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SUMMARY. We study stochastic orders and.dependence relations between order statistics
from a linearly ordered finite population when using either simple random sampling without re-
placement (SRSWOR) or Midzuno sampling schemes. It is shown that when there are no multi-
plicities in the population, the denisty functions of order statistics, in the cases of SRSWOR and
a special case of Midzuno sampling, are logconcave and hence they have increasing failure rate
(IFR) distributions. Also in this case the successive order statistics are likelihood ratio ordered. It is
also seen that whereas any pair of order statistics is positively quadrant dependent under Midzuno
sampling, it may not satisfy many of the stronger notions of positive dependence like positive re-
gression dependence and T'P; dependence etc. However, we are able to prove that X(;) is right tail
increasing in Xy for any j > 1. We further discuss some unresolved problems in this area.

1. Introduction

There are many ways in which one can say that a random variable X is
smaller than another random variable Y. In the usual stochastic ordering,
one says that X is stochastically smaller than Y (and write as X < Y) if
Fx(t) > Fy(t) for all t. That is, X <, Y if the distribution function Fy of Y is
dominated by that of X at all points. A very useful characterizing property of
stochastic ordering is that X <, Y & Elg(X)] < E[g(Y)] for all nondecreasing
functions g whenever the expectations exist.
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In some cases, a pair of distributions may satisfy a stronger condition called
likelihood ratio ordering. If distributions F and G possess densities (or prob-
ability mass functions) f and g, respectively, then the condition required for
likelihood ratio ordering is given by )

f(z)/g(z) is nonincreasing in z. (1)

This ordering is denoted by X <;, Y and has the interpretation that (1.1)
holds if and only if for every a < b, the conditional distribution of X given
X € [a,b] is stochastically smaller than that of Y given Y € [a,b]. It is known
that X <;, Y implies F(z)/G(z) is nonincreasing in z, where F = 1 — F and
G = 1 — G denote the survival functions of X and Y, respectlvely This latter
condition defines hazard rate ordering and this, in turn, implies stochastic
ordering. It is shown in Shanthikumar and Yao (1991) that X <;, Y if and
only if Ey(X,Y) > Ey(Y, X), Vg € Gir. :={g(z,y) : 9(z,y) 2 9(y, %), Yz <y}

There are also many notions of positive dependence between random vari-
ables. Perhaps the strongest of them is what is called T'P; dependence. Two
random variables X and Y are TP, (totally positive of order 2) dependent if
their joint density or mass function f(z,y) is TP, or more precisely, if

f(IL' ,y) f(m ,y)
Fany) fon | 2" . (12)

for any z; < 29,41 < y2. Two random variables X and Y are right corner set
increasing (RCSI) if for any fixed z and y, P[X > z,Y > y|X > 2',Y > ]
is increasing in =’ and y'. One says that Y is stochastically increasing in X
if P[Y > y|X = z] is increasing in « for all y, and write SI(Y|X). Lehmann
(1966) uses the term positively regression dependent to describe SI. We say
that Y is right tail increasing in X if P[Y > y|X > z] is increasing in z for
all y, and write RTI(Y|X). The random variables X and Y are associated
(written as A(X,Y)) if Cov[['(X,Y),A(X,Y)] > 0 for all pairs of increasing
binary functions ' and A. Finally we say that X and Y are positively quadrant
dependent if

P[X <z,Y <y] > P[X <a]P[Y <y

for all x,y and write PQD(X,Y). The various implications between these no-
tions of dependence are summarized in the following figure (cf. Barlow and
Proschan (1981) and Shaked (1977)).
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Figure 1. Implications among notions of positive dependence

Let X1y < X@g) < ... < X(») denote the order statistics of the random
variables X7, X3,...,X,. There is an extensive literature on order statistics
when Xj,..., X, is a random sample from an absolutely continuous distribu-
tion. There are excellent books by David (1980) and Arnold, Balakrishnan and
Nagaraja (1992) on the distribution theory of order statistics from parametric
families of distributions.

