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Process control involyes repeated hypothesis testing based on several samples. However, pmocess contral is
notexactly hypothesis testing as such since it deals with detection of non-mndom patterns of variation as
well in a fleeting kind of population. Compare this with hy pothesis testing which is principally meant far a
stagnant population. Dr Walter A, Shewhart imrodueced a graphic method for doing this testing in a leeting
population in 1924, This graphic method came to be known as control chart and i s widel y used throughout
the world today for process management purposes. Subsequently there was much advincement in pmcess
contm| technigues. In panticular, when more than one varable was involved, process contmol technigues
were developed mainly by Hicks (1955), Jackson { 1956 and 1959 ) and Mont gomery and Wadsworth (1972)
hased on the pioneering work of Hatelling in 1931, Most of them have worked in the area of multivariate
varahle comrol chan with the underlying distribution as multivariate normal. When more than one attribute
varighles are imvolved some works relating to test of hy pothesis was done by Mahalanobis { 1946, These
works were also based an the Hotelling T2 test. This paper expands the concept of “Mahalanobis Distance’
in case of 2 multinomial distribution and thereby proposes o multivar ate attribute control chart.
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Introduction

There are many situations when imspection classifies the products into several categories of non-
conformities. A control scheme s required to exercise simultancous control of all the categones.
With the existing tools one can apply several proportion defective (p) charts — one for each
category of defect. However, this will be equivalent to testing several equality of proportion
defective hypotheses independently. The problem here is of the type Hy: p; = p where p; ~
multinomial (r;, p) So 1t 1s casy o check that in the several p chars case the type I error and
consequenty the power of the test will suffer a distortion. To ke care of the above situation a
simultaneous test of g = powas thought of.

There are two ways of looking at the data mainx. One may be mterested in comparing the
columns of the data matrix, .. the variables. This leads to technigques known as R-technigues,
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so called because the comelation matix R plays an important role in this approach. Prncipal
component analysis, factor analysis, canonical comelaton analysis fall under this group of
technigues. But in the present case the interest 15 of companng rows of the data matnx, 1.e. the
different objects that are time points here. This leads to technigues such as discriminant analysis,
cluster analysis, muludimensional scaling which are known as () techmgues. The Mahalanobis®
concept of distance between objects plays an important role in all these Q) technigues [1.4].

The Mahalanobis distance

Fora data matrix whose columns represent vanables and the rows represent the objects, a natural
way Lo compare two rows X, and X, is to look at the Euchidean distance between them.

I1X, — X7 = X, —X)" (X, — X,).

But when the variaton in X 15 stochastic in nature it 15 better to look at a transformanon of
the form

Z =5"YX -X), r=12,..., n.

This enables one to eliminate the correlation between the variables and standardize the vanances
of each vanable.

S= %i{x,—i}{x,—i}'r_

r=1

After the aforesaid transformmation one can look at the Euchidean distance between the trans-
formed rows. Such distances play a role in cluster analysis. The most important of these distances
15 the Mahalanobis distance given by

DL =2, - Z* = X, - X)"S7'(X, - X,).

Mahalanobis distance can be of different kinds.

(1) Let X~ (py. Z) and let Y ~ (o, E) then D2 15 a Mahalanobis distance between the
P IMELers.
(i) LetX ~ (g, £). The Mahalanobis distance between X and g, Dy, L 18 here a random variable.
(i) Let X~ (. E)LY ~ (. E). The Mahalanobis distance between X and ¥ s Dy [2.3]

The present problem (gualitative data)

Consider a classification of individuals inte K categones. For cach i =1,2,3, ..., n let
(Pits Prze Pids e-os Pir) = [.'l;" denote the observed proportions from a population of size N; sub-
jectto p! ~ multinomial with parameters p'. For example, p! might denote the proportions of
defectives which are segregated defect-wise in a painting shop of ceiling fans as “poor cover-
ing’, ‘overflow’, ‘patty defect’, ete. and the corresponding proportion of good items in each of
n days. Hence, Z_‘Ll pyp=lLi=1,2,3..., n. Consequently, the varance-covariance matrix
of the vector p; is singular. S0 a Mahalanobis distance will not exist. However, the requirement
under the present circumstance 15 Mahalanobis-like distance of the second kind, which has been
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discussed earlier. Henee a possible distance formula could be
D} =(p — "L (; — D)
Here E; s the variance-covariance matnx of the vector p; and is equal to N‘_' E, where
% = [oy],
pi(l —p;) fori=j,
O = =Ya =5 ,
PP fori # j.
Since, p; lies on a hyper plane X is singular [6]. However, 1t 1s easy to check that a g-inverse
of X is given by

