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Abstract

We have studied DNA sequence variation in and around the genes JCAMY and THF, which play functional and correlated roles
in inflammatory processes and immune cell responses, in 12 diverse ethnic groups of India, with a view to investigating the
relative roles of demographic history and natural selection in shaping the observed patterns of variation. The total numbers of
single nucleotide polymorphisms (SNPs) detected at the JCAMYT and TNF loci were 29 and 12, respectively. Haplotype and
allele frequencies differed significantly across populations. The site frequency spectra at these loci were significantly different
from those expected under neutality, and showed an excess of intermediate-frequency variants consistent with balancing
selection. However, as expected under balancing selection, there was no significant reduction of Fgp values compared to
neutral sutosomal loci. Mismatch distributions were consistent with population expansion for both loci. On the other hand,
the phylogenetic network among haplotypes for the TVF locus was similar to ex pectations under population expansion, while
that for the JCAMI was as expected under balancing selection. Nucleotide diversity at the JCAMY locus was an order of
magnitude lowerin the promoter region, compared tothe introns or exons, but no such difference was noted for the TVF gene.
Thus, we conclude that the pattern of nucleotide variation in these genes has been modulated by both demographic history
and selection. This is not surprising in view of the known allelic associations of several polymorphisms in these genes with
varions diseases. both infectious and noninfectious.
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Introduction

The intercellular adhesion molecule one (JCAMT) and tumor
necrosis factor o (TNVF) genes are known to play important
functional and correlated roles in inflammatory  processes
and immune cell responses in a wide range of diseases, both
noninfections and infectious ( Bjomsdottir and Cypear 1999,
Dabbie et al. 1999; Fernandez-Arquero et al. 1999; Knight
and Kwiatkowski 1999; McGuire er af. 1999; Negoro ef al.
1999; Stz et al. 1999; Kawasaki et al. 2000; Zeggini et
al. 2002; Thio et al. 2004). Both fCAMT and TNF, appear
to play an important roles in malarial susceptibility (Hill
1992 Fernandez-Reyes ef all 1997; MceGuire e al. 1999).
The pathogenecity of Plasmodium falciparum has been
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ascribed to the ability of the infected red blood cells o ad-
here w capillary endothelium (Paloske and Howard 1994).
ICAMI hasbeen shown to be an endothelial cell adhesion re-
ceptor for Plasmodinm falciparum (Berendt et af. 1989). In
a histopathological study, it was shown that the presence of
parasitised erythrocytes in cerebral vessels colocalized with
endothelial expression of JCAM I, indicating that JTCAM T 1s
an endothelial receptor for infected erythroeytes in cerebral
malana (Turner e af. 1994). Therefore, similar to the MHC
locus (Grimsley er al. 1998), it is possible that heteroey gotes
for different variants at the JCAMT locus enjoy a selective
advantage when exposed to various pathogens, since JCAMY
acts as g receptor. Thuos, balancing selection may play an
important role in maintaining genetic variation at this locus.

Various alleles in the TVF promaoter have been found o
be associated with cerebral malaria and severe malaral ane-
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mia (MceGuire e af. 1999 However, TNF seems to have
both beneficial and detrimental functions. It can activate host
defense and promote resistance to nfectious diseases, and it
can also be mmvolved in toxicity (Kwiatkowski er al. 1993;
Gimenez et al. 2003). Thus, natural selection may not oper-
ate in a homogeneous or unidirectional mode at this locus. It
15 also known that there 18 an nteraction between the JCAM T
and TNF gene products in the milammatory processes and
immuné cell responses in a wide range of diseases. The cy-
tokine TNF 1s known w upregulate the endothelial adhesion
molecule ICAMI (Meager 1999).