However, it would be more interesting to study the general stochastic prop-
erties of order statistics. Developments on this topic up to 1988 are reviewed
in the expository article by Kim, Proschan and Sethuraman (1988). The recent
book of Shaked and Shanthikumar (1994) contains many results on stochastic
orders between order statistics based on identically as well as non-identically dis-
tributed independent random variables. Also see the survey article by Boland,
Shaked and Shanthikumar (1995) on this topic. In particular, it is shown in Kim,
Proschan and Sethuraman (1988) that in case the order statistics are based on
a random sample from a continuous distribution, then, in general, Xy <;r X(;
for i < 3. However, this relation may not hold in case the original observations
are not identically distributed. Bapat and Kochar (1994) have proved that this
is true if the independent random variables are themselves ordered according
to likelihood ratio ordering. It is also easy to prove that in the indepenendent,
identically distributed (i.i.d.) case X and X(; are TP, dependent for any

i # j. Boland et al. (1996) have shown with the help of a counter example
that in the case of the independent (but not necessarily identically distributed)
random variables Xy, X3, ..., Xy, it is not necessarily true that Xy and X;
are TP, dependent. They have proved, however, that RTT(X(;)| X(;)) does hold
in this case for any ¢ < 3.

As mentioned above, most of the results on order statistics are available only
in the case of independent random variables of continuous type. It should be
interesting to examine to what extent the above results can be generalized to
the case when the original observations do not constitute a random sample from
an absolutely continuous distribution.

Chapter 4 of Arnold, Balakrishnan and Nagaraja (1992) contains some dis-
tribution theory of order statistics from discrete distributions. Boland et al.
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(1996) discuss the dependence properties of order statistics from simple random
sampling without replacement (SRSWOR) from a linearly ordered finite popu-
lation. Note that in the case of SRSWOR, the original observations are identi-
cally distributed but are not independent. A variation on and in some respects
the closest to SRSWOR is Midzuno sampling (see, Gabler (1987)), also known
as sampling with probability proportional to aggregate size. In this sampling
scheme, introduced by Midzuno (1950), n units from a finite population of size
N are drawn one by one without replacement as in SRSWOR, but a unit k has
probability p; (compare py = 1/N for SRSWOR), k = 1,..., N, Zfil e = 1,
of being chosen at the first draw and the remaining n — 1 units in the sample
forming a SRSWOR of size (n — 1) from the remaining (N — 1) units (after the

first draw) in the population. Thus an unordered sample s = {i1,...,i,} has a
probability p(s) = Z;-lzl pi;/ (1: __11 ) of being chosen by the sampling scheme. In

this case, the observations are neither independent nor identically distributed.

In this paper we will study some stochastic properties of order statistics when
sampling from a linealy ordered finite population using either the SRSWOR or
the Midzuno sampling scheme. In the next section we prove that when there
are no multiplicites in the population, the density function of X,y is logconcave
for any i. We also establish likelihood ratio ordering between the successive
order statistics in thise case. The third section is devoted to the study of
dependence properties of a pair of order statistics. The paper ends with Section
4 on concluding remarks and some open problems in this area.

2. Stochastic orderings between order statistics

In this section we will investigate the stochastic properties of the marginal
distributions of order statistics when sampling from a linearly ordered finite
population using the SRSWOR and the Midzuno schemes.

A finite population which is linearly ordered and which has no replications
can be represented as {1,...,N}. Let Xj,..., X, be the observations in a ran-
dom sample of size n drawn using either SRSWOR or Midzuno sampling and let
Xy, - - -, X(n) be the corresponding order statistics. If X; represents the value
obtained on the ith draw (i = 1,...,n), then X,’s are identically but not inde-
pendently distributed in SRSWOR, and neither identically nor independently
distributed in Midzuno sampling.

The probability mass function (p.m.f.) f) of X),i=1,...,nis given by

(a) for SRSWOR

GDGE) oy i
f(i)($)={ I =t N-ndy ..(21)

, otherwise;
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(b) for Midzuno sampling

f(i)(3)=
()] [(==e) (2 (%)
2 (1) (V) + (Theap) (D) (N3] s=i Nontis

0, otherwise.

