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SUMMARY. 1t is often of interest to identify a linear structural relationship among the mean
vectors in the context of Multivariate Analysis of Variance( MANOVA). In this paper we have
generalized the results of De and Ghosh (1994) for the bivariate case to a d-variate case for d > 2.
We have exhibited a Bayes solution for populations of arbitrary dimension and also derived & useful
approximation which could be used in practice. As in the bivariate case, the Bayes rule closely
resembles the ad hoc rule introduced in De and Ghosh (1994) which was shown to have good

frequentist properties. A simulation study was carried out to compare the performance of the
proposed rules.

1. Introduction

In a Multivariate Analysis of Variance (MANOVA) set up (for examples and
references see De (1993) and De and Ghosh (1994)) it is important to know if
the mean vectors have a linear structural relationship among themselves. Let
us state the problem formally. We have p populations each of dimension d,
p > d. Let the mean vectors be g, ys, ..., i, and 2 be the common known
dispersion matrix. Let M = (p— i, gy — 2, - . . hp— ) , Where = p ' 37 ) ;.
We have a multiple decision problem with d + 1 possible decisions (or actions):
ag,ai,...,aq where a; denotes the decision or action — rank of M is k i.e. the
mean vectors lie in a k dimensional subspace. In this paper we will generalize
to arbitrary d the result of De and Ghosh (1994) for d = 2. We will find a Bayes
rule for the multiple decision theoretic problem in d dimension which resembles
the ad hoc rule of De and Ghosh (1994) based on the eigenvalues of the between
sum of squares and product matrix. We will then examine the performance of
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the ad hoc rule and that of the Bayes rule for the cases p=5,6,7 and 8 for
d = 3, using simulation.

See also Rao (1973, 1985), Fujikoshi (1974) and Shen and Sinha (1991) which
are some other relevant references in this area. However, they deal with tests
rather than multiple decision procedures.

2. Prior distributions

Prior distributions are chosen from considerations similar to those of De
and Ghosh (1994). Let X;; represent a d dimensional vector m-th element of

which is X.-(;"). The subscript (ij) stands for the j-th observation from the
i-th population, ¢ = 1,...,pand j = 1,...,n. We assume Xij ~ Ng(p, 1)
where pf = (u,(.l), e ,usd)). Xij and Xy are independent if (ij) # (i'j'). Let
X, =n! E;;l Xij. We also assume that the common covariance matrix is a
known positive definite matrix and without loss of generality, we may take it as
I

The prior distributions of ¥ and fi are assumed to be independent and
the same distribution for & is assumed under all d + 1 hypotheses. Let m,,(-)
represent the prior distribution under the hypothesis H,,. Then (¥, 1) =
Tm(¥)7wm(f2),m = 0,1,...,p. Now (") is defined in terms of another distri-
bution =7, (), (see De and Ghosh (1994) for explanation) and they are related
as

T (¥) = Kot T L% (g (1)

wm(f2) = K,ePHH (1) ..(2)
where K'’s are constants. =}, (ft) and thus (i) would be chosen to be the
same distribution under each H,,.

Under 77, |S; ~ Ng(O,%;) and ¥|Ef, ~ Ngp(O,P ® B2,), P =1, —
p'11'. Let UD;, U’ be the spectral decomposition of ¥y, where U is a d di-
mensional orthogonal matrix and D?, is a diagonal matrix. We assume the prior
probability law of U to be the Haar measure in the space of d dimensional or-
thogonal matrices. D}, = diag(o},,...,0%,,,0,...,0), where o} 2200, >
0 are fixed and are to be chosen.

THEOREM 2.1. Distribution of ¥ under the prior wn, for a given ¥ =
UD,, U, D}, = diag (¢},...,0%m,0,...,0) is normal with mean O and co-
variance P @ ¥, where £, = UD,U' and Dy, = diag(o11 ..., 0mm,0,...,0)
and o, = (;- —n)™'. The constant K,, in the expression (1) is e, -

—i
noy,)’T .

