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Abstract: Control chart patterns (CCPs) can be associated with certain assignable causes creating
problems in the manufacturing processes and thus, the recognition of CCPs can accelerate the diagnostic
search, for those causes. Researches in developing CCP recognition systems have traditionally been
carried out using standardized or scaled process data to ensure the generalized applicability of such
systems. Whereas standardization of data requires additional efforts for estimation of the mean and
standard deviation of the underlying process, scaling of process data leads to loss of distinction between
the normal and stratification patterns because a stratification pattern is essentially a normal pattern with
unexpected low varability. In this paper, a new approach for generalization of feature-based CCP
recognition system is proposed, in which the values of extracted shape features from the control chart plot
of actual data become independent of the process mean and standard deviation. Based on a set of six
shape features, eight most commonly observed CCPs including stratification pattern are recognized using
heuristic and artificial neural network techniques and the relative performance of those approaches is
extensively studied using synthetic pattern data.

Keywords: Artificial neural network, control chart patterns, generalization of features, heuristics, pattern
recognition.

1. Introduction

tatistical process control (SPC) is one of the most effective approaches in total quality

management (TQM) and control charts, primarily in the form of X chart, remain
among the most important tools of SPC. A process is considered to be out-of-control when
any point falls beyond the control limits or the control charts display unnatural (non-
random) patterns [13]. While the former condition can easily be identified, the latter is
difficult to recognize precisely and effectively because the control chart patterns (CCPs) are
usually distorted by random noise that occurs namrally in a mamufacturing process. The
Statistical Quality Control Handbook [22] includes various types of control chart patterns
({CCPs). Among these, there are eight basic CCPs, e.g normal (NOR), stratification (STA),
systematic (SYS), cyclic (CYC), increasing trend (UT), decreasing trend (DT), upward shift
(US) and downward shift (DS), as shown in Figure 1. All other patterns are either special
forms of basic CCPs or mixed forms of two or more basic CCPs. Only the NOR pattern is
indicative of a process continuing to operate under controlled condition. All other CCPs
are unnatural and associated with impending problems requiring pre-emptive actions. The
Shewhart control charts consider only the current sample data point to determine the stams
of a process. Hence, they do not provide any pattern-related information when the process
is out-of-control. Many supplementary rules like zone tests or run rules have been
developed to assist the users in detecting the CCPs [15, 16]. However, the application of all
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these rules can result in excessive number of false alarms.

Detection of an unnatral pattern allows the users to have more insight about the
process in addition to the in-control/out-of-control decision. The classified patterns can
help the users to identify the potential problems in the process and provide clues or
guidelines for effective trouble-shooting. Hence, CCP recognition is the most important
supplement and enhancement to the comventional control charting technique. Recently, a
bulk of research initiatives have been directed towards developing computer-based
algorithms for automated recognition of various control chart patterns aiming to monitor
the manufacturing processes in real time environment. The motvation for those research
works is to take advantage of the widespread use of automated data acquisition systems for
computer charting and analysis of the manufacturing process data. The basic approach
remains as defining a moving observation or SPC monitoring window consisting of the
most recent IV data points and then detecting the control chart pattern that appears in the
window. The data points are the sample average values when the process mean is
monitored using X chart.

The approaches adopted by the researchers for developing automated CCP recognition
systems range from the application of expert systems [4, 18, 21] to artificial neural
networks (ANN) [2, 6, 8, 10, 17, 19, 20]. The advantage of an expert system or rule-based
system is that it contains the information explicitly. This explicit nature of the stored
information facilitates the provision of explanations to the operators as and when required.
However, the use of rules based on statistical properties has the difficulty that similar
statistical properties may be derived for some patterns of different classes, which may
create problems of incorrect recognition. The use of ANN techniques has the advantage
that it does not require the provision of explicit rules or templates. Rather, it learns to
recognize patterns directly through typical example/sample patterns during a training
phase. One demerit of ANN is that the information it contains, are implicit and virtually
inaccessible to the users. This creates difficulties in understanding how a particular
classification decision has been reached and also in determining the details of how a given
pattern resembles with a particular class. In addition, there is no systematic way to select
the topology and architecture of a neural network. In general, this has to be found
empirically, which can be time consuming.

Most of the reported works used raw process data as the input vector for control chart
pattern recognition. Only a few researchers [5, 8, 20] have attempted to recognize various
CCPs using extracted features from raw process data as the input vector. Whereas Pham
and Wani [20] and Gauri and Chakraborty [5] have used extracted shape features from the
control chart plot, Hassan ef al. [8] have utilized extracted statistical features from the input
data set. The use of raw process data is computationally inefficient. It requires large neural
network size due to which training of the ANN becomes difficult and time consuming. Use
of extracted shape features from the control chart plot or statistical features from the input
process data can reduce the network size and learning time. However, extraction of
statistical features requires considerably large number of observations and their
interpretation is also not easily comprehendible to the practitoners. Moreover, the
statistical fearures lose information on the order of the data. The shape features can be
extracted from smaller number of observatons without losing order of the data. The
feature-based approach also provides a greater choice of recognition techniques. Pham and
Wani [20] and Gauri and Chakraborty [5] have demonstrated that properly developed
heuristics based on the extracted shape feamres from control chart plot can efficiently
differentiate various CCPs. The feature-based heuristic approach has a distinct advantage
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that the practitioners can clearly understand how a particular pattern has been identfied by
the use of relevant shape features. Since extracted shape features represent the main
characteristics of the original data in a condensed form, both the feamre-based heuristic
and ANN approaches can facilitate efficient pattern recognition.

