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Interaction among Non-toxic Phytoplankton,
Toxic Phytoplankton and Zooplankton: Inferences
from Field Observations

Shovonlal Roy - Sabyasachi Bhattacharya -
Partha Das - Joydey Chattopadhyay

Abstract We explore the mutual dependencies and interactions among different
groups of species of the plankton population, based on an analysis of the long-term
field observations carried out by our group in the North-West coast of the Bay of
Bengal. The plankton community s structured into three groups of species, namely,
non-toxic phytoplankton (NTF), toxic phytoplankton (TPP) and zooplankton. To
find the pair-wise dependencies among the three groups of plankton, Pearson and
partial correlation coeflicients are caleulated. To explore the simultaneous interac-
tion among all the three groups, a tme series analysis 1s performed. Following an
Expectation Maximization (E-M) algorithm, those data points which are missing due
toirregularties in sampling are estimated, and with the completed data set a Vector
Auto-Regressive (VAR) model 1s analyvzed. The overall analysis demonstrates that
toxin-producin g phytoplankton play two distinet roles: the inhibition on consumption
of toxic substances reduces the abundance of zooplankton, and the toxie materials
released by TPP significantly compensate for the competitive disadvantages among
phytoplankton species. Our study suppests that the presence of TPP might be a
possible cause for the peneration of a complex interaction among the large number of
phytoplankton and zooplankton species that might be responsible for the prolonged
coexistence of the plankton specics in a fluctuating biomass.
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1 Introduction

Exploration of the dynamics of phytoplankion and zooplankton is a central theme
in marine ccology, However, because of the dazeling diversity of plankton speaes in
marine ecosystems, plankton dynamies is hardly predictable. In most aguatic ecosys-
tems, the prolonged coexistence of a large number of phytoplank ton species on a
secmingly limited vanety of resources s paradoxical according to the well-known
competitive exclusion principle [1]. Various competition models as well as compe-
tition experiments in the laboratory have established that the coexistence of more
species than the himiting resources allow 1s possible only when some additional
mechanisms are involved [1-12]. A brief overview of these mechanisms can be
found in the reviews by [13] and [14]. In general, the mechanisms describing the
coexistence of many phytoplankton species rely on a ‘non-equilibria’ hypothesis [13],
which suggests that, due to several external and internal factors, the plankton species
never seitle to a steady state. On the other hand, analyang a realistic mathematical
model including predation and competition mechanisms in a plankton community,
Grapgnani et al. [15] have supgested that the selective predation by zooplankion
on nutritionally-differentiable plankton speaes, and the food chain structures of
agquatic ccosystems, play key roles in the coexistence of competing phytoplankton
species. In particular, the nutrient bound of prey regulates the stable or oscillatory
dynamics of predator-mediated competitive-coexistence [16]. However, among the
phytoplankton community, some species have an ability to hberate “toxic™ or
“allelopathic agents™ that affect the growth of other micro algae [17, 18], Among
marine algae, allelopathy was observed both in virro and in sitn (e.g., [19-24]. Studies
indicate that the toxic substances have a great impact on phytoplankton-zooplankton
interactions [25]. However, the chemical nature and rigorous role of allelopathic
or toxic compounds has been poorly understood [26]. For the biochemical activity
of the toxic substances released, the presence of toxic species & hikely to influence
competitive interactions and predator-prey relationships. Although a one-to-one
interaction with a toxic species harms a non-toxic species, the role of toxic species
in a4 combination of a great number of both species, n a well-mixed environment,
is vet to explore extensively. The dynamies of the interacting species becomes even
more unpredictable when a number of common grazers (zooplankton) are present.
In this article, based on an analyss of fickd data collected from the North-West
coust of the Bay of Bengal, we investigate the imteractive role of toxin-producing
phytoplankton (TPP) on overall plankton populations. To explore the resultant
eflfect of species level mteraction among the phytoplankton and zooplankton speces,
we structure the plankton community into three functional groups: (1) non-toxic
phytoplankton (NTP) - the species of phytoplankton that do not produce any toxic
chemicals, (2) toxin-producing phytoplankton (TFP) - the phytoplankton specics
that have the ability to produce toxic or inhibitory substances, and (3) zooplankton -
the common grazers of both NTP and TPP. On one hand, a non-toxic and a toxic
species of phytoplankton (NTP, TPP) are competitors for the common resources,
and on the other hand, zooplankton is the common grazer of both non-toxic and toxic
phytoplankton. A simple competition model predicts that the competition for a sin-
gle resource [27] would allow the persistence of either a toxic or 8 non-toxic species
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of phytoplankton, and thus a strong negative correlation between the biomasses
of toxic and non-toxic phytoplankton is expected. Moreover, simple predator-prey
interaction [28] might show a periodic oscillation between a zooplankton and a
phytoplankton species. Here, we investigate whether the resultant interaction among
all the species of plankton, that come under the three groups described, deviates
from the predictions of simple competition and predator-prey models. Using a set
of our ficld-collected samples we explore by suitable statistical analysis the mutual
dependencies and interactions among these three groups of plankton, and investigate
the role of TPP on the overall interaction.