T o=daglp Lt Px 1
Thus, a generalized Mahalanobis distance can be defined by Df =(p;, — P (p; — ).

pll—p)  —ppr —pipa--. —Pi P
- :i Pall —pa) —papy. .. —P2 Pk
i hl,.‘ . -
Prll — pr)
o,
Y= NI
= Ndiag [, 57", B s o ns PR
-J,"'Ir‘ =1
i S I
i
_lo Y% o o
P
1] 0 s X
M
(0 0 0
Thus,
-J"illl o _
= 0 o 0| ew=p
!:}I Moo oo e
D} =[(pi1—p1) .o o (pix — Px)l P,
1] | ER 1]
N;
0 1] 0 = ik — P
i e L Pik PE
i Pil — ﬁl )
Piz — P2

_ [N.m. — A Nipa =) Nilpix — .!_?x}']
I 2 Pi

| Pik — Pk |

K i
= Z N,{p,_,; T P_.i}'!
i=1 Pi
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The distributional aspects of Mahalanobis distance

Mahalanobis distance I:D"}l underlies Hulclling'sTJ statistic [ 3], In the present case, as mentioned
earlier, the interest 15 to compare the rows of the data matnis, Le. the proportion of defective vector
comesponding to a particular time point with the average proportion defective vecton

If X and § are the mean vector and covariance matrix of a sample of size n from Np[p, ],
then (n — 11(X — p}l"'ﬂ"{i e 1 T2{(P,n— 1), where X is a (P x 1) vector [7].

The present distance formula is the following:

K awa
D: =N Z{FJ_.E_P_,:}'
H k2 - 1
i=l1 Pi

where p: = [Pr1s Piascens Pig ] and ﬁj =[P1sPrseees Filand N is the sample size at the ith
lme point.

When X ~ Np[p. 2] D} = (X —w)'S~ X —p) and (n— DD}, follows T3,
Whereas when p; ~ multinomial[p, N;] with K categones and variance-covarnance matrix is
givenby S;, D2 5 = Ni(p; — P)TE " (p, —P)and D2, ~ T, 5.

D? (multi-normal case) between sample average and population parameter uses the estimate
of population E given by § and not the variance-covariance matrix of the sample X, which will
actually be given by (n — 1)7'S. That is why the need arises for multiplying D* by (n — 1) so
that (n — I}D! ~ T2 However, in the case of the multinomial silwation the metre vsed s X,
which already involves the N; factor. Hence, multiplication of D by a N; factor is no longer
MECESSATY.

The second degrees of freedom for T in the multinomial case is N, itself, not (N, — 1) as
in the multi-normal case because E; 15 an unbiased estimate of the population £ with sample
size ;.

The first degrees of freedom for T2 in multinomial case is (K — 1) and not K as in multi-
normil case because E:LI pij = 1. This sort of a constraint s absent in 4 multi-normal case.
l'l'-‘“-‘sfo-n..\',.u =[(NAK = 100N — K+ 2F 5y w k420 which is the upper control limit
for the D control chart at the o level of significance. The lower control imit 15 obviously zem.

Discussion on the disiributional assumption

As one looks at the distance formula for the multinomial case it may appear that a chi-square
distribution is appropriate. But in order to use the chi-square disribution one needs o ensure
that the expected frequency in each category is at least five. This may not be possible to obtain
whenever sample size is small or the average proportion defective for some categories 15 too small
a number. OF course one can club together some such adjacent categones but this will lead 1o
undesrable complication of the matter because of vanation in K.

Also the assumption of a chi-square distribution ignores the effect of sample size on the con-
trol limit, which a T* distribution will retain by resembling the traditional p-chart, Thus, the
construction of control limits based upon the T distribution is more justified.