From implementation viewpoint, a developed feature-based CCP recognizer should be
applicable to any general process. This objective is usually fulfilled by extracting features
from the plot of standardized or scaled process data, instead of extracting features from the
plot of actuwal process data. The process data are standardized using the transformation
z, =(y,—u)/ o ,where y, and z are the observed and standardized values at " time
point respectively, and g and o are the process mean and standard deviation respectively.
On the other hand, the process data are scaled to (0, 1) or (-1, +1) interval using the linear
transformation  z, ={(¥, = o)/ Omax = Ymin)] O 2 ={200 — Yeio )/ Wnax = Yuin) =1}
respectively. The standardization of process data assumes that the mean and standard
deviation values are known a priori. In practical applications, these values are estimated
with additional efforts. A large estimation error for the process mean and standard
deviation can also affect the recognition performance adversely. The advantage of scaling
of process data is that it requires no additional effort. However, the distinction between
normal and stratification patterns is lost when the process data are scaled to (0, 1) or (-1, 1)
interval, since a stratification pattern is essentially a normal pattern with unexpected low
variability. However, many real life situations demand for a CCP recognition system that
will be capable of detecting stratification pattern too and therefore, scaling of the input
process data is not often acceptable.

In this paper, a new generalized approach for control chart pattern recognition is
proposed, in which the values of the extracted shape features from the plot of actual data
are made independent of the process mean and standard deviation. Based on a set of six
shape features, eight most commonly observed CCPs including stratification pattern are
recognized using tree-structured classification and ANN techniques and their relative
performance is extensively studied.

This paper is organized in different sections. The selected set of useful features is
presented in section 2. The proposed approach for generalization of the features is
discussed in section 3. Section 4 discusses the design of the pattern recognizers followed by
the experimental procedure in section 3. Section 6 provides the results and discussions and
section 7 concludes the paper.
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2. Selected Features

Shape features of control chart patterns can be extracted from different considerations
[5] and many of them can be highly correlated. However, a good CCP recognizer should be
capable to differentiate different patterns with high accuracy using a minimum number of
features and the correlation among those features should be as small as possible. Lower is
the association among the features, higher will be the prediction stability [14]. In this paper,
therefore, a set of six features, which are having fairly low correlation among themselves,
are chosen. These features along with the mathematical expressions for their extractions are
described as below:

(i). Ratio between variance of the data points (SD?) and mean sum of squares of errors
of the least square (L5) line representing the overall pattern (RVE):

N N N A N -
RVE = [E (=3 f(N- 1}]/H‘§ (-7 —[‘z_:] »e -t J) AR }_..-{N —zl}. m

d=]

where 1, =ic(i=12,..,N) is the distance of " time point of observation from the
origin in the control chart plot, ¢ is the constant linear distance used to represent a
sampling interval in the control chart plot, y is the observed value of a quality
characteristic at " time point, N is the size of the observation window,
t=%Yt/N and y=3¥ y,/N. The magnitude of RVE for normal, stratification,
systematic and cyclic patterns is approximately one, while for trend and shift patterns, it
is greater than one.

(ii). Sign of slope of the LS line representing the overall pattern (SEB):

The slope (B) of the LS line fitted to the data points in an observation window is
given by the following equation:

B=25,(1-7)/ 2(-7). @

It may be noted that the feature B has two characteristics, i.e. (a) its absolute value (AF),
and (b) its sign (SB). Likewise RVE, the magnitude of 4F can differentiate the four
patterns that hang around the centerling, i.e. normal, stratification, systematic and cyclic
patterns from trend and shift patterns. It has been observed that RVE is more powerful
than AR in discriminating these two groups of patterns. Here, therefore, only the sign
characteristic of the slope of the L5 line representing the overall pattern has been taken
into consideration as a useful feature.

The sign of the slope can be negative or posiuve. Thus, the feature S5 can be
viewed as a categorical variable, which is ‘0" if the sign is negative, and ‘I’ otherwise. It
can discriminate decreasing versus increasing trend and downward versus upward shift
patterns.

(iii). Area between the overall pattern and the LS line per interval in terms of SD* (ALSPI):
ALSPI = [ALS SV — l}]/SDZ 5 (3)

where ALS is the area between the pattern and the fitted LS line representing the overall
pattern. The value of ALS can be easily computed by summing the areas of the triangles
and trapeziums that are formed by the LS line and overall pattern. The computation
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method is described in details in the next section. The magnitude of ALSPI is the highest
for STA pattern, lowest for the SY'S pattern and intermediate for all other patterns.

(iv). Average absolute slope of the straight lines passing through the consecutive points
(AASEF):

N-1 f
AASBP = 3 |y = 3:)/(tra 1)

/{N—lj_ (4)

The magnitude of 4A45FF is the highest for SYS pattern, lowest for STA pattern and
intermediate for all other patterns.