The facts stated above indicate that a complex set of in-
teracting evolutionary forces may operate at the JCAMT and
TNF loct in mamtaining the DNA sequence variation. More-
over, this variation 1% also determined in part, by the evolu-
tionary histories of the populations sampled to estimale it.
We, therefore, sought to explore the relative roles of demo-
graphic history and natural selection on the natwre and ex-
tent of the DNA sequence vanability at these two interacting
loci. For this, we have camied oul a systematic survey, by
DNA sequencing, of polymorphisms in and around these two
genes in 208 individoals drawn from 12 population groups
of India with diverse ethnie, ecological and epidemiological
backgrounds. We have analysed these data, in conjunc tion
with mitochondrial DNA (mtDNA) sequence data, to draw
approprate inferences.

Materials and methods
Papulations

There are over 1000 endogamous ethnic groups present in
India (Singh 1992}, These groups are broadly classified into
two major clusters—tribes and castes. The tnbes are con-
sidered as the authochthones of India. The vast majority of
tribal groups live in isolation, inhabit geographically remote
areas and practice hunting and gathering or pnimitive forms
of agrnculture. The caste groups belong to the Hindo reli-
gious fold, and practice various occupations. It is generally
acknowledged that there has been considerable admixture of
the caste populations with local tnbals and with immigrants
from other regions of the world in prehistoric and historic
times (Thapar 2003y, Both tribal and caste populations are
spread throughout India. Because of their different ancestral
histories, in this study we have sought to obtain representi-
tion of both caste and tribal groups from diverse geographi-
cal regions of India, to further reduce the possibility of biases
that may stem from regional differences in prevalence of in-
fections and other discases.

This study was initiated after obtaining  appropriate
ethical approvals.  Blood samples were drawn with in-
formed consent fromm nommal, healthy individoals unrelated
to the first cousin level.  These individuals belonged 1o
12 distinet ethnic groups (six tribal and six caste) in-
habiting five different geogmphical regions of mainland
India and the Andaman and Nicobar Islands (fgure 1)
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Figure 1. Geographical locations and background information re-
garding the study populations.

Anonymized blood samples from the Jarawas were collected
and stored at the Regional Medical Research Centre, Indian
Council of Medical Research, Port Blair and were used in
this study, after obtaining the approval of the Ethies Com-
mittee of the Regional Medical Research Centre, Port Blair.

Experimental protocols

The JCAMT gene maps 10 19pl33-p13.2 and contams seven
exons. The TNF gene maps to 6p21.3 and contains four ex-
ons. Genomic sequences of these two genes were down-
loaded from the UCSC Genome Browser (hip:f/genome.
ucsc.edu). The genomic region encompassing JCAMT was
repeat-masked using the program RepeatMasker2 (hup://p.
genome.washington.edo.c gi-bin/Repeathasker).  Appropn-
ate primers to amplify the exons, introns, the 5 and a portion
of the 37 untranslated regions (UTRs) of these genes (exclud-
ing the repeat-masked region of JCAMT) were designed. The
total number of bases resequenced for each mdividuals wene
G000 and 3046, respectively for the JCAMT and TNF genes.

DNA amplification conditions by PCR were optimized
using control samples. PCR products were cleaned us-
ing Exonuclease 1 and Shrimp Alkaline Phosphatase, and
subjected to sequencing on an ABL-3100 automated se-
quencer using dye-terminator chemistry (primer sequences
and PCR conditions are given in table 1 of appendix.)
ABI trace files thus generated were analysed vsing the
PHRED software (hitp:y/fwww.mblwashington.edo/phrap.
docs/phred.html), which assigns quality score o each base.
The PHRED outputs for all the individuals for any given
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PCR amplicon were aligned using PHRAP software (hitp:
{fweww phrap.orgphredphrapeonsed.himl). The resulting as-
semblies were viewed using CONSED (http:/fwww.phrap.
org/phredphmpeonsed himl) that allows identification of the
putative sequence variants. All samples with putative vanant
alleles were mesequenced 1n reverse direction for confinma-
Lion.

Statistical analysis

Allele frequencies at each vanant site were computed by the
gene-counting method. Maximum likelihood estimates of
haplotype frequencies from the JCAMT and TNF polymor-
phic sites were obtained via the EM algorithm vsing the pro-
gram HAPLOPOP (Majurndar and Majumder 1999). Est-
mation of standard diversity indices, mismaltch distributions
and statstics for testing neutrality, meluding coalescent sim-
ulations, were performed vsing the Arlequin (Schneider eral.
20000 and DnaSP (Rozas et al. 2003) packages.