Ideally, the mutual dependency between two groups of plankton should be
mmvestigated when any third group is absent in the system. However, because the
species-abundance data that has been used for our analysis is obtained from a field
study and not from any laboratory experiment, it is impossible to physically solate
any of the pairs of plankton from the mfluences of the third one. To overcome
this imitation, we have caleulated both Pearson correlation cocfficients and partial
correlation coeflicients. Statistically, Pearson correlation represents the mutual de-
pendencies of the plankton groups m the live data, while partial correlation depicts
the dependencies of any two groups when the effect of the third one 13 removed.
We find that the nature of the partial correlations caleulated for the above three
pairs are similar to that of normal Pearson correlations. Now, [or the analysis of
the field-data under our consideration, an application of classical statistics such as
partial and Pearson correlation might be controversial due to the autocorrelation
structure. To overcome this situation we perform a time series analysis o explore
the simultaneous interaction among all the three groups of plankton. Time series
models are quite useful as potential prediction models. Using this property of the
model, we find the correlation of speaes abundanees of each group of plankton at
any time point with the past abundances of the same group as well as that of the
other groups. Unfortunately the data series under consideration are comparatively
short. Morcover, due to limitations of the field work for vanous reasons (such as bad
weather and limited resources), the abundance data obtained are not equally spaced
in time, making it more difficult to use this data to approximate a continuous time
series. All these limitations pose significant challenges for ime series analysis of the
data. Treating the unavailable samples as missing data, we have estimated the missing
vilues by an imputation technique, namely, the Expectation-Maximization (E-M)
algorithm. Incorporating the estimated missing values in the observed data set, we
have fitted a “Vector- Autoregressive” (VAR) model. Because our objective 1s to
study the simultancous interactive effects of all the three groups of plankton speces,
we have used a Vector-Autoregressive model instead of a general * Autoregressive”
model. The outcomes of the correlation analysis are compared with those of the time
series analysis. The overall analysis establishes that the presence of TPP contributes
to a significant effect on the overall plankton dynamics that might be favourable in
preserving the coexistence of the plankton specics in a marine ecosystem.