The basic difference between trend and shift patterns is that in case of trend
patterns, the deparmure of observations from the target value occurs gradually and
continuously, whereas in case of shift patterns, the departure occurs suddenly and then
the observations hang around the departed value. The following two features are
extracted after segmentation of the observation window so that these two types of
deviations can be discriminated, and for their extractions, two types of segmentations
approaches, i.e. (a) pre-defined segmentation, where the segment sizes remain fixed, and
(b) criterion-based segmentation, where the segment sizes may vary in order to satisfy a
desired criterion, have been used.

(v). Range of slopes of straight lines passing through six pair-wise combinations of
midpoints of four equal segments (SRANGE):

The feature SRANGE is extracted based on pre-defined segmentation of the
observation window. In this segmentation approach, the total length of the data plot is
divided into four equal segments consisting of (N /4) data points, as shown in Figure 2.
It is assumed that the total number of observations (&) is so chosen that it can be
divisible by 4. The behavior of the process within a segment can be represented by the
midpoint of the segment, which is given as

(8 ol {E " v

where £= 1, (N/4+1), (2N/4+1), (3N/4+1)for the first, second, third and
fourth segment respectively. A combination of two midpoints can be obtainedin €)' =6
ways implying that six straight lines can be drawn passing through the midpoints of
these four segments. 5o the feature SRANGE can be extracted using the following
EXpression:

SRANGE = maximum {sﬂ?] minimum {sﬁ,] (3)

where j=123 k=234, <k S is the slope of the straight line passing through
the midpoints of j* and k" segments. The magnitude of SRANGE will be higher for
shift patterns than trend patterns. The magnitude of SRANGE will also be higher for
CYC parttern than NOR, STA and SYS patterns, unless each segment of the cyclic
pattern consists of a complete cycle.
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Figure 2. Four segments of equal size in a pattern.

(vi). Sum of absolute slopes of the LS lines fitted to the two segments (S45PE):

If the time point of occurrence of a shift can be known and two LS lines are fitted
to the observations before and after the shift, each line will be approximately horizontal
to the X-axis. However, the time point of occurrence of the shift cannot be known
exactly. Therefore, a criterion for segmentation of the observation window into two
segments is considered. Here, the defined criterion is minimization of the pooled mean
sum of squares of errors (PMSE) of the two LS lines fitted to the two segments.
Assuming that at least § data points are required for fitting a LS line, least square lines
are fitted to all possible two segments and the segmentation which leads to the
minimum PMSE is chosen. Then, the feature S4AS5PFE is extracted using the following
equation:

SASPE = ¥ B,| (6)
i=

where B, is the slope of the LS line fitted to i™ segment. The magnitude of SASPE
will be higher for trend patterns than shift patterns.

Table | shows the values of pair-wise correlation coefficients among the selected
features computed from a set of training samples (see section 5.1). The table reveals that
the degrees of association among the selected feamures are considerably low



Feature-Based Recognition of Control Chart Parterns 200
Table 1. Pair-wise correlation coefficients among the selected features.

Selected features | RVE | S5E | ALSPT | AASBP | SRANGE | SASPE
RVE 1.00 | 002 | 029 | 0.21 0.07 -0.04
SB 0.02 | 1.00 | 0.00 0.14 -0.17 —0.20
ALSFI 029 ( 0.00 LoD | 046 —0.34 —0.40
AASEP 021 0.14 | 046 1.00 -0.02 0.23
SRANGE 0.07 | -0.17| -0.34 | -0.02 1.00 0.38
SASFE 004 (020 040 | 023 0.38 1.00

3. Generalization of Features

The necessary conditions for generalization of the extracted features from the data plot
of a normal process are determined first. The i observation from a normal process can
be modeled as y, =u+ro, where g, o and r. are the values of process mean,
standard dewiation and standard normal variate respectively Therefore, replacing y, by
p+ro and ¢, by icin equations (1), (2) and (4), the values of the corresponding features

are obtained as follows:

' / N N = %% Joy =
RVE :[ (r. _;Jz;_._-{N_ U]/H=1 (r, <7 _[}; r(i — :‘]] E{;— i) } :I_._.-{N_Zj} s ()

1;;.{:'—?;}/[.:2;5:'{:‘—?]2], (8)

AAS&P:‘:”.‘E'|;}H_;}|/{N—1}_ 9)
C =1

Lp=

v

Bz[ccf

1

It is noted from equation (7) that the value of RVE is given by a function of » only
for a given N. This implies that the feature RVE is always independent of 4 and o. The
equations (8) and (9) indicate that for given N, the values of F and 4A4SEP will also be
expressed as a function of » only, if ¢=1c. It can be shown that the value of slope of the
L5 line fitted to any number of observations will be independentof g and o, if c=lz.
This is indicative that the feature S4SPE will also be independent of the two process
parameters under the condition that each sampling interval is represented by a linear

distance equal to one standard deviation.