A number of statistics for testing neutrality of mutations
were computed, their ests of significance were performed
by coalescent simulations (100 simulation runs were per-
formed for each case) using DnaSP. Observed and expected
allele frequency spectra were computed using a computer
program written by vs.  The expected number of sites at
which the denved allele is present @ tmes inoa sample of
stze nowas computed as, {8, /a,l/i where s, denotes the
ohserved number of sites and a, = E::,Ifl,"i}l (Watlerson
1975; Fu 1995). Fhylogenetic relationships among haplo-
Lypes were obtained by the Network software (hitp:/fwew.
fluxus-engineering. comy'sharenet. him).

Results and discussion

Al the JCAMIT locus, 29 variant sites were identified by re-
sequencing the JCAM T gene in 208 individuals drawn from
the 12 different ethnic groups. These have been reported in
Sengupla ef al. (2004) and are summarized i tablke 1. Tribal
groups possess 22 of these 29 sites, while caste groups pos-
sess 21, Transition substitutions are more prevalent (649)
than transversions (35%); one insertion/deletion (indel) poly-
morphism was observed. All vanant sites are biallelic, except
for one site where a third T-allele appeared as GT hetermey-
gotes in two Konkan Brahmins of Maharashtra (we removed
these two mdividuals from the allele frequency estimation
for that site, and also from haplotype reconstruction.)  In-
terestingly, we observed two faidy common nonsynonymous
SNPs (Glycine to Threoning) in our samples at nucleotide
positions 13487 and 13542, that have not been reported car-
lier. The 29 5NPs detected by resequencing represent an
overall occurrence of 1 SNP per 213 bp; 1 per 207 bp in
introns and 1 per 177 bp in exons. The minor allele frequen-
cies of six of the seven nonsynonymous SNPs are above 5%
in one or more ethnic groups in our sample. Only five of
29 sites are shared among all the 11 ethnic groups mhab-
iting mainland India. A wide differences in allele frequen-

cies across groups are observed (table 1). The Jarawas are
monomorphic for 25 of 29 sites.

Al the TNF locus, 12 SNPs (nine transitions and three
transversions) and two indels were identified.  Four new
SNPs were discovered, of which three are present only in the
Jarawa. One of these private sites among the Jarawa (C500T)
15 highly polymorphic, the frequency of the rarer allele at this
site 15 0.343, There 1s a wide vanation in allele frequencies
across populations (lable 2).

Nucleotide diversity values (x10") across populations are
very similar (2.5-5.0) for JCAMT (1able 1), while there is
slightly greater vanability (1.5-5.4) for TNF (table 2). Un-
fortunately, no comparable data on neutral autosomal loci
are available in Indian population groups. However, the nu-
cleotide diversities in Indian groups estimated from miDNA
HVET sequence data are in the mange of 0.015-0.022 (Basu
et al. 2003).  Although it appears to be a reduwction of nu-
cleotide diversity at the JCAM ! and TNF loci by two orders
of magnitude compared 1o the mtDNA, it must be remem-
bered that the rate of nucleotde substtution in the HVST re-
gion of mtDNA is known to be substantially higher than in
nuclear genomic regions. The average nucleotide sequence
diversity in autosomal regions has been estimated 1o be about
7.5 % 107 (Sachidanandam et al. 2001}, although it can vary
by an order of magnitude across genomic regions (Reich et
al. 20023, Thus, there s no significant evidence of redue-
tion or enhancement of nuckeotide diversity in the TCAMYT
and TNF genes.

However, when the nucleonde diversities were caleulated
separately for vanous regions of the genes(lable 3), we found
that there wias a ten-fold redoction in nucleotide diversity in
the promoter region of the JCAMT gene compared Lo the in-
trons or ¢xons of this gene, which exhibited similar levels
of nucleotide diversity. Such a difference was, however not
found in the case of the TNF gene. This finding is indica-
tive of positive selection pressure in the promoter region of
TCAMI.