The organization of the paper is as follows. Section 2 gives a description of
sample collection and the structure of the collected samples. Section 3 deals with the
statistical models that have been used for analysis of the data. The detailed results
of the analysis are given in Section 4. Fnally in Section 5, implications of the overall
results of the study s discussed.
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2 Field Observation
2.1 Sampling

Monitoring and identification [29] of marine plankton population has been carried
out by our group in the North-West coast of the Bay of Bengal since January, 1999
(for details of the study area and sampling procedure, see [30]). Frequency of the
sampling was every two weeks except the months of September and October each
year when, because of bad weather, the sampling program had to be suspended.
(Local disturbances and financial constraints also limited our ability to collect
data every fortnight.) Plankton samples were collected both from the surface and
subsurface water (1-2 m depth) by a horizontal plankton tow with a 20 micron
mesh net 0.3 min diameter. Samples were collected from seven stations distributed
at various distances from cach other. The collected samples were preserved in 3%
formaldehyde in scawater. Identification of plankton community was performed
following the method of [29]. Counting of phytoplankton was made under the
microscope using a Sedgewick-Rafter counting cell and expressed in number of
samples per liter (noJl). The cell numbers were averaged over the number of
replicates to get a single value of the species biomass at a given ime point at the
collection point.

2.2 Deseniption of the Sample

A total of 115 species of phytoplankton have been dentified in the water sample
collected from the study area. Out of the 115 phytoplankton speaes, 65 species of di-
atom group, 19 of green algae (Chlorophyceae). nine of blue greens (Cyanophyceae)
and 22 of Dianoflagellates have been wentified. We have identified 13-15 species of
phytoplankton [30] that have the ability to produce toxic or inhibitory compounds
[31-34]. In general, the TPP group contains (1) plankionic or benthic microalgae
that produce toxins (e.g.. the motile stage of Alexandnom, the benthic Gambierdis-
cus ), (2) other toxic dinoflagellates (e.g., Pliestena), (3) macroalgae that resull in
noxious smells (e.g., Pilavella), (4) a few species of Cyanobacteria or blue algae
(¢.g., Microcystis), (5) non-toxic microorganisms that result in hypoxic conditions
(e.g.. Chactoceros, Mesodinium ). For a detailed lst of TPP species that have been
observed by our group, see [30]. Sample data on plankton species for the period
2002-2004 have been considered for the present study.

3 Description of Statistical Technigues
3.1 Correlation and Partial Correlation Analysis

Let pyr, pzn and pzr respectively be the sample Pearson correlation coeflicients
of the three pairs of plankton species, namely, TPP-NTP, NTP-zooplankton and
TPP-zooplank ton respectively. Similarly pyrz. pzar and pg oy are sample partial
correlation coefficients of the same pairs when the effect of the third member is
climinated.
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The partial correlations in terms of simple correlations are represented by pyr z =
PN TN EOTE PENT = PN — PETANT and pzy N = PET—PENINT )
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For each of the three pairs of plankton species, the tests of significance of the
correlations are carried out through a -test using the test statistic represented by
i= ’—“—,I‘% . where ris the sample correlation (Pearson/partial) of any two plankton

7
specics and n i the degrees of freedom. The test is rejected if ¢ = £, o, where o i3
the level of significance of the st

3.2 Time Series Analysis

The data obtained from the ficld study are not equally spaced due to limitations of
sampling in some time periods for each of the year. Usually the field experiments are
conducted with an approximate interval of 15 days or a multiple of that interval. The
incomplete data set showing the fluctuations of the abundance of diff erent specics
15 illustrated in Fig. 1. The gaps in the time axis show the positions of the missing of
data. We estimalte these missing data using an imputation method called Expectation-
Maximization algorithm (E-M algorithm). To avoid numerical comphlcations in the
algorithm, we transform the original ime scale to a scale of (0-1). However, this
scaling does not affect the output of the esiimation procedure. With the completed
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Fig. 1 Plot of NTP, TPP and zooplankion biomass against a normalized dme-scale. In the aduoal
time-scale, the time dilference between two sampling points is measured in days, Samplings were
conducted with an approdmate interval of 15 days, The original time-scale is transformed 1o a scale
of ((-1). The gaps in the time axis shows the breaks in data colledion. The plot shows Muctuating
abundances of all the three groups of plankion species
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data set obtamed on incorporation of the missing values in the observed data set, we
analyze a Vector- Autoregressive model.