On the other hand, the condition for negative or positve sign of the slope (B) will
depend on the value of the mumerator in equation (8). The sign will be negative, i.e. SE= 10

if
N — N =
corr({i—i)<0 or, Tr(i—-i)=<0.
i=1 i=1

So, the condition for negative (or similarly positive) sign of the slope does not depend
on the values of x, o and c. This implies that the value of 5F will be independent of the
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process mean and standard deviation without requiring any condition on representation of
the sampling intervals in the control chart plot.

As it is noted from equation (3), it is necessary to derive the values of ALS and S’

for computation of the value of ALSPI. For simplicity, let us consider a possible appearance
of the first three data points on a control chart plot, as shown in Figure 3 and calculate the

respective ALS and SD* values.

Figure 3. Computation of 4ALS.

In Figure 3, BF represents the LS line, ;=54 + bt , where, y is the predicted
observation at " time point, and » and & are the two constant terms. The constants
b and b, represent the intercept and slope of the LS line respectively. The values of &
and & can beestimated as below:

B R L . T
¥ o B rE{:—:] —:E];}{:—:} EP,_ITQ
b=y-br =pu+ 2 = 0=+ 7 a, (10
3 (i-7)
3 e
where, PzZ{f —r‘]z, a funcron of {only for given N, and
=1
3 -
Q=%r(i-{), afunctionof r, and { only for given N.
i=l
3 _ i
) ny{ff_f} EONAGED & i
EJ‘|:’=; — = *3=‘ — == = (11
¥ (r. -F) ex(i-i)y ¢
=1

The points A, D and G, in Figure 3, are the plots of the first three observations on the
control chart. Two straight lines IE and KF are drawn parallel to the mean line and the
lengths of these lines represent the sampling interval in the control chart plot. Therefore, it

can be shown that

IE =KF = «

AB= |y -3 =

2728
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o o = o252
L

It may be noted that in Figure 3, AABC and ACDJ are similar triangles. The triangles

ABCI and ACEJ are also similar. Thus, using the properties of similar triangles, it can be
found that

1C_BC_AB
CE CI DiJ

= R
P o i . i N
-2 (oo 25 29
I v

(16)

AR

Here, the straight lines IC and CE represent the heights of AABC and ACDIJ
respectively. Therefore, the value of 415 is obtained as

ALS = area of AABC + area of ACDJ + area of trapezium DGFJ

e TP _{Q}

_co, s

20| _[m-io _{9_}+ -0 _{2_@}
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-]
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PR o

and the value of SD* is given by the following expression:

2 2 2 2 2

L= X

SD :J=1 — i=1 : {13}
3-1 2

Thus, the value of ALSPI, which can be computed using equation (3), will become a
function of r, o and c. However, if the constant linear distance, ¢ is made equal to one
process standard deviation, the value of ALSPI will be given by a function of r only

implying that the magnimde of ALSPI will become independent of the values of process
mean and standard deviation.

The feature SRANGE is defined based on the segmentation of the observation window
into four equal segments, as shown in Figure 2. The value of the slope of the straight line
drawn through the midpoints of first and second segments ie. 5, will be given by the
following expression:

1 _ oy 1 e QN ()
et Y- ¥, ] r.
. :{N_."4}1'=(_,'.'.'dj+1 YN/ o7 _ LNy e
12 1 (2N 1 (M) (2Nfay (N
Sy z o =— s Z ic 'r: i— i
(NV/4)i=iwvjay (N/4) = F={N A i=1

The above expression reveals that the value of 5, will be given by a function of r
only if ¢=17. Similarly, the values of s, (forall / and k) will also be independent of the
two process parameters, when ¢ =lo. Thus, the value of SRANGE will be independent of
the values of the two process parameters under the condition that each sampling interval in
the control chart plot is represented using a linear distance equal to one standard deviation
of the underlying process.

All unnatural patterns are generated due to addition of some extraneous systematic
variations into a normal process. All these extraneous variations can be expressed in terms
of process standard deviation and consequently, the equation for modeling the observations
from an unnatural pattern can be expressed in the form of the equation as used for
modeling a normal pattern, i.e. y, =u+ acofficentxo. For example, the equation for
modeling an UT pattern 1s y, = g+ r.o+ig, where, g=wo 15 the gradient and w is a
constant. The same equation can be expressed as y, = yw+(r +i=xw)o. The dependence
properties of a feature with respect to process mean and standard deviation for all the
unnatural patterns will, therefore, be similar to normal pattern.

It can, therefore, be concluded that the magnitudes of all the extracted features from
the control chart plot in an observation window will become independent of process mean
and standard deviation under the condition that each interval in the plot is represented by a
linear distance equal to one standard deviaton. All the feamires, therefore, are extracted
here assuming that a sampling interval in the control chart plot is represented by a linear
distance, c=ler.
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4. Control Chart Pattern Recognition
4.1. Feature-Based Heuristics

This technique uses simple IF .. (condition)... THEN .. (action).. heuristic rules. The
conditions for the rules set the threshold values of the features and the actions are the
classification decisions. The set of heuristics, arranged as a decision tree, can provide easily
understood and interpreted information regarding the predictive structure of the data for
various features. Given a set of extracted features from the learning samples, classification
tree programs like CART (Classification and regression trees) [I] and QUEST (Quick,
unbiased, efficient stanstical tree) [12] can generate a set of heuristics based on these
features arranged as binary decision tree, which can be used for recognition of control chart
patterns (CCPs). Both these tree-structured classification algorithms allow automatic
selection of the ‘right-sized’ tree that has the optuimal predictive accuracy. The procedures
for the ‘right-sized’ tree selection are not foolproof, but at least, they take the subjective
judgment out of the process of choosing the ‘right-sized’ tree and thus avoid ‘over fitting’
and ‘under fitting’ of the data.