Frequencies of haplotypes at the JCAM T locus were es-
timated (table 4; table 2 of appendix) using genotype fre-
quency data of only those 17 polymaorphic sites at which the
frequency of the rarer allele exceeded 005 in at least one
of the 12 populations. A total of 61 haplotypes are present,
about 345 (19 of 61) of which are shared by at keast two
groups. Three haplotypes—H]1 (21% in the pooled sam-
ple), H5 (14%) and H9 (125 }—are the most frequent ones.
The southern-Indian Brahmin group, Iver harbour the largest
number of haplotypes (16), while the Jarawas harbour the
lowwest number (8). At the TNVE locus, 36 haplotypes ae ob-
servied (table 5; table 3 of appendix), of which 11 are shared
among groups. Haplotype H1 frequency 1s 62.5% in the
pooled sample. The vast majority of the haplotypes observed
at both the loct have arisen by recombination.

To investigate the distribution of genetic variation at these
two loci, we computed the site frequency spectra for tribal
and caste groups, separately for the JCAMT (figure 2a.b) and
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Tahle 2, Minor allele * frequencies at observed single nucleotide polymorphisms inand around the TNF zene in
12 ethnic groups of India and estimated nucleotide diversities.

Position Population code

& BHU MZQ MNP SAN WBR KAD IYR MUR SBE MRT KBR JAR
nucleotide Tribe Tribe Caste Tribe Caste Tribe Caste Tribe Caste Caste Caste Tribe
change® Region (13) 21y (1) (16) (16) (16} (1Ty (16) (16) (15) (16) (35)
A-5T2C Promoter 00549 0031 0067 0.067
G-308A Promoter (038 0031 0033 0029 02000 0.061

G-303A Promoter 0. 100
G-238A Promoter 0.154 0.024 0.125 0031 0029 0.031 0033 0033 0094
T-T7A Promoter 0031 0125 0029 0.031 0.067

CAT Promoter 0.157
C5aT Exonl (3'UTR) s 0182

G420A Intronl 154 024 0125 0031 0029 0031 0033 0033 0.0
GAR9A Intrond 0077 0167 0219 009 0094 0118 0187 0.133 0.2 0.062
C500T Intronl 1.343
AANTG

Indel at 625 Intrond 005 0.031 0031 0062 0.067

P‘\G

Indel at 731 Intronl LELIE S 0031 O0wd 0031 0.033 0129
A 3040 Intron3 154 0024 0.156 0087 0059 0062 0100 0036 0133 0.147
A2053C Exond (3'UTR) 0.062" 0.031 0087 0.031 0.067 {.143
MNucleotide diversity (7) = 10¢ 3401 2570 1.020 1516 3952 4780 2206 3.906 3.860 2.160 2.710 5377

Figures in parentheses indicate the numbers of individuals sampled.
* The allele with a lower frequency in the pooled sample is designated as the minor allele. Blank cells frequencies

indicate zero frequencies;

" MNucleotide positions have beencounted from the transcriptional start site. Nucleotides in italics are the derived ones,
determined by comparing the human sequence with that of the chimpanzee. SNPs indicated in boldface have been

considered for haplotype determination:

© A third allele T was detected as T heterozygotes in two KBR individuals: These two individuals have been ex-

cluded from allele frequency estimation;

* Significantly (7 < 0,05 ) deviated from Hardy—Weinberg equilibrium,

Tahle 3. Nucleotide diversities (= 10¢) in differ-
ent regions of the ICAM I and TNF genes among
tribal and caste populations of India.