. (22)

We show in this section that in the case of SRSWOR, the probability mass
function of X(;y is logconcave for any i. However this result holds in the case of
Midzuno sampling only for the special case py < k,k=1,..., N. Recall that an
integer valued random variable with probability mass function g is said to be log-
concave if g(s)/g(s—1) is nonincreasing in s in its support. It is also known that
a random variable with logconcave density (or probability mass function) has
increasing failure rate (IFR) distribution. See Chapter 1 of Shaked and Shan-
thikumar (1994) for further properties of distributions with logconcave densities.

THEOREM 2.1. Fori=1,...,n, f4(s) is logconcave in s,
(a) for SRSWOR,

(b) for Midzuno sampling when py x k,k=1,...,N.

Proor. (a) From (2.1) it follows that

A = G2) GG (o) ()

= (s-DIN-s+1-n+3)/{(N-—s+1)(s—1i)}

i—1 n-—1
= (1 1—
( +s—i>< N—s—}—l)’
which is a decreasing function of s, since both the factors of the last equality
are positive and decreasing in s. Thus f(zi) (8) 2 fiy(s — 1) fryy(s + 1). That is,
fy(8) is logconcave.

(b) From (2.2) and py = ck,k=1,...,N,c ! = N(N + 1)/2, we have, after
a little bit of rearranging that

fy(s) = -;—{(n +1)s+ (n— i) (N + 1)}%13(1’(;) =3), ..(23)

where Y(’o ’s are the order statistics from a SRSWOR of size n from the linearly
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ordered finite population {1,..., N}. Using (2.3) we obtain that
fal) {(n+1)s+(n——i)(N+1)}P(Yé) = 3)
oD = [t DG -D+ (- )N+ DIPY, = - 1)
N P n+1 P(Y(’i) =3)
m+1)(s—1)+(N+1)n-1i) P(Y’i) =35-1)
which is decreasing function in s, since both the factors of the last equality

are positive and decreasing in s, the monotonicity of the second factor being a
consequence of (a) above. 0

Our next two examples show that logconcavity holds (1) neither when mul-
tiplicities in the population are present and SRSWOR is used (2) nor in the
general Midzuno scheme.

EXAMPLE 2.1. Let the value 1 occur in the population 3 times and the values
2,3,4 once each. That is, let there be m; = 3 units with value 1 each, m; = 1
unit with value 1 =2,3,4 and N = m; + ma +m3 4+ my = 6. Let n = 2 be the
sample size of a SRSWOR. We then compute P(X(yy = 1) = 12/15, P(X3) = 2)
= 2/15 and P(X(y = 3) = 1/15. Thus f(21)(2) = 4/225 < 12/15 x 1/15 =
Jy(1) fiy(3). That is, f1y(s) is not logconcave.

This example also serves to illustrate that logconcavity of X (i does not hold
for Midzuno sampling when multiplicities are present. This is so since SRSWOR
is a special case of Midzuno sampling.

EXAMPLE 2.2. To illustrate the logconcavity does not hold in the gen-
eral Midzuno sampling, consider a finite population U = {1,2,3,4} with p; =
97,py = p3 = py = .01. Take n = 2. Then

foy(1) = (3p1 + p2 +p3 +p4) /3 = .98, f1y(2) = (2p2 + ps + ps)/3 = .0133
and _f(l)(3) = (ps + p4)/3 = .0067. Hence
F8y(2) = (.0133)? < .98 x .0067 = f11)(1) f1)(3),
showing that logconcavity of X(;y does not hold even for i = 1.

The next restult concerns itself with likelihood ratio ordering or Xay's.

THEOREM 2.2. Assume that there are no multiple values in the linearly
ordered finite population. Then fori < j; j=2,...,n, (a) for SRSWOR
Xy <tr X5y and (b) for Midzuno sampling with p; x k, Xy <ir. X(j)-

Proor. (a) From (2.1) we. get

fante) _ () (2) 1) (25) 7=
fiy(s) (%—1)(N—s)/(N> i ) N—s—ntit1

i—1 n—i n
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which is an increasing function of s, showing that X @ <tr. Xyt =1,...,n—
1. The result follows from this.
(b) From (2.3), we get for i < j

fe A+ Ds+ - HWN +1)} PO =)

o6 = {(n+ s+ n - ) (N +1)} P}, =)
_ {1_ G- (N +1) }P<Yé>=s>
(n+Ds+(r-(N+1) ) PYj=3)