PROOF. Let vy = U, i = 1,...,p and 4} = ('y,-(l),...,’yfd)) and IV =

(7{, e ,I'y;,) = (Iw'lU, ¥, U). SoT =L@ UV and T, = I,.; ® U'Y, where
L= 1)
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T has a multinormal distribution with mean 0 and covariance PQD}, under H,.
So I'p has a multinormal distribution with mean 0 and covariance P,®D;, under
Hp,. Note 4] is identically equal to zero because its mean and variance are zero,

for m <r < dand for all i. Let T{™ = ( (7,4, ., (/2.0 ).
Then
1 _ iplmy L (m)
* (m)y o (PyeDy,) 1y (m)
*m(dL5™) (2n)ymG-D2[P, @ Dy, 12 ) T d(rg)
+ _ (Dn | O
where Dm = <O—IO>

and D}, is the m xm diagonal matrix with positive diagonal elements.

Now,

VY =T, + Yy,
= Y2 i + (- T W) (- T )
=250 Y+ 0 Yo Yl
=232 i + X0 X Y
=2 I T A + T S SN

=T (P, @ 1,) 7' T

Therefore, the density of I‘,(,,'") under =, is given as

o

T (dT" 3T (Pyell) i 41i” (P D) 1™ g plm)y

e?
—ipfy (P;‘@(D;,"—nl,,.)) -

_ K,

= G onP,eDy A

rim m
(™)

— K,
= (21r)m(,_1)/2|ﬁP®Dt l‘/ge

..(3)
Hence under m,, given 3%, E(TY™) = 0 and Cov(T{™) = P,l® (D‘ 1
nIp) ! =P, ® (D, ™! —nIm) ! imply
E()=0 and E(\Il)
— (D:ll nIm) ! o —
Co'v(I‘)—-P®< 5 5 ) =P®Dn
and Cov(¥) =P UD,U’

Also it is clear from (3) that the distribution of ¥ is normal. On integrating
both sides of (3) we solve for Kp,.

1 IP ®Dt |—1/2
™ = P-1g (Dy, — L[/
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K—Z _ |D:l:zl lp—l _ 1
™ DL = nLafp? I, - D2 P!

m e
Therefore, K= H(l - 'rw:,)%_l

r=1

3. Bayes rule

We first prove a few lemmas and then use them to derive the Bayes rule (vide
Theorem 3.1). We then prove a useful approximation to simplify the Bayes rule.

LEMMA 3.1. Let Q be a d x d orthogonal matriz and Q; be the d xm
matriz consisting of first m columns of Q, m < d. Let A be a m xm
diagonal matriz, A = diag (a;,...,am) say, such that a; > a; if i < j. Let
B be a d x d diagonal matriz, B = diag (by,...,bs) say, such that b; > b; if
i < j. Let f(Qp) = trAQ|BQ,. Then the mazimum of f is Y oo, a;b; and
it is attained at 2™ values of Q, of the form

+1 0 0

(0_ +1 0 )
0 0 +1 .4
0 0 .0

\o o

=4
N—

Proor. The (ij)-th element of Q;BQ; is

d d d
Z Z Qibieqr; = Z Qibiqy;
1=1

=1 k=1

as B is diagonal and by = b; and by, = 0 for I # k. So (ii)-th element of Q] BQ;
is Ele bigz. Hence,

m d
tr(AQ BQ;) = ) aibigf

i=1 I=1
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Let a; = Y po; 0k, o > O for all k and b; = Zzzi B, Br > 0 for all k. Then

tr(AQ;BQ;) = iz (Z B:) 9 (E ar)

=1 =1 t=l

d
> eay Y
=1 i=1

t=1
d
1

AN

i o
z"‘: o, B min{t, r)

t=1 r=1

because (7)) is doubly stochastic hence both i1 4% and Y7_, g are less than
equal to 1. So it follows that

m r d
tr(AQ;BQ;) < Zar { (Ziﬁj) + (T Z 57‘)}

m r d
= D) D A
r=1 i=1 I=1
m m d
= ZzarZﬂl

=1 r=t

Now we claim that the equality holds iff Q is of the form as given in equation
4. We prove that if

t r

ZZqﬁ min(¢,7) fort=1,...,d;r=1,...,m;
=1 i=1

then Q; must be of the form as given in equation 4. The other part of the claim
is trivial.