The CART performs an exhaustive grid search of all the possible univariate splits
while developing a classification tree. CART searches can be lengthy when there are a large
number of predictor variables with many levels and it is biased towards choosing the
predictor variables with more levels for splits [12]. On the other hand, QUEST employs
modification of the recursive quadratic discriminant analysis and includes a number of
innovative feamres for improving the reliability and efficiency of the classification tree that
it computes. QUEST is fast and unbiased. QUEST's lack of bias in variable selection for
splits is a distinct advantage when some predictor variables have few levels and other have
many. Moreover, QUEST does not sacrifice the predictive accuracy for speed [11]. It is
planned, therefore, to adopt QUEST algorithm for determining the tree-structured
classification rules for CCP recognition.

4.2, Feature-Based Newral Network

Many researchers [6, 8, 10, 17, 19, 20] have successfully used multilayer perceptron
(MLP) with back propagation learning rule to solve the pattern classification problems. The
advantage of this type of neural network is that it is simple and ideally suited for pattern
recognition tasks [9]. One main disadvantage of the back propagation learning rule is
reported to be its longer convergence ume. However, the problem may not be significant for
application to pattern classification, since training is envisaged as an infrequent and off-line
activity. The MLP architecture is, therefore, used here for developing the CCP recognition
system. The basic structure of an MLP architecture comprises an input layer, one or more
hidden layer(s) and an output layer. The input layer receives numerical values from the
outside world and the output layer sends information to the users or external devices. The
number of nodes in the input layer is set according to the actual number of features used,
i.e. six. The number of output nodes is set corresponding to the number of pattern classes,
1.e. eight The processing elements in the hidden layer are used to create internal
representations. Each processing element in a particular layer is fully connected to every
processing element in the succeeding layer. There is no feed back to any of the processing
elements.

Preliminary investigations are carried out to choose the number of hidden layers,
number of nodes in these layers and select an efficient back propagation training algorithm
by conducting experiments coded in MATLAB* using its ANN toolbox [3]. Based on the
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results of these initial investigations, it is decided to use one hidden layer for the neural
network and the number of nodes in the hidden layer is set to 15. Thus, the ANN structure
is 6x 15x 8. Since the supervised training approach is used here, each pattern presentation
is tagged with its respective label. The target values for the recognizer's output nodes are
represented by a vector of 8 elements, e.g. the desired output vector for NOR and STA
patterns are [0.9, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1] and [0.1, 0.9, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1]
respectively. The maximum value ((0.9) identifies the corresponding node that is expected to
secure the highest output for a pattern considered to be correctly classified. Gradient
descent with momentum and adaptive learning rate (tmingdy) (traingdy is the code available
in MATLAB" for the training algorithm) is found to provide reasonably good performance
and more consistent results. It is also more memory-efficient. The raingdx is, therefore,
chosen here for training of the neural network. The activation functions used are
hyperbolic tangent (tansig) for the hidden layer and sigmoid ({ogsig) for the output layer. The
hyperbolic tangent function transforms the layer inputs to output range from -1 to +1 and
the sigmoid function transforms the layer inputs to output range from 0 to 1.

5. Experimental Procedure
5.1. Sample Patterns

Sample patterns are required for assessing the usefulness of wvarious possible shape
feamures in discriminating different patterns as well as developing/validating a CCP
recognizer. Ideally, sample patterns should be collected from a real mamifacturing process.
Since, a large number of patterns are required for developing and wvalidating a CCP
recognizer, and as those are not economically available, simulated data are often used. This
is a common approach adopted by the other researchers too.

Table 2. Equations and parameters for control chart pattern simulation.

Control chart Pattern parameters Parameter values Pattern equations
patterns
Mean () 80
Hormal Standard deviation ( &) 5 eI
Stratification Random noise (') 020 0040 Y, =p+ro
Systematic Systematic departure () log todo y,=ptro+dx(— 1y’
3 Amplitade (a) l5g o5 B ; .
Cyclic Period (T) 8 and 16 y=pu+ro+asin(2ri/T)
Increasing A B .
et Gradient (g) 005 wolle ¥ =UE RO +ig
Decreasing . o ]
S _m_Gradlent (2 —{]..{a to-0.05 y=u+ ?}d_t Tg
; Shift magnitude (s) 5 ol yo=p+ro+ks;
Upward shift Shift position (P) 9,17, 25 Bl (5P B
Downward Shift magnitude (s) 250 to-l.50 Yo=p+ro+ks;
shift Shift position (F) 917, 25 kE=1if i=P else k=0
Note: § = discrete time point at which the pattern is sampled (f = 1,.., 32},
# = random value of a standard normal variate at *"time point, and
¥, = sample value at i time point.