A.2.0 Estimation of Missing Values

To estimate the missing values we apply an Expectation Maximization (E-M) algo-
rithm ( for detail see, [35-37]), an iterative method that deals with the prediction of
the missing values, and with the estimation of the model parameters, simultancously.

Supposce the values of the variables are ¥y, Y, Yo, o Yoy corresponding to
timest = {0, 1. 2. ... T—1}. Define the time space § = i : ¥, not missing]. Let
Y, and ¥; (where, § = 4 8) be the vector of observed values and missing values
respectively,ie, ¥, = (¥ :ie Sland Vi = [V :{ € 5’}.

Keeping in mind that the data s Auctuating (see Fig. 1), and s neither completely
eyclic nor of any other specific pattern, we consider the following non-stationary
Auto-Regressive model (non-stationary A R p)),

Fi]
Yi=pm + 3 AYeite. (1)
i=1
where t indicates the transform time pomnton a scale of Oto 1. Efe] =0, Var[g,] =
a” and i, is given by
i)
W, =a + bt + of + E{a, cos (2m (4i) 1) + piosin (2r (40 0). (2]

i=]

The parameter p i selected using an optimization technique following [38] with the
help of ITSM software.

The E-M algorithm works iteratively by alternatively applying two steps : the
E-Step (expectation) and M-Step (maximization). Formally, let 8, for t =
0.1.2, ..., denote the suceessive parameter estimaltes; the £ and M steps are defined
a%:

E-step:  Compute the conditional expectation (with respect to the mssing values
Y: of the logarithm of the complete a posteriori probability [unction,
log p(¥5.8|Y,), gven the observed data Y, and the current parameter

estimate 49 (usually called the O-lunction):
Q(616") = E [log p(Ys, 8]Y,)] (3)
M-step: Update the parameter estimate according Lo

81 = arg max Q(8]6"). (4)
i

The process continues until some stopping criterion is met. The detailed estimation
procedure adopted from [35] and [36] & described in the Appendix.

3.2.2 VAR Mode!

Considering that the abundance of any particular group of plankton depends
on the abundances of all the three groups of species present al previous time
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points, we explore the simulianeous interaction of the three plankion groups by a
Vector-Autoregressive model (VAR). Let us define P, = (NTF, Z00, TPP) =
(N, Z,. T)) to be a vector variable. The VAR model we consuder with a lag p, is
denoted by

PFo=¢i) + ()P + .+ @(p) Pip + &, (5]
where € 15 a white nose component. Here, ¢(0) 15 a column vector with dimension

(3 = 1) and the ¢ (i) are cocflicient matrices of dimension (3 = 3).
Now, from (3), cach element of the vector Py can be wrillen as

r P P
No=¢nO) + ) oanN+ Y nz@DZi+ Y dnrdTiit e, (6)

i=1 i=] =]

P r r
Zy =200 +) 72D Zii+ Y dan@ON+ Y ¢zrDTiit+ e (7)

i=] =1 i=]

P I "
T=¢rO)+) ¢rrTii+ Y ¢rzDZii+ Y ¢rnN +6,  (8)

i=] =] =]
where
)] @anti) gwzii) ¢nrii)
@iy = | z() | and @i} = | gz ali) pzz (i) ¢zy() Jandi=1... p.
ol @ryti) rz (i) rrii)

The corrclation between any two variables at any two tme points (say, N, and
Z,) 1s determined by the magnitude and asymptotic covaniances of the estimated
cocflicients (Le., gyzii) or ¢z y(0) that are statistically significant at a desired level.
The model estimation given above s based on the minimum AICC eniterion.