Let (t,r) = (1,1) then ¢4 = 1 which implies q%- =0forj>1andgy =0
for i > 1.

Take (¢,7) = (2,2) then

Gt g+ +a=2
or gp=1=>q;=0,gh=0forij#2

Next we consider (£,7) = (3,3) and by similar argument it follows that qgj =
0, ¢4 = 0 for i,j # 2. After s — 1 steps we know the form of first s — 1 rows
and those many columns of Qq and they are as given in equation 4. Now
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take (t,7) = (s,s) and Y ;_ ;3 i ;¢ = s implies g%, = 1 then qu =0, ¢ =
0 for i, j # s. This completes the proof of the claim and that of the lemma. <7

LEMMA 3.2. Let f be as defined in the previous lemma. Let H be such

that the columns of
I
(6) +H ...(5)

are of norm 1 and mutually orthogonal and the elements of H be infinitesi-
mally small (so that 3rd and higher order products are negligible compared
to the second order ones). Then

H((&)m)-1 (&)

R- Y (m—abi—b =k, — S abi—bRL  ...(6)

1<i<j<m 1<i<m, (m+1)<j<d

PRrROOF. From the condition that columns are of norm 1 we have the following
equations

d
(1+h]])2+2h?]=1, _7=1,,m
i#]

d
1 )
- hjj=_§§ h?j, i=1...,m.
i=1

Setting the cross product of j-th and the k-th columns equal to zero we get

Z hijhir + (1 + hjj)hje + (1 + hii)hi; = 0
ATk

Substituting
1 1y
b=~y 3, and b= 1SR
i=1 ‘ =1

in the above equation we get

hix = —hij— Z hijhix
i)k
= h?,c s hij
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Now

() m)-f (=)
= ay {bi(h11 +1)® + bphd, + - + bah}y }
+a3 {b1hdy + ba(ho + 1)* + - - + bahly }

+am {0ihd, + bahd, + - + b (b + 1) + - + bahim }
“Zaibi

Writing Y ab; as Y a;b; {(hﬁ +1)2 + E#i h?j} the above expression is equal
to

alhgl(bg —b1)+a1h§1(b3 —b1)+ ---+a1h31(bd—b1) +

+ amh? (b1 — b) + @bl (b2 — b) + - + amhly (ba — bm)

Using h?k ) hij for 7 < k, the above is approximately equal to

= Y (m—a)bi—bhl — Y ai(bi—bhj

1<i<j<m 1<i<m, (m+1)<j<d

V4

The following lemma and the subsequent theorem use the notations of Muir-
head (1982). The symbol (dX) denotes the exterior product of the elements of
X. Exterior product is denoted by the symbol A. It is a non-commutative bi-
nary operation like the ordinary product but has the property a Ab= —bAaq,
in particular a A a = 0.

LEMMA 3.3. In the neighborhood of Q; = (—I—) , the following is true

[8]
m m—1 d m

(QlldQI) = H H dq:'j H H dq.-j .. (7)
=2 j<i i=m+1 j=1

PRrOOF. By definition

m d
(QidQ) = A A djda

i=1j=i+1

m d d
= /\ /\ qudeki-

i=1 j=i+1 k=1
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In the neighborhood of (—(Ij—) the above expression reduces to

d
dgn Ndaa A\ - Aam ACY. emerdan) .. A qradai) A\
k=m+1 k=m+1
d d
dgsa [\ .- ANam2 A( D @emurdaia) ... \( > qudai) \
k=m+1 k=m+1

d
dqmm-] A( Z ka+lkom) /\( Z q’:dkom)