Now the second factor in the last equality is positive and by (a), increasing in
s, while the first factor is positive and increasing in s. Hence f(;)(s)/ Jiy(s) is
increasing in s and the result follows. O

It is an open question whether Xy <i,. X(;),i < j; j = 2,...,n holds either
in SRSWOR when multiplicities are present or in the general Midzuno sampling.
We close this section by showing that the variances of X(;)’s are not ordered.
That is, Var(Xqy) < Var(X(;),é < j; j = 2,...,n does not obtain. This we
do by actually computing the variance of X (i) in general for SRSWOR and by a
numerical example in the Midzuno case. The result (2.4) below was first proved
by Arnold, Balakrishnan and Nagaraja (1992) by using exchangeable random
variables and their proof is rather long and complicated. Our proof is simple,
short and elementary. A similar proof can yield moment of any order of Xy in
a closed form.

THEOREM 2.3. For SRSWOR from a linearly ordered finite population
without multiplicities

n+1

Var(X(y) = [(N+1D)(V—n)/{(n+1)*(n+2) }}{( 5

)2—(1'——";1)2} -+ (2.4)
and hence for i < 3,
Var(Xy) < Var(Xe), 5 <[(n+1)/2)

and
Var(Xu) > Var(X), &> [(n+1)/2]

where [z] represents the greatest integer in x less than or equal to x.

PROOF. From (2.1) we have

s = %+ (33) (V) ()
- () ()

WN +1)/(n+1)
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and similarly
E{(Xp+1)Xun}=:i(G+ 1)V + 1N +2)/{(n+1)(n+2)}
From these we get

Var(Xe) = E{Xp(Xen+ 1)} - E(Xy) - B*{ X}
(N +1)(N —n) (n+1)2_(._n+1>2
(n+ D2(n + 2) 2 T

The second statement follows from this expression for Var(X;). 0

The next example shows that the variances of order statistics in case of
Midzuno sampling are not ordered even in the case when py < k,k=1,...,N.

EXAMPLE 2.3. Let N =5n—3,py c k,k=1,...,N. Then the p.m.f’s of
X(;y’s are given by

8 1 2 3 4 5
Joy(e) % % % 1
fey(s) ol
Ji(s) 0 3% 3
From these we compute
38 131 28
Var(Xqy) = 7> Var(Xq) = 295 and Var(X()) = 7

and note that
VaT(X(l)) < Va'r(X(z)) > VaT(X(3)).

3. Bivariate dependence relations

In this section we explore dependence relations between order statistics of
observations from either of the two sampling procedures. Boland et al. (1996)
have studied such relations for SRSWOR from linearly ordered populations
with/without multiplicities. They have shown that the joint p.m.f. of order
statistics X(;) and X(;) from a linearly ordered finite population with/without
replications is, for all ¢, j, T'P,. From this strong property follow weaker proper-
ties such as SI(X ;| X)) and RTI(X | X(5))-

A natural question to ask is : How far these and other bivariate dependence
notions among order statistics continue to hold when the sampling scheme is
changed even slightly as in Midzuno sampling ? We can supply only a partial
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answer to this question. We first show with the help of a counter example that
even RCSI(X(;, X(;)) does not hold in this case.

ExAMPLE 3.1. Consider the linearly ordered population U = {1,2,3,4,5}
with no multiplicities, and take a sample of n = 2 using Midzuno sampling with
p1 = pg = pg = .001,p3 = .008 and ps = .989. We then compute

P(X(g) = 3|X(]) >1)= .0030,P(X(2) = 4|X(1) > 1) =.0037
P(Xg = 5|Xqy > 1) =.9933;
P(X(g) = 4|X(1) > 2) = .0045, P(X@) = 5|X(1) > 2) = .9955.
The hazard rates h(t|s) of these conditional distribution are
t 3 4 5
h(t]1) .0030 .0.0037 1
h(t|2) 0.0045 1

Thus h(4]1) < h(4]2). Now, it can be shown (see Shaked (1977) and Kochar
and Deshpande (1986)) that RCSI(S,T) holds iff the hazard rate h(t|S > s) of
the conditional distribution of T" given S > s is decreasing in s for every fixed t.