4 Results and Discussion

The abundances of N'TP, TPP and zooplankton show Quetuations over the observed
time points (Fig. 1). The simple scatter plots show a trend of positive correlations
for the pamrs TPP-NTFP and NTP-zooplank ton; however, a negative correlation is
observed for the pair TPP-zooplankton (Fig. 2). The lmear regression nes on
the scatter plots exhibit a negative slope for the pair zooplankton and TPP (sec
Fig. 2a), whereas, a positive slope 1s observed for the other two pairs, namely,
(TPP, NTP) (see Fig. 2b) and (zooplankton, N'TP) (sce Fig. 2c). The regression
lines fitted are respectively &, = 126012 — 063427, Z, = TT.680 + 0.0975N, and
Ny = 216967 + 3.44847,. The sample normal and partial correlations for the pair
(TPP, zooplankton) are —0.2270 and —0.3958 respectively, where the observed test
statistic value for partial correlations s —2.9546, which i1s significant at the 1% level.
This result indicates that TPP biomass has a significant antagonistic correlation with
zooplank ton biomass. The correlation and partial correlations between NTP and
zooplank ton biomass is positive (+0.3793 and +0.5008 respectively ), and significant
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Fig. 2 Pair-wise dependendes among the species of NTP, TPP and @oplank on groups, Scatter plot
between (a) TPP-ooplankion: the data is it with a trend ling of negative slope, v = —0.6342x +
126012, [ RE = 0.312) (b) TPP-NTP: the data is it with a trend line of positive slope, v = 34840 +
216,967 (R =0.4165), and (¢) NTP=eooplankion: the data is it with a rend line of positive slope,
vy =00975x + 77680 (R? = 0.437)

at the 1% level (Table 1). This result, as one may expect, suggests that 1% the non-
toxic species of phytoplankton as a whole & a favourable food for zooplankton. On
the other hand, the biomass of NTF with TPP shows a sigmificant positive Pearson
and partial correlation (+0.3172, 404476 respectively, Table 1), This correlation
structure indicates that the presence of TPP might be favourable for the exstence of
NTP. Our result here diff ers from a possible prediction of simple competition models.

Table 1 Pearson and partial correlations and lesi statistics

Wariable Zooplankion-NTF Zovplankon-TPP NTP-TPP
Correlation 03793 —1. 2270 03172
Partial correlation 05008 —1.3058 04476
Tesl statistic 39667 —2.9546 34313
p=values 000012 (L0243 C0a3

Comments Significant at 1% level Significant 1% level Significant 1% level
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Although, at the species level, iwo phytoplankton species exhibit resource competi-
tion, the biomasses of two types of phytoplankton when conceived as two groups
of species show significant positive dependency. However, this correlation strueture
between NTP and TPP may also be due to the following reason. Because both NTP
and TPP groups are sensitive in a similar manner to the environmental factors (e.g.,
temperature of water, inorganic materials), they may react the environment similarly.
Conscquently the biomass at a given ime point of both NTP and TPP might show a
positive correlation. But the outcome of the autoregressive analysis described in the
following paragraphs make this explanation improbable.

As mentioned earlier, to perform a time serics analysis for exploring the simulta-
neous interactions (over the observed time points) among the species of non-toxic
phytoplankton, toxic phytoplank ton and zooplankton, the missing part of the data is
estimated by an E-M algorithm (deseribed in Section 3). The observed and predicted
values for the three variables, zooplank ton, NTP and TPP, are illustrated in Fig. 3a-
¢ In VAR analysis the estimated cocflicent vectors and matrices for (6), (7) and
(8) are represented in Table 2. Adopting the method due to [38] and using the
ITSM software we obltain an optimum value of p =5 for our data set. Most of the
estimated cocflicients gz () (or gz a(0)), gz i) (or gz ()] and gy (D (or gryii))
are significant at a 5% level of significance. The elements of the asymptotic varance-
covariance matrix of the estimates have the same signs a8 the correlations, and the
estimated asymplotic varances and covariances are also significant at a 5% level of
significance. The statistically significant cocfiaents ¢y z(0) are all positive, while the
significant cocflicients ¢z pii) (or ¢z () are all negative (sce Table 2). Tt follows that
onone hand the biomass of NTP in the past influences positively the present biomass
of zooplankton. This positive correlation might be due to a simple predator-prey
relationship. However, it is clear from the field data that the biomass of NTP and
zooplank ton do not show periodic eyeles (Fig. 1) as predicted by a Lotka-Volterra
interaction. One can also confirm this result from the shape of the limit eyeles and by
measurmg the correlation between them.