Gene Region Tribe Caste
ICAMI Promoter 0.281 0568
Introns 4,178 41493
Exons 5,847 6612
Exons + UTRs 5,194 5910
THNF*®
Introns 6.235 4368
UTR 3.597 2716

*There are no polymorphic sites in the exons.

the TNF (figure 3a,b) loci. The differences between the
observed and expected site frequency spectra are statisti-
cally significant for both ICAMT and TNF. The P-values cor-
responding to the Kolmogorov-Smimoy Lest statistic were
= 0001 for each of the loci (the observed site frequency
spectrum is significantly different from that expected under
neutrality for most populations for cach of the two loci, de-
tails are not presented for brevity). AL both loci, there is
evidence of a significanty higher frequency of intermediate-
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frequency vanants, which can result from balancing selection
{Bamshad and Wooding 2003).

While various demographic processes can also affect the
distribution of genetic variation, the effiects of these processes
are more-or-less uniform over the entire genome. On the
other hand, natural selection affects functional and nonfunc-
tional regions of the genome differentially (Bamshad and
Wooding 2003). We have therefore, also computed the ob-
served and expected site frequency spectra for the TCAMYT
locus separately for the promoter region, exons and introns
for tribal (figure 2e,d, ¢) and caste (figure 2f, g, h) groups.
Results for the TVF locus for these genomic regions are pre-
sented in figure 3 c.d,e for the tibal groups, and in figure 3
f.gh for the caste groups. The site frequency spectra for
these regions—promaoter, exons and introns—show the same
excess of mlermediate-frequency variants compared 1o ex-
pectations under neutrality mentioned earlier, except for the
intron region of JCAMI (fizure 2e.h) where the patiem is
similar to that expected for a peutral locus (Bamshad and
Wooding 2003). These excesses are more pronounced for
TNF than for ICAMI. No formal statistical tests for dif-
ferences between the observed and expected site frequency
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spectra were done for these separate genomic regions since
the observed numbers of sites in these regions were small.
However, although for the JCAM ! promoter region a reduc-
ton in nucleotide diversity, consistent with positive selec-
tion was observed, there 15 no evidence of excess of low-
frequency alleles that s expected under positive selection.
Vurious statistics, nolably Tajima (1989 D, Fu and Li's
(1993 D+ and F=, and Fu’s (1997) Fq. have been proposed
Lo examine various charmeteristics of the site frequency spec-
tra for testing selective neutrality of mutations. Since popula-
tion amalgamation may significantly atfect the values of the
test statistics, we have computed these statistics separately
for each population (tables 4, 5). Our results show that for
TCAM I, the Fyg values are statistically sigmificant for 10 of
the 12 populations (table 4), while the other statistics are not
{except for one F* corresponding to the Jarawa). For TNF,
the Fy values are statistically significant for five of the 12
populations (table 5). The other statistics are not significant
for any of the populations, except for one I} value. Through
computer simulations, Fu (1997} has shown that Fy is par-
ticulardy sensitive to demographic history, in the sense that if
only Fy is significant while the other statistics are not, then
it s more likely o be due to population expansion than nat-
ural selection. One way to resolve this confounding effiect
of positive or background selection and population growthis

It
L
It

Lo investigate the mismateh distribution, which is expected 1o
be smooth and unimodal in an expanding population (Rogers
and Harpending 19923, bul not necessarily so under selec-
tion. We have plotted the mismatch distributions among the
tribes and castes using data of the FTCAMYT and TNF loci and,
to obtain an independent calibration, also the data of the
miDNA HVST! region taken from Basu er al. (2003), per-
tainmg o nine of the 12 populations considered here (hig-
ure 4). The mDNA mismatch distributions are unimodal for
both the tribes and castes with mggedness values (Rogers and
Harpending 1992) of 0,02 and 0.03, respectively. The mis-
match distributions for both JCAMYT and TNF are also uni-
modal. The raggedness values for JCAMT are 0.06 for tibes
and 0.05 for castes; the comesponding values for TNF are
0.07 and 0.04, respectively. The notable feature of the mis-
match distributions for TWE is that these have modes at 1 and
0, respectively, for tribes and castes. This feature was not ob-
served either for the JTCAM T or for the miDNA data. Thus,
while the mismatch distributions for both the genes (JCAMT
and TVF) are in good agreement with a population expan-
sion model, the distnbuton for TAVF 15 similar 1o that ex-
pected under a recent population expansion. However, since
demographic history is a characteristic of the population, the
implications of these distinet patterns are unclear. It is prob-
ably not due to a recent selective sweep operating al the TNF
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locus, because if there had been a recent selective sweep, one
would expect an excess of rare frequency alleles, while in
fact an excess of intermediate frequency alleles is observed
at this kocus.