k=m+1 k=m+1
m m—1
= AN da; A( E Gem+1dgn) - N qradgn) A\
=2 j<i k=m+1 k=m+1
( z ka+1d(Ik2)-~/\( Z dekoz)/\
k=m+1 k=m+1
d d
(> Gmi1dgem) - N qradgenm)
k=m+1 k=m+1
m m—1 d
= A A 2 A(1Qz| /\ dgi) \(1Qz| /\ dg) \ .- (1Qul A dgim)
=2 j<i i=m+1 i=m+1 i=m+1
m m-—1
= AN dais A(1Qa|™ /\ /\dq,n
=2 j<i i=m+1 j=1

Now the determinant of Qq, is 1 because it is (d — m) x (d — m) orthogonal
matrix. Hence

m m—1
(QldQl) — H H dqi] H H dqq
=2 j<i i=m+1 j=1

We now state the main results of this section.

THEOREM 3.1. The marginal density of X, where X' = (X'y,...,X",),
under Hy, for a given D}, may be expressed as

N MR = 2 ¢r(D:, QLQ)
X|H,) =C(X I | — 7 7 dQ) ...(8
p(X|Hn) ( )k=1(1 nogy) /Qeo(d) € (dQ) (8)
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where O(d) is the space of orthogonal matrices of dimension d, (dQ) de-
notes normalized Haar measure and C(X) is a factor common to p(X|Hpn)
form=0,...,d.

THEOREM 3.2.

p(X|Hm) ~ ... (9)
2™"VolO(d — m) 1 el om0l e,
C(X)_TI—O(T)— g(l—ndkk)a"e_ﬂ_zzakk/\kx ...(10)
! . -1
H {ﬂ%%l).(o’,:k - o.l‘l)(Ak - Al)} P x H {1'%;—110“(/\;: - /\[)}
1si<j<m 1<i<m, (m+1)<j<d

PROOF OF THEOREM 3.1. For fixed ¥z, X7,
m
PIX|Hn) o< -/ . '/H(l - ”Uik)’;_le%tr{zz VXWX Y r (40w, (df)
k=1
m - i )
=[]0~ noty) % e 5 X SaX+ iy Pesy
k=1

where Y' = (Y1,...,Y,). Now

YPOI,Y
= - Y Y Yi-pt Y Y VLY,
i#j
= (1-pHtrZ}, Z YY) —pltr Z Y/¥, Z Y;

]
= (1-p s, Y VY —pler Y Y/EL(-Y)
= (Q-p SR VY +pTler ) D SV
= t=r%,) VY,

So for a fixed X},

p(X|Hn) = CX) [J(1 - not,) 5 e tEn XY
k=1

m
L o2 . :
= C(X) []1 - nope)'T eFTEFLLED
k=1 '
m
=C(X) H(l - na,’;k)'i—‘e@trUD:,.U'ZLZ'
k=1

= C(X) [J1 —mot) T T rQDLQL,
k=1
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Integrating with respect to the normalized Haar measure {dQ)

X|H,,D.) = C(X (1= not )5 =2trQDLQL (40,
(Xl D) = OG0 [ = o) /Qeo(d) e (dQ)

PROOF OF THEOREM 3.2. Let
D‘ — D:lz I O
m ( O | o )

trQD; Q'L =trD} Q| LQ;.
By lemma 9.5.3 (Muirhead 1982) we can write
/ 54trQD; Q'L (dQ)
Qeo(d)

SR = trQD; QL g
VolO(d) JQeow *(QdQ)

Then

N 2trD;, Q, LQq oy '

- VolO(d) ./Qlevm,d ./KeO(d-m) ¢ 1 K dK)(QldQ1)
VolO(d ~ m) w-lerD;, Q) LQq v
V0@ JQuer,, 1771(Q1dQy)

where VolO(d) is the volume of the space of d dimensional orthogonal matrices
and is equal to (Murihead 1982)

2‘17r§1Z
Tu($)

Let f(Qq) = trD;,Q]LQy. Then from lemma 3.1 it follows that maximum
of f(Qq) is Y11, 04\ and it is attained at each of the 2™ values of Qg of
the form as given in (4). So we apply the Laplace’s method by considering
neighborhoods around the 2™ points of maximum of f. Using symmetry the
above integral is approximated by

VolO(d) = ...(11)

2mVolO(d — m) 204D, Q, LQy
el e L e 17°1(Q, dQy)
VolO(d) Quev ey 171

where N(*) denotes a neighborhood around the matrix given in expression (5)
in lemma 3.2.