On the other hand, the biomass of TPP in the past influences negatively the bio-
mass of zooplankton in the present. suggesting a possible mhibitory effect of TPF on
the growth and predatory activity of zooplank ton. Some previous studies suggest that
inhibitory substances released by TPP reduce the grazing pressure of zooplankton
(e.p.,[22, 39, 40]). Moreover, in their field studies, [41] have demonstrated that micro
and meso zooplankton populations are reduced during the blooms of the chrysophyte
Aurcococcus anophagefferens on the southern Texas coast. The results of the time
series analysis of our field samples resemble the previous results. Moreover, this
analysis indicates a uniformity of the influence of toxic species identificd in other
studies and that of our study, on the predatory activity of zooplank ton. We note that
the inhibitory activity, which may be expected from a species-level interaction, holds
even il we consuder the speaes under groups in the case of multi-species interaction.
Through analysis of a mathematical model, Gragnani et al. [15] have demonstrated
that the difference in edibility between a filamentous cyanobacteria and green algae
has widely different effects on phytoplankton-zooplankton community dynamics.
Moreover, under certain conditions of nutrient condition and fish stock, the Daphnia-
eyanobactenia-green algae systems may even settle to evanobacteria, green algae or
a mixed equilibrium, depending on the history [15]. We also find through time series
analysis that the past values of NTP and TPP sigmificantly affect the zooplankton
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Fig. 3 Plotof observed and imputed values of (a) KTP, (b} TPP and (¢} zooplankton

biomass, thereby affecting the overall community dynamies. Additionally, the analy-
sis of a mathematical model of NTP-TPP-zooplankton suggests that the rate of
toxin inhibition of TPP on zooplankton acts as a driving foree for determining the
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Table 2 Table showing the
ectimated coeficients for the @il 060034 0E+06 06335TRE+06 0301 605E+06

VAR maodel

@il (.255 -1 0.293
0.101 0.2a5 -7
L175 —i.144 0,290
P2 —1.221 01.234 0172
(L33 —(L.065 —.23)
0.087 —0.154 0,393
@il 0.299 —0.042 +i1.022
0012 (408 —0.237
0.315 —{1.243 —i1.349
didl —(L170 —(L.08 0.147
0.027 —i.031 —0.03
(L6 —0.069 —.216
AR 0.270 —(L138 0.128
(.025 —{1.286 —iL169

(016 —iL154 —(.047

stability and oscillatory dynamics of the overall plankton community: the details of
this analysis has been reported in [42].

The coclicients gy pii) (or ¢gryl)) are positive (Table 2), sugpesting that the
entire biomass of the TPP species in the past has a sipnificant positive influence
in determining the NTP biomass in the present. This result differs from what
one may expect from a speces-level interaction between a toxie and a non-toxic
phytoplankton. Our results suggest that in a group of a number of non-toxic and toxic
phytoplankton, toxicity indirectly helps the survival of the total biomass of non-toxic
species. The mutual dependencies between NTP and TPP groups is thus different
form that, for example, between blue-green algae and preen algae (e.g., [8]). The
mechanism for such dependency between NTP and TPP groups might be that the
level of dominance between two non-toxic phytoplankton s reduced, when a third
spuecies that is toxic to both is present. Ths mteraction can casily be demonstrated
with the help of a simple three-species Lotka-Volterra competibon model where
two species are non-toxic and the third one s blindly toxic to both; the details of this
model-analysis are reported in [43].