Since a large window size can decrease the recognition efficiency by increasing the
ume required to detect the patterns, an observation window with 32 data points is
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considered here. The equations along with the corresponding parameters used for
simulating the eight basic CCPs are given in Table 2. The values of different parameters for
the unnatral patterns are randomly varied in a uniform manner between the limits shown.
A set of 4000 (300 8) sample patterns are generated from 500 series of standard normal
variates. It may be noted that each set contains equal number of samples for each pattern
class. This is so done because if a particular pattern class is trained more number of times,
the neural network will become biased towards that particular pattern.

5.2, Experiments

Mulrple sets of learning samples as well as test samples are needed to rigorously
evaluate the recognition and generalization performances of the heuristic and ANN-based
CCP recognizers that may be developed based on the selected set of shape features. Here,
ten sets of training and ten sets of test samples of size 4000 each are generated for the
purpose of the experimentation. Only difference between these twenty sets of sample
patterns is in the random generation of standard normal variate and values of different
pattern parameters within their respective limits.

Each set of training samples is subjected to the classification tree analysis using
QUEST algorithm with the following parameters:

Prior probabilities for different patterns: proportional to class size
Misclassification cost of a pattern: equal for all the patterns
Stopping rule: Prune on misclassification error
Stopping parameters: (a) value of ‘n’ for ‘Minimum n' rule = 5, and
(b) value of & for‘d Standard Error’ rule = 1.0.

This results in ten different classification trees giving ten heuristic-based CCP recognizers.
These recognizers are labeled 1.1 — 1.10 in Table 3. The recognition performance of each
heuristic-based recognizer is then evaluated using all the ten sets of test samples.

On the other hand, a trained ANN can only accept a certain range of input data. The
extracted shape feamres are, therefore, scaled (pre-processed) such that their values fall
within (-1, +1) before their presentation to ANN for the learning process. The neural
network is trained ten times by exposing it separately to the ten sets of training samples
with the following training parameters:

¢  Maximum number of epochs = 2500  * Momentum constant = (1.5

. Ermor goal = 0.01 . Ratio to increase learning rate = 1.05

. Learning rate = (1.1 . Ratio to decrease learning rate = (0.7

The training is stopped whenever either the error goal has been achieved or the
maximum allowable number of training epochs has been met. In this process, ten different
ANMN-based recognizers are developed. All these ANN-based recognizers have the same
architecture and differ only in the training data sets used. These recognizers are labeled
2.1 — 2.10 in Table 4. The recognition performance of each ANN-based recognizer is then
evaluated using all the ten sets of test samples. As one of the aims of this experimentation
is to compare the relanve performance of the two types of recognizers, the corresponding
heuristic and ANN-based recognizers are developed using the same set of training samples.

6. Results and Discussions

The results obtained during the training and verification phases of the developed
heuristic and ANN-based CCP recognizers are given in Tables 3 and 4 respectively. It is
observed that the recognition performance is quite good for both these two types of
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recognizers. The overall mean percentage of correct recognition achieved by the
heuristic-based recognizer at the training and verification (recall) phases are 96.79% and
95.24% respectively, and the overall mean percentage of correct recognition achieved by the
ANN-based recognizer at the training and recall phases are 96.38% and 95.92% respectively.
It may be noted that the recognition performance of both these two types of recognizers at
the recall phase is inferior to the recognition accuracy that is achieved during the training
phase. This decrease in recognition accuracy during the recall phase is more for the
heuristic-based recognizer than the ANN-based recognizer. This is indicative that the
predictive performance for ANN-based recognizer is better than heuristic-based recognizer.

The percentage of correct recognition for heuristic and ANN-based recognizers at
recall phase ranges from 94.55% to 95.78% and from 95.50% to 96.26% respectively. Paired
rtests (@ = 0.01) are conducted for 10 pairs of heuristic and ANN-based recognizers for
their performance in terms of percentage of correct classification. The results of statistical
significance tests are summarized in Table 5. These results suggest that the difference in
recognition accuracy between these two types of recognizers is significant. This confirms
that AMNN-based recognizers give better recognition performance compared to
heuristic-based recognizers.

Table 3. Training and verification (recall) performance of heuristic-based recognizers.

Recognizer Training phase Verification phase
E : MNumber of Correct Correct classification (%)
A splits in the tree | classification (%) | Mean | Standard deviation
1.1 21 96.95 95.40 1.29
1.2 21 96.48 95.28 1.52
L3 24 96.93 95.65 1.39
1.4 23 97.56 95.08 L.63
1.5 20 97.18 95.78 1.13
1.6 24 95.88 94 93 1.46
1.7 23 96.79 95.35 1.39
1.5 22 96.98 95.23 1.27
1.9 24 96.39 94.55 1.44
1.10 25 96.76 95.13 1.66
Overall mean 22.70 96.79 95.24 -

Table 4. Training and verification performance of ANN-based recognizers.

