per month
and the values of @ and (F are taken as 20 grouse per square
kilometer and 0.26 per month. Assuming that the infection
has no lethal effect on the predator, then the qualitative
behavior of system (2.3) corresponds closely to the field
data of grouse population observed by Hudson et al
(1992a.b) and Potts et al. (1984).

It is observed that the grouse population oscillates when
functional response is of type Il and the period of
oscillation is 4-5 years (Fig. 11{a)). But, for linear type
response function, the system exhibits damped oscillation
with very low prey density, whereas for type 11l response
function the system becomes stable (see Figs. 11{h) and
(c)). The above observations clearly demonstrate that
habitat structure may be one of the reasons of regular
fluctuation in population density in addition to density-
dependent regulatory factors viz. competition, predation,
parasitism and dispersal (May, 1981) and alter the
predator—prey dynamics significantly. We like to mention
here that Hudson and Dobson (1990) concluded with
experimental observations that in some estates the grouse
population cannot exhibit regular fluctuation, rather shows
stable behavior. Thus our simulation results are in
accordance with the field and experimental findings.
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