We have also examined the Fyp values at these loci, and
have computed them separately for promaoter, mtronic and
exonic polymorphisms for JCAMT (figure 5a) and TNF (fig-
ure 5h). The Fyy value over all polymorphic sites for TNF
(0.08; P < 0001 ) 15 marginally higher than that for JCAMY
(006 P < 0L05). These values are only slightly higher than
observed (0.04) for neutral autosomal loct (Basu er af, 2003,
Smee balancing selection is expected to reduce the Fgr value
compared to neutral loci, our finding does not indicate any
strong effect of balancing selection at the loci under study.
There 15, however, considerable variation in Fqp values be-
tween trbes and castes:  for JCAMT these values are, re-
spectively 0.05 and 0.02, while for TNF, the values are 0.00
and 0.02, respectively. All the Fgy values are statistically
significant (P < 0.05). The tnbal groups are more differ-
entiated than that of the caste groups, which may be a re-
sult of their solation for a longer period of tme than that
of the caste groups. Further, the locus-specific Fep values
are highly structured by the position within the gene. For
TCAMYI (figure 3a), the Fyp values for polymorphic loci that
are in exons are substantially higher than those located in the
promoter region or in the introns. For TNVF (figure 5b), the
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Figure 5. Fqp values for various polymorphisms observed at the (a) JCAMY and (b)
TWF loci. P promoter, 1, intronic: E, exonic: U, 3 untranslated region of polymor-

phisms.

exonic polymorphisms are located only in the untranslated
regions of the exons—these loci have higher values than
those located in the introns or in the promoter. The only
exception 15 the G-2084 promoter polymorphism at which
a high Fsp value was observed; this polymorphism s known
to be associted with the susceptbility to severe malana,
leishmaniasis, scaming rachoma and lepromatous leprosy
(Knight and Kwiatkowski 19993, One reason for observ-
ing higher Fgp values for exonic polymorphisms like that
of the TNF promoter polymorphism G-3084, is that these
polymorphisms may also be associated with certain diseases
that possibly have variable prevalence across populations.
Thus, these loci may be under selective influence in some,
but not all populations, resulting in wide differences in al-
lele frequencies across populations and consequently higher
Fsy values. Alternatively, high Fgp values may simply be
because of genetic drift which, however, is unlikely because
the observed pattemn of Fgy values by genomic region (pro-
maoter, exon, intron) would then not be expected.

To further examine whether the observed patterns of ge-
netic variation, especially at the JCAMT locus, are consis-
tent with population expansion, we have constructed median-
joining networks of the major haplotypes observed at these

234

loci (figure 6). Under a population expansion model, a star
like phylogeny of haplotypes is expected (Takahata and Nei
1994); Rogers and Harpending 1992). Balancing selection,
on the other hand, 15 expected o retaim multiple lineages
for a long time, resulting in & network in which there are
some high-frequency clusters and some bow-frequency clus-
ters with long branches (Takahata and Ner 1990). Such a
pattem is observed for JICAMI, and to some extent for TNF.
However, for TNF, the network is essentially star like, con-
sistent with population expansion, as cadier inferred from the
mismaleh distobutions.