Since in our case h(4|1) < h(4|2) we conclude that RCSI(X(y), X(3)) does not
hold.

Our next example shows that SI(X(;)| X)) does not hold for Midzuno sam-
pling.

ExaMPLE 3.2. Let U = {1,2,3,4,5} with no multiplicities and consider
taking a Midzuno sample of size n = 2 with probabilities p; = p3 = 47,ps =
ps = ps = .02. We find that

P(X(z) > 3|X(1) =1) = 0.4066 and P(X(g)) > 3IX(1) = 2) = 0.1403.

Thus P(X()) > 3|Xu = 2) < P(X(2)) > 3|X(y = 1) and the property
SI(X(j| X)) does not hold even for i = 1.

We next prove that in case there are no repeated values in the populatlon,
Xy is right tail increasing in X(;), the first order statistic for i = 2,.

THEOREM 3.1. Assume that there are no repeated values in the popu-
lation. Then, for Midzuno sampling RTI(X|Xy),i=2,...,n holds

ProOOF. We have '

= () (55 0270

P(X@ >t Xy >s) = {‘2 (t_s> ( : )(Z PE)

k=0 k=s+1

and
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N
—s—1 N -t N-1
+(Z”’°)Z( )<n_k_1)]/(n_1)'
k=t+1 =0
From these we get
g(tls) = P(Xg > t|Xp) > s)
= pPX<i-2)+(1-p))P(X'<i-1)
where
X'~ Hypergeometric (t — s, N —t —1,n — 1),
X ~ Hypergeometric (t —s— 1, N —t,n— 1),
and

t N
=D p/ Y B

k=s+1 k=s+1

Now consider a finite population of size N —s—1 with three categories of sizes
t—s—1,1and N—t—1. Then in a simple random sample without replacement of
size n—1 from the above population the random vector (X,Y,n~1—-X-Y) of the
number of units coming from the three respective categories has a multivariate
hypergeometric distribution MH(t ~s—1,1,N—t—1,n— 1). Thus X' has the

same distribution as X +Y (written X'<X +Y). Hence
otls) = P(X'<i-1)-p{P(X <i—1)—P(X <i-2))
= P(X'<i-1)—p{P(X+Y <i—1,Y =0)
+P(X+Y <i—1,Y =1)—P(X <i—2Y = 0)
—P(X <i-2,Y =1)}
= PX'<i—1)-p{P(X<i—1,Y =0)
~P(X <i-2,Y =0)}

= PX'<i-1)-pilP(X =i—1,Y =0)

t—s—1 N-—-t—-1 N—-s-1
- ' i-1)—p* .
PX' <i-1) Ps( i—1 )( n-—1 )/( n—1 )



112 ’ SUBHASH C. KOCHAR AND RAMESH KORWAR

Now
gltls+1) —g(tls) = PX"<i—-1)-P(X' <i—1)
L(t=s—1\ [N—t—1\ (N-s—1
+ps | . )/
1—1 n-—1 n-—1
(PR (N1 (N -
Poril 51 n—i n—1
where

X"~ Hypergeometric (t —s—1,N —t —1,n — 1).

Now we will show that

P(X"<i-1)-p(X'<i-1)

] s | ) V(G [P P

In proving (3.2) and simplifying the right side of (3.1), we repeatedly make use

of the identity
1
(m+1)<m)=(m+ >(m—r+1) .. (3.3)
T T
If (3.2) is granted, then using (3.2) and (3.3) on the right side of (3.1), we get
gtls+1) —g(tls) = c{(n— i)t —s — 1)+ p(N — s —m)(t — 5 — 1)
—Pi(V —s = 1)(t — s — )}
2 (N —-t)@i—1)p;
2 0,

since 1 > p; > p}, ;. Here

= () (L e ey (V20

Now to prove (3.2), we write the left side, using the definitions of X’ and X "
as

BT () - (1) (i) orven)