Recognizer | Training phase Verification phase
e MNumber of Correct Correct classification (%)
epochs classification (%) | Mean | Standard deviation
2.1 2203 96.05 96.28 0.55
2.2 2500 95.88 95.50 0.63
2.3 2377 96.33 95.95 0.59
2.4 2296 96.25 96.05 0.68
2.5 2054 96.35 96.25 0.46
2.6 2322 96.68 95.35 0.58
2.7 1998 96.18 95.73 (.48
2.8 24388 96.63 95.60 0.52
2.9 2208 96.55 96.05 0.61
| 2.10 2139 96.90 96.23 0.53
Overall mean 2258.5 96.38 95.92 -
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Table 5. Statistical significance tests for difference in recall performance.

Hypothesis Bt Foritical Decision

Hyt Hecan (ani. Heurisey =0

H

512 2.82 Reject H,
11 Hrecall (ANN Heuristiey = U

On the other hand, the standard deviation (sd) of correct recognition percentage
during the recall phase is observed to be consistently higher for heuristic-based recognizers
than ANN-based recognizers. The statistical significance for this difference is carried out
using F-test. The critical value of F, (&= 0.01) 1s 5.35, whereas the computed F-statistics
(583 iaic / S@ang ) for all the ten pairs of heuristic and ANN-based recognizers is found to
be greater than 5.5, This implies that ANN-based recognizer has better predictive
consistency than heuristic-based recognizer. However, heuristic-based recognizer has the
distinct advantage that the practitioners can clearly understand how a particular pattern
class is identified by the use of relevant shape features. This advantage can compensate the
poorer recognition and predictive consistency of heuristic-based recognizer. The best
heuristic-based recognizer in terms of consistency of recognition performance is recognizer
no. 1.5, and its heuristic rules in the form of classification tree are shown in Figure 4.
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Figure 4. Classification tree for recognition of control chart patterns.
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6.1. Sensitivity Studies for Pattern Recognition

In this paper, all the shape feamres are extracted considering that the sampling interval
in the control chart plot is represented by a constant distance, ¢= 1o, where ¢ = 5
(known). In reality, the value of & is to be esumated. Therefore, it is planned to study
the sensitivities of both the heuristic and ANN-based recognizers with respect to the
estimation error of o .

To study the sensitivities of pattern recognizers, it 15 necessary to generate additional
test patterns, considering the values of o different from its known value and then
subjecting the patterns to classification by the developed recognizers. All these test data sets
should be simulated using the same series of standard normal data to ensure that the
sequences of randomness are similar in all these test sets; otherwise the effect of changes in
the sequences of randomness will be confounded with the effect of departure of o from
its known value. A set of 500 time series with 32 standard normal data, from which the
sample patterns leading to the heuristics shown in Figure 4 are developed is taken for
generation of the additional test patterns. On the other hand, care is also taken so that the
effect of random changes in the values of pattern parameters is not confounded with the
effect of deviationof o from its known value. For the purpose of generation of additional
test patterns, therefore, the values of various pattern parameters are fixed as: u =80, o'=
030, d=20, a=20, T=16, g=1200750, s=120 and P =16. These values are
muostly the midpoints of the ranges of respective pattern parameters, as shown in Table 2.

Using the above mentioned time series of standard normal data and pattern
parameters, five additional test pattern sets with size 4000 each are generated considering
the values of o as4.50, 4.75, 5.00, 5.25 and 5.50 (implying + 10% deviation of & from
its known value) and they are labeled | to 5 These additional test patterns are then
subjected to classification using the heuristic and ANN-based recognizers (recognizer no.
1.5 and 2.5 respectively). The achieved recognition performance is shown in Table 6. It is
observed that for both the recognizers, the recognition performance is the maximum for the
additional pattern set number 3, which is generated assuming o= 5. More and more is the
deviation in the value of &, poorer becomes the recognition performance. However, the
recognition performance remains reasonably well within the £ 10% dewviation of o for
both the recognizers. The ranges of variation in recognition performance for the heuristic
and ANN-based recognizers are 2.45 and 145 respectively. This implies that the
performance of ANN-based recognizer is relatively less sensitive to estimation error of the
process standard deviation than heuristic-based recognizer.

Table 6. Recognition accuracy (%) for additional test patterns.

] Additional sets of test patterns
Type of recognizer Range
1 2 3 4 5
Heuristic recognizer 96.05 97.53 98.08 97.08 95.63 245
_ANN recognizer | 97.10 | 98.18 | 9840 | 98.10 | 9695 | 145

7. Conclusions

A new approach for generalization of feature-based CCP recognition system is
presented. In this approach, values of the extracted shape features from the control chart
plot of actual process data become independent of mean and standard dewviation of the
underlying process. The advantage of the proposed approach is that one has o know or
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esumate the process standard deviation only, whereas in other traditional approaches like
standardization of process data, both the process mean and standard deviation values need
to be known or estimated. The proposed approach is also advantageous over scaling of the
process data into (0, 1) or (-1, +1) interval since in this approach, the distinction between
normal and stratification patterns is preserved.

Two CCP recognizers are developed based on a set of six shape features using
heuristic and ANN techniques, which can recognize all the eight basic CCPs including
strafification pattern. The relatve performance of the two feature-based approaches for
CCP recognition is extensively examined and their sensitivities with respect to estimation
error of process standard deviation are also studied. It is observed that the ANN-based
recognizer achieves better recognition performance than the heuristic-based recognizer. The
results also indicate that the ANN-based recognizer gives more consistent performance and
is less sensitive to estimation error of process standard deviation than the heuristic-based
recognizer. However, the heuristic-based recognizer has the distinct advantage that the
practitioners can clearly understand how a particular pattern is identified with the help of
relevant shape features. This advantage can compensate the poorer recognition
performance and consistency of the heuristic-based recognizers.