To summarcee, nucleotide diversity levels in the genes
or their component regions (promaoler, exon, mtron) do not
show any statistically significant evidence of reduction or en-
hancement compared o other autosomal genes. The only
exception is the promaoter region of JCAM 1, where we have
noted a significant reduction of nucleotide diversity consis-
tent with positive selection. If a genomic region s under
positive selection, then it is expected that there will be a
significant excess of low-frequency alleles compared to neu-
tral expectations. This, however, was not observed. In fact,
consistent with balancing selection, at both the loci and in
their component regions there were significant excesses of
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Figure 6. Median-joining networks depicting phylogenetic rela-
tionships among haplotypes observed in at least three individuals at
the, (a) FCAMT and (b} TNF loci. [The identification numbers of
haplotypes (nodes) and of polymorphisms given on the edges join-
ing the nodes are provided in table 2 and 3 of appendixes and for
TCAMYT and TNVF, respectively. Many apparent reticulations are due
to recombination. |

intermediate-frequency alleles; these excesses were greater
for TNF than for JCAMI. Thus, we did not observe a pattern
of nucleotide variation that s consistent with a simple and
uniform mode of natural selection in either genes. Since it is
known (Bamshad and Wooding 2003) that demographic his-
tories of populations can result in pattems of nucleotde van-
ation that are similar to those expected under vanous mod-
els of natural selection, we have calculated statistics relevant
for inferring demographic histories. Fu's (1997) Fy statis-
tic and unimodality of mismatch distributions indicated that
both the tribal and caste populations underwent significant
population expansion. The median-joiming network of hap-
lotypes at the TNF locus was star like, consistent with pop-

Journal of Genetics, Vol. 86, No. 3, December 2007

ulation expansion, but that of the haplotypes at the TCAMY
locus was not. The coefficient of population differentiation
Fsy also did not show any significant excess or reduction,
although higher values were observed for the promaoter and
exon regions of both JCAM T and TNF, consistent with nat-
ural selection. Thus, we see that the patterns of nucleotide
vanation in these genes, that perform related functions, is
complex and 5 not consistent with a simple model of se-
lection. Ouwr resulls idicate that both natural selection and
differential demographic histonies have jointly contributed to
the observed pattems of nucleotide diversity and haplotype
structure.  The effect of natural selection seems more pro-
nounced in the promoter regions of these genes, although i
15 unclear whether the selective pressure 1s balancing or pos-
itive.

The complexity of our results s comparable w those
found at the Dully blood group (DARC) locus (Hamblin and
Di Rieneo 20000, The TNF gene 1s located between genes
that compnse the HLA gene cluster on chromosome six,
and there are functionally important genes (e.g., interce lular
adhesion molecule genes, erythropoietn receptor and low-
density lipoprote i receptor) located around the JCAMYT gene
on chromosome 19, The pattern of selection operating on
the HLA gene cluster is known Lo be complex (Takahata et
al. 1992: Klein er af. 1993; Satta er af . 1994), Since the TNVF
gene 15 located within this cluster, it is possible that hitchhik-
ing effects may have contributed o the pattern of nucleotide
sequence vanation in the TNF gene. The same phenomenon
may have also operated on the JCAMT gene, if indeed se-
lective effects have been strong on the nearby penes. More-
over, multiple distinet episodes of selection may have op-
erated on the TNF and JCAMT genes, in view of their cen-
tral importance in interacting with pathogens and in other
noninfectious diseases. The TCAMIM™Y variant has been
found to predispose individoals in Kenya to cerebral malaria
(Fernandez-Reyes er al. 1997). Although this vananl was
found in several populations in our study, its frequency is
much lower than in Kenya. Similarly, many variants at the
TNF locus that have been found o be associated with var-
ious diseases, both infectious and noninfectous (Gimenes
et al. 2003), are found in widely differing frequencies (e.g.,
(7-238A, (-3084), or not found at all in Indian population
groups. Thus, it is possible that temporal and spatial varia-
tions in prevalence of pathogens and discases, together with
vanable ancestral histones of population groups, have re-
sulted in the complex pattem of nucleotide sequence varia-
tion at these two loci.
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Table 2. Sixty-one JCAMT haplotypes present in 12 ethnic groups of India.
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The numbers in italics correspond to the 17 polymorphic sites in the 5 — 3’ direction inthe JCAM J gene (table 1) used

to reconstruct the haplotypes.
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Table 3. Thirty-six TAF haplotypes present in 12 ethnic groups of India.
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