84 ANINDYA K. DE AND JAYANTA K. GHOSH

From lemma 3.2 f can be represented locally in terms of m? + m(d — m)
independent variables and using lemma 3.3 we can write the above as

2 V\(;:)IOO(t(id; ™) 62 Pt [ e /_ "o e T dgy x

1<k<i<m

o0 oo
=21 (g7, ~0 ) (Ae—M)g?
e 2 ke "% kl ]
[w /_m 11

1<k<m, (m+1)<i<d

H {@(‘ﬁ:k - U;l)(/\k — /\1)}_% X

_ 2mV010(d - m) 1({5;12 Eo,;k)‘k

VOIO(d) 1<k<i<m
_1
11 {=oh e =)} .
1<k<m, (m+1)<l<d
Using the previous theorem the assertion (9) follows. V74

REMARK 3.1. The approximation (local) is good for large n(p—1). It is nec-
essary to assume that the o}, ’s are all different so that there are finite number
of points of maximum. Laplace’s method is then applicable in the neighborhood
of finite number of peaks of f. If the o},’s are not different then there is no
sharp peak and the integral can not be approximated well by this method.

REMARK 3.2. One can also prove theorem (3.2) by using proof of theorem
(9.5.4) of Muirhead (1982) and some of the results it refers to. However, our cal-
culations seem new and simpler, especially in the handling of the local maxima
and integration with respect to the Haar measure locally. Also the application
in this context is new.

So the Bayes rule may be expressed as follows
. p(XlHraD:) = 11,
if Pp(X|H,, D7) > I ...(12)
where Il is the prior probability of Hj.

For moderately large n(p — 1) the left hand side of the above inequality is
well approximated by

20=9VolO(d — 1)
VolO(d — )

accept H, over H,

.
_ nlp—1) XN .

H (1-— naik)'f‘e_’_zsmu"***" if r>s. .. (13)

k=s+1

For the three dimensional case the marginal probabilities are as follows

p(X|H3) =

C(X)8(2m)*2 {(1 = no}1)(1 = nopy) (1 — nogy)} T e edropitaidy)

VolO(3) {n(p — }** {(o1; — o32)(M — X2)(0}) — 035) (M — Xa) (03 — 033)(/\(21‘5 Aa)H
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p(X|Hz) =

C(X)8(2r)3/2 {(1 — no?))(1 — noty)}'T e T2 0Eiditonh)
VolO(3) {n(p — 1)} {(03; — 025) (A1 — Aa)(03) (A1 — As)(035) Pz — ,\3)}%(15)

3 T M"Ill
p(X () = — CX2@m(Em) {(1 — noty)} T e™F €k

- . ...(16)
VolO@3)n(p — 1) {(a1;)(A1 — A2)(07;) (M1 — As)}?

4. Simulation study for the trivariate case

For detailed study of the trivariate case we choose p = 6 . We avoid the
values 4 or 5 because a preliminary study showed the error probabilities under
different hypotheses are too high to be of much practical use. We keep the
sample size n= 10. Fhe covariance matrix for u is taken as I under all the 4
hypotheses which of course, as mentioned earlier, does not affect the rule.