References

1. Breiman, L., Friedman, J. H., Olshen, B. A and Stone, C. 1. (1984). Classificarion and
Regression Trees. Wadsworth and Brooks, Monterey, CA.

2. Cheng, C. 5 (1997). A neural network approach for the analysis of control chart
patterns. International Journal of Production Research, 35(3), 667-697.

3. Demuth, H. and Beale, M. (1998). Newral Network Toolbox User’s Guide. Math Works,
Marick, MA.

4.  Ewvans, ] R. and Lindsay, W. M. (1988). A framework for expert system development
in statistcal quality control. Computers and Industrial Engineering, 14(3), 335-343.

5. Gauri, 5. K. and Chakraborty, 5. (2007). A study on the various features for effective
control chart pattern recognition, Imfernational Jowrnal of Advanced Manufacturing
Technology, 34(3-4), 385-398..

6. Guh, R 5., Zornassatine, F., Tannock, J. D. T. and O'Brien, C. (1999). On-line
control chart pattern detection and discrimination — a neural network approach.
Avrtificial Intelligence in Engineering, 13(4), 413-425.

7. Guh, R. 5. and Shiue, Y. E. (2005). On-line identification of control chart patterns
using self-organizing approaches. International Jowrnal of Production Research, 43(6),
1225-1254.

8. Hassan, A, Nabi Baksh, M. 5., Shaharoun, A. M. and Jamaluddin, H. (2003).
Improved SPC chart pattern recognition using statistical features. Tnternational Journal
of Production Research, 41(7), 1587-1603.

9. Haykin, 5. (1999). Newal Nework: A Comprehensive Foundation. Prentice-Hall,
Englewood Cliffs, NI

10. Hwarng, H. B. and Hubele, N. F. (1993). Back-propagation pattern recognisers for X
control charts: methodology and performance. Computers and Industrial Engineering,
24(2), 219-235.

11, Lim, T-5, Loh, W-Y. and Shih, Y.-5. (1997). An empirical comparison of decision
trees and other classification methods. Technical Report 979, Department of Statistics,
University of Wisconsin, Madison.



220 Gaurd and Chakraborey

12. Loh, W.-Y., and Shih, Y-S5 (1997). Split selection methods for classification trees.
Statistica Sinfca, 7, 815-84().

13, Montgomery, D. C. (2001). Introduction fo Starstical Quality Control. John Wiley and
Sons, New York.

14, Montgomery, D. C. and Peck, E. A (1982). Introduction to Linear Regression Analysis.
John Wiley and Sons, Wew York.

15, Nelson, L. 5. (1984). The Shewhart control chart — test for special causes. Journal of
Quality Technology, 16(4), 237-239.

16. Nelson, L. S. (1985). Interpreting Shewhart X control chart. Jowrnal of Quality
Technology, 17(2), 114-117.

17. Perry, M. B, Spoerre, . K. and Velasco, T. (2001). Control chart pattern recognition
using back propagation artificial neural networks. Tnfernational Jouwrnal of Production
Research. 39(15), 3399-3418.

18. Pham, D T. and Oztemel, E. (1992%). XPC: an on-line expert system for statstical
process control. International Journal of Production Research, 30(12), 2857-2872.

19. Pham, D. T. and Oztemel, E. (1992). Control chart pattern recognition using neural
networks. Journal of System Engineering, 2(4), 256-262.

20. Pham, D. T and Wani, M. A (1997). Feature-based control chart pattern recognition.
International Journal of Production Research, 35(7), 1875-1890).

21, Swift, J A and Mize, J. H. (1995). Out-of-control pattern recognition and analysis for
quality control charts using LISP-based systems. Computers and Industrial Engineering,
28(1), 8191

22, Western Electric Company. (1958). Sratistical Quality Control Handbook, Western
Electric, Indianapolis.

Authors’ Biographiies:

Susanta Kumar Gauri is a faculty member in the Stanstcal Quality Control & Operations
Research Division of Indian Statistical Institute (IST) at Kolkata, India. Besides teaching,
he is highly involved in consultancy works in various industries and applied research in the
field of quality control, quality assurance and quality management. He has published
several papers in various national and international journals during past 8 years.

Shankar Chakraborty is Reader in the Production Engineering Department of Jadavpur
University at Kolkata, India. He is highly engaged in teaching and research. His research
interests include the field of intelligent manufacturing, quality function deployment,
application of analytical hierarchy process and artificial neural networks. He has published
many papers in various national and international journals during last 12 years.



	feature based recognition of control chart pattern15.jpg
	16.jpg
	17.jpg
	18.jpg
	19.jpg
	20.jpg
	21.jpg
	22.jpg
	23.jpg
	24.jpg
	25.jpg
	26.jpg
	27.jpg
	28.jpg
	29.jpg
	30.jpg
	31.jpg
	32.jpg