5 Concluding Remarks

The present article i an eff ort to explore the interactions among the overall plankton
population, based on an analyss of the long-term field observations carmned out in the
North-West coast of the Bay of Bengal. Structuring the overall plankton community
into nontoxic phytoplankton, toxic phytoplankton and zooplankton, we explore
through statistical analysis the mutual dependencies and simultancous mteractions
within the plankton populations. The pair-wise dependencies and simultancous
interactions among the three groups of species are explored with Pearson and
partial correlation analysis and by a Vector-Auto Regressive model (VAR). The
overall analysis suggests that, similar o a species-level interaction, the entire biomass
of non-toxic phytoplankton 1s favourable for the growth of grazer zooplankton;
however, because the toxie phytoplankton species liberate inhibitory comnounds
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that reduce the grazing pressure of zooplankion (see also [22, 39]), these species
as a group are unfavourable for the growth of zooplankton. On the other hand, the
interaction among the species of non-toxic and toxie species as two groups differs
from a species-level competiion. The analysis sugpests that when considered as two
groups in g combination of a large number of non-toxie and toxic species, instead
of simple competition, an indirect mutualism exists between these two groups of
phytoplankton. The effect of toxin-allelopathy is a potential candidate for such
indirect mutualism, and thus the presence of TPP s favourable for the existence of
NTP. Thus, the overall analysis suggests that toxin-producing phytoplankton play
two distinet roles: the mhibition of consumption of toxic substances reduces the
abundance of zooplankton, and the toxic materials released by TPP significantly
compensate for the competitive dsadvantages among phytoplankton species. The
mutual dependencies at a group level suggests that, among the plank ton community,
the interactions present might be diferent from simple predator-prey relationships
and competition. On one hand, the species of non-toxic phytoplankton that have
a pood dietary value enhances the growth of zooplankton; however, on the other
hand, the species of toxic phytoplankton reduces the zooplankton growth (a situation
similar to the interaction among cyanobacteria, green algae and Daphnia analyzed by
[15]). Again, by reducing the competition among other phytoplankton, toxic species
favours the survival of the weak competitors. In this way, a complex interaction
as a combination of predator-prey relationship, competiion-mutualism and toxin
inhibition, is generated among the large number of phytoplankton and zooplankton
species that might be a possible cause for the prolonged coexistence of plankton
species in a fluctuating biomass. Although our field studies were concentrated in
marine ecosystems, the mode of interaction among non-toxic phytoplank ton, toxic
phytoplankton and zooplankton s very likely to be similar for freshwater ecosystems
also. However, further investigations will be necessary to extrapolate these results in
the natural waters.
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Appendix

Theory and Estimation Procedure

We have adopted a suitable estimation procedure for an E-M algorithm from [35]
and [36]. We denote

2

1 |

o {2.1?.4..(;,';] e COE (2w 24, ‘;} .. EiR {2.1?.24_%]

oS {2.1?.4.%‘} {TJ.H_lﬁ'.24.%.} ... Sin {2.1?.24.%} 9)

(7)
(7)

1 L {%}3 cos (2m.4. =) . cos (2m 42 Losin (2m.24 )

H e |
|— =l
4

X’F'&JS e

=3
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Let x, denote the /" row of the matrix X. Then we partition X as follows:

¥ = [N 10
(%) (10)

such that Ayisa (6 = 15)and Xsisa (T —f x ]5) malrix. Denote

n=(abca oo asas e Vi Vs Ve Vs e ) . (11}
and

B = (P B2 Ps P Bs Bs) - (12)
Following the least-squares estimation method, we minimize

2

- . ,
L (}1 —xn— Y B '.n_,) i (13)

=g =]

The normal equations with respect to 5 are

T

1
Y (}1 —xn - ZP: B YH-) xy =0 (14)

i=p =1

The normal equations with respect to #8; are

T-1 r
3 (h —xn-Y A 'r') Yoe =0 ¥ k=1(hp. (15)

I=p =]