Merits of the D? control chart

¢ D7 control chart exercises simultaneous control on proportion defectives falling in various
categones of defects in a single chart without any distortion in the advertised level of type 1
CITUL.
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¢ Whilke constructing a p-chart it 15 a standard practice to draw p-charis for major defects only
along with the overall p-chart. Hence, the conventional p-charts do not ke care of the flue-
tuations involved in the categones of minor defects - the cumulative effect of which may very
well destabilize the process at imes. However, the D? control chart takes into account various
categories of defects exhaustively and thereby enhancesthe sensitivity in the detection of a shift.
Therefore, to understand the overall performance of a process by considering all categories of
defects at the same time, the D? control chart is very effective.

A case example

This case example s concemed with the proportion defective data with regard o variows kinds of
paint defects of a ceiling fan cover. The defects, which are prevalent in painting of such covers,
are poor covenng, overflow, patty defect, bubbles, paint defects, buffing defects.

Apart from the six categories of defects the good items are also considered for compuling
the D? statistic. Hence, the value of K in this particular case is 7 and the value of » or the
number of objects or time periods is 24, For any time penod Zj;:l pi=LIi=123, ..., 24
Here pj; is the proportion defective or proportion good item at a particular ime period i for
each j. It can be seen from Table 1 that the sample size ranges from 20 to 404, The D7 chart
and the corresponding overall p-chart and p-charts for the individual defect categones are given
in Figures 1 to 8 for ready comprehension. Note that this is a perfect multinomial case in the
sense that as soon as a particular cover s found to contain a defect it is categonzed into the most
predominant defect it has within, Henece, a particular defective cover contains one and only one
kind of defect.

Table 1. Data for paint defect.

Time MNo. Poor Patty Paint
period inspected covering  Owerflow defect Bubbles defect Buffing Total

1 176 15 12 2 4] 3 4 42
2 160 13 I8 4 4 5 5 44
3 156 18 12 Li] b 4 Li] 54
4 167 12 10 5 4 3 2 36
3 2491 i i 4 3 2 5 28
i} 170 10 Li] 2 3 2 3 26
7 224 15 12 4 3 i} 3 45
b 140 11 k. 5 4 3 4 it
o 250 14 15 ) 4 i 5 58
10 145 20 10 - 2 i} 2 44
11 10M) 15 12 2 3 3 4 39
12 bl 4 2 1 2 2 1 12
13 170 13 11 5 | 4 3 37
14 200 s 17 4 3 i} 2 54
15 112 B Li] 2 3 1 2 22
16 250 15 11 4 5 7 0 42
17 121 12 E [i] B 4 5 44
I8 312 23 I8 4 7 5 4 Lili]
149 200 15 13 - i i) 3 50
20 20 3 2 2 | 0 0 b
21 od) Li] 4 2 2 3 2 14
) 404 40 15 i B 4 20 93
23 104 B i 2 3 2 4 25
24 124 12 4 3 4 2 3 35
Total 4167 i 245 ) a7 42 103 o
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Figure 1. D* chart.
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Figure 2. Owverall p-chart.
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Figure 3. p-chart for poor covering.
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Figure 4. p-chart for overflow.
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Figure 5. p-chart for patty defect.
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Figure . p-chart for bubbles.
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Figure 7. p-chart for paint defect.
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Figure 8. p-chart for buffing.

Ohbservation and interpretation

It may be observed from the D7 chart that the points 5, 17, and 22 have fallen outside the control
limit (1% ). In addition, it may also be noted that point number 11 ( D* value 16.9897) has fallen
outside the waming limit (5%, the value of which 1s 13,7053,

Note that if @' is the type 1 emor for the D? chart and @ is the type [ error for the individual
pcharts thena’ = 1 — (1 — a)® . Foro' = 0.01, o is found to be 0.001 for K = Tealegories. So
for individual p-charts 3. 1% control limits have been used.

Al the 5thtime penod the overall proportion defective and the proportion defective due o poor
covering lie below their respective lower control limit. Other proportion defectives do not show
any lack of statistical control but their simultaneous low values have gol a conspicuous impact on
the D chart.

AL the 17th time period the overall proportion defective has fallen outside the upper control
limit and the *patty defect’ and ‘bubbles” have fallen on the higher side nearer to their respective
upper control limits. The D7 chart has revealed that.

Al the 22nd time perod the defect named as “buffing” shows an out of control siwation since
the comresponding proportion defective falls beyond the upper control limit.
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