B () oo () (5]
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i-1
B f(t—=sY(N-t—1 B L t—s\ [N—-t-2
Zc{( B )(n—l—k t—s—k)+ N —t-1){" 1k
k=0
1—1
N-—-—s5-2 t—s—1 N—-t-1 N-—-5-2
_, — ——
=ew-en (YT G2 ()

k=0
(O ()
- '(N-t—l)(N““‘2

n—1
where

) (P(X"<i-1)—P(X" <i-1)} ...(34)

X" ~ Hypergeometric (t —s—1,N -t —1,n—1),
X" ~ Hypergeometric (t —s,N —t—2,n—1) and

c’=1/{(N;jl_1)(N-—s—n)} ...(3.5)

To complete the proof, we use by now a familiar argument. Consider a finite
population of size N — s — 2 with three categories of sizes t — s — 1,1 and
N —t — 2. In a simple random sample without replacement of size n — 1 the
random vector (X", Y',n—1— X" —Y") of the units coming from the above
respective categories hasa MH(t—s—1,1, N —t —2,n —1) distribution. Hence

Xlllléxlll + Yl

P(X"<i—1)~PX"™<i-1)
=P(X"<i-1)—-P(X"+Y' <i-1)
=P(X"<i-1,Y'=0)+P(X"<i-1,Y'=1)
—-P(X"+Y' <i-1,Y' =0)—-P(X"+Y'<i-1,Y' =1)
=P(X"<i-1,Y' =1)-P(X"<i-2,Y' =1)

=P(X"=i-1,Y'=1)

o G | GVl G §
: ©...(3.6)

Now (3.2) follows from (3.4) - (3.6), completing the proof. 0
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Our final result concerns itself with the weakest of the notions of bivariate
dependency.

THEOREM 3.2. In Midzuno sampling from a linearly ordered population
without multiplicites, Xy and X;y are PQD,i# j,i,j=1,...,n

PROOF. The survival function of X(;) and the joint survival function of Xy
and X(;) are, respectively, given by

P(X5 > 9) n—l 1[(21’1) > 8—1) (nzirl—_sk)
: @) SIRL]

= P(s)P(Yi—1) > s — 1)+ (1 — P(3))P(Y;) > s)

(3.7
and

P(X(j) >, X > s8) = P(S)P(Y(,-__l) > 8— l,Y(j__l) >t—1)
(P(t) — P())P(Ygy > 8, Yyony > t—1)  ...(3.8)

+(1 = P())P(Yy) > 8, Yy > 1),

!
where P(l) = Z Pr,l=1,...,N and Y{;’s are order statistics in a SRSWOR
=1
of size (n—1) from U={1,. — 1} (without multiplicities). From (3.7) and
(3.8), we have

P(Yj > t,Y > s) — P(Y > t)P(Y;) > s)
= PPy > =1 > t—1) + () - P(s)

><P(Y(,~) >s8, Yy >t- N+Q1- P(s))P(Y(i) > 8,Y) > t)
~{P(s)P(Y(i-1y > s — 1) + (1 — P(8)P(Yyy > )} {P(t) P(Yjj-1y > t — 1)

+(1 = P(t)P(Y;) > t)}.
...(3.9)
Now in SRSWOR PQD(Y(;,Y{;)) holds (see Boland et al. (1996)). Hence,
P(Yy > 5,Yy > t) 2 P(Ys > s)P(Y;y > t), Vs,t (and for all 4,5). Hence
using the monotonicity of P(s), the right hand side of (3.9)) is

2 P(s)(1-P){P(Y) > s)—P(Yy1y > s—DHP(Yyy > t) — P(Y—y > t—1)}
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and the result follows from the fact that {Y;_1y > u — 1} implies {Yj > u}.
4. Concluding remarks

In this paper we have tried to extend to two particular sampling situations
in which observations are dependent / or nonidentically distributed, results on
order statistics that exist for observations which are independent / or identically
distributed. As stated before, the observations from a SRSWOR. are dependent
buit identically distributed, while those from the Midzuno sample are neither
independent nor identically distributed. The answers to questions raised here
are at best partial and the questions need further investigation. For example,
does RTI(X(jy]X(;y) hold, in general, for i < j and not just for i = 1? Do some
of the results presented here for a linearly ordered finite population without
replication go through when there are replications ?
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