Combining the set of equations in (27) we can wrile

P
¥ (}1 —xn—3 F '.n_,) y_, =0 (16)
=g i=]

where

v (Vo Yo Vs v Yo ) (17)

We define v as follows:

Vi = (Yprjm1 Ypujoz . 1)) (18)

Now,

r -1
Yi—xn—» F¥Y=) a¥i=) &Y+ Y aYi=b ¥y —c¥s (19)
i=] i=l} e & i ¥

where

by=(0. i€ ), =@uie 8. Yy=(Y,ie &), ¥s=(Y,ie 5. (M0)
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Under the normality assumption of the error terms (g,), we get the likelihood
contribution of the " data as follows,

L, (n, B) o exp [ - (bl Vi .T; n— r; Y_.,.}3 ] i21)

= log L, (. Bi) x [ - (b; Yy —x,n—¢ Y_-,-)_ ] (22)
So the total log-hkelihood of the data s

-1

2

og L(n, i = 100p) = = Y (b.¥5 —x, - ¢ ¥s) (23)
1=l}
Le.,
e ' i 2
—log L(n.fi:i=1p) =Y (b,¥s —x, - Ys) (24)

1=}
where the b,'s are functions of the &'s, thus this log-likelihood is a function of n and
i We maximiee likelihood L, (e, maximize log-likelihood log L). Clearly, log L
is maximized when Ef_ﬁl (b,Ys —x, — ¢ Y_-,-}z is minimized. So the least square
estimates are ablo maximum likelihood estimates of the parameters. Now we have
to solve the following minimization problem,

-, . ; ,
T:.;E' Z (bayi' T Y—‘l':} : (23)

1=}
In the first step of E-M method, we estmate Y; by mimmizing

E[Y (T, — xn— Y%, BY.))" | Y] . The distribution of Y3 | Y is described in
the following lemma.

Lemma The random variable Y | Yy is normally disivibuied.

Proaf The expression Ef_'_“' (B, Ys —x,n — ¢ }’_.,.}3 can be written as follows,

| BYy — CYs — Xq|-. (26)
where,
;P Ep
B=|"1], c=|% (27)
by Cr_
Let
CY¥s+ X =-:‘.I'=.r!'5+dﬁ
where

L IEEL
::;,,:3(33) Bd d:=d-ds.
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1.e.. dg1s the projection of d on C(E) (the column space of B), which implies that
BY; —dg & CiB) and is orthogonal to n‘f,;. S0,

| BY; —CYs— Xy|>= | BYy —dg —d§ |°
= | BYy—dg P+ | d§ IP

| BY Y; — dg |

¢

| BY; — (3' 3)_' Bd|?

L e, T e
= (V_;. = (3 B) Ba‘) (3 B) (V_;. = (3 B) B ::) .28
The above expression & in the exponent of the probability density function of Y5 | ¥y,
thus it follows that

Y| Ys ~ N((R 3)_' Bd o (B 3}_')_ (29)

Mext, we estimate Yy by (8 E}_I B, where B and d are based on the current
estimates of b, ¢, and n.

a
The normal equations (32) and (36) can be rewritten as follows,
X, (UB+ Xan—Yy) =0, (30)
VUB+ Xan — Yz) =0, (31)
where X5 has been defined in (20),
Vo (¥ ¥igia: Yea ]y (32)

U=(mwu),u=(YpiV¥pirs o Yron), i=1lp, (33)

= {l'u L i 1'_'.} vy = {YP+|._| YP'H'_E ad V}} 3 j-: ﬂ{]}T—P— 1. {34)

Combining (30) and (14) we get,

(“::) (}’E—E:)zﬂ, (35)

where

Y =(av). :=(3). (36)

By definitions of U7 and V',

U=V =L (n-T)=0=Lr=LLi=i=(LL) Tx

(37)
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Note that estimation of £ 15 an iteraiive procedure, because ai each siep we require

to have estimates of ¥ and Y5 which are, in turn, the functions of the previous set of
estimates of £.
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