Unlike the case of d = 2 in De and Ghosh (1994), here the values for o}, ’s
are chosen in conjunction with those for II(H})’s . We want the o}, ’s to be near
1 but all different. We restricted the choice to theset { 1.51.4 1.31.21.1 1.0 0.9
0.8 }. As the joint distribution of Ay, A3, A3 is a bit unwieldy, we look at their
marginal distributions under each hypothesis for various combinations of o}, ’s.
A rule of the following form emerged after studying the marginal distributions

accept Hz if A3 > a
accept Ho if \g > band A\3<a
accept Hy if \y >cand Ay <band A\3<a

accept Hy otherwise

where a,b and c are in the neighborhoods of 0.9, 1.9 and 3.5 respectively. The
Bayes rule that follows from the previous section may be written as

accept Hy over H, if

I, ) 2
A3 > In :
: (Hscaz n(p — 1)o3;

(1= nogy)T

jus 2
accept H:z over H] lf

11, 2
A2 >1In ( )
2 H2621 n(p — 1)0’;2

where ¢33 =
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2 [ o 1—nok,)T
where cn = \/j ‘7111 x ( . min) 7z
TV P~ L{n(o}, — 03,) 035 (A2 — As)}

accept H; over Hg if

I 2
> 1o (chIO) n(p — 1oy,
(1—no)7
n(p—1) {of; A1 = Ag) A — /\3)}1/2

As in the bivariate case in De and Ghosh (1994) some proxy values for (Ax —~ ;)
on the right hand side of the above equations are used. Since p = 6 is moderately
large, it turns out that the factors involving the differences (A — X;) has little
influence on the Bayes ratio. This implies that we would not need to refine the
ad hoc rule as was done in the bivariate case through the (A; — A;)’s.

Different sets of values for o};’s and II)’s are used to determine the Bayes
rule and their performance is studied. Combinations that lead to either too high
or too low error probability under one hypothesis are rejected. After repeated
trials and adjustments the following combination appeared to be satisfactory.

where Cig =

12 , 11

n= = —3 3= —; e
noy = 13 Nogg 12} No33 10° 17)
IIg =0.14; I, =025 ;=037 II3=0.24; ...(18)
and the ad hoc rule is finalized as
accept Hz if A3 > 1; ...(19)

accept Hy if A3 >2.1and A3 <1;
accept H; if A >3.5and A3 < 2.1 and A3 < 1;
accept Hp otherwise.

We do not give the joint distribution of the eigenvalues of 2 A and that of B—l—
and also omit the table of Bayes ratio because of their voluminous size. Tablf;l
shows the performance of the ad hoc and the Bayes rules for various values of
p.

TABLE 1. PERFORMANCE OF AD-HOC AND BAYES RULES
FOR VARIOUS VALUES OF p.

P
5 6 7 8

Overall error ad-hoc 0.28 0.18 0.15 0.13
Overall error Bayes 029 0.18 0.13 0.10
Overall difference 0.12 0.03 0.08 0.11 -
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The two rules perform equally well for p = 6 because the ad hoc rule was
constructed to mimic the Bayes rule for p = 6. The performance of the Bayes
rule improves very fast as p increases. The ad hoc rule also shows improvement
in error probabilities with the increase in p but the gap between the ad hoc rule
and the Bayes rule widens. So for each value of p a new set of cut-off values
may be determined to reduce this difference.

Frequentist performance was checked in some detail, in the same manner as
in De and Ghosh (1994). Not only the average errors at various (ey, ez, e3) of the
ad hoc rule and the Bayes rule are comparable but the two rules agree widely
(mostly, more than 94% of the times).

Also it was found that under Hj, except where either e; or e3 or both are
small, probability of a wrong decision favouring H; or Hy is negligible. Under
Hj, except where e is small, errors are mainly due to the choice of the hypothesis
Hj. Most of the wrong decisions under Hy lead to Hs. These provide evidence
that the rules behave consistently in the sense that mostly adjacent hypotheses
are chosen in case of errors.

The performance of the ad hoc rule seemed satisfactory when it was com-
pared with the most powerful test (based on eigenvalues of the between sum
of squares and product matrix) derived from the simulated probability tables.
For the various sets of (e, ez, e3) we tried, most of the times the ad hoc rule
performed at least 90% as efficiently as the most powerful test.
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