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Rough Set Based Generalized Fuzzy ('-Means
Algorithm and Quantitative Indices

Pradipta Maji and Sankar K. Pal,

Abstrace—A generalized hybrid unsupervised learning algo-
rithm, which is termed as rough-fuzzy possibilistic c-means
(RFPCM), is proposed in this paper. It comprises a judicious
integration of the principles of rough and fuzzy sets. While the con-
cept of lower and upper approximations of rough sets deals with
uncertainty, vagueness, and incompleteness in class definition,
the membership function of fuzzy sets enables efficient handling
of overlapping partitions. It incorporates both probabilistic and
possibilistic memberships simultaneously to avoid the problems
of noise sensitivity of fuzzy c-means and the coincident clusters
of PCM. The concept of crisp lower bound and fuzzy bound-
ary of a class, which is introduced in the RFPCM, enables efficient
selection of cluster prototypes. The algorithm is generalized in
the sense that all existing variants of c-means algorithms can he
derived from the proposed algorithm as a special case. Several
quantitative indices are introduced based on rough sets for the
evaluation of performance of the proposed c-means algorithm.
The effectiveness of the algorithm, along with a comparison with
other algorithms, has heen demonstrated both gualitatively and
quantitatively on a set of real-life data sets.

Index Terms—Clustering, data mining, fuzzy c-means (FCM),
pattern recognition, rough sets.

I. INTRODUCTION

LUSTER analysis is a technigue in finding natural groups
C that are present in data. Itdivides a given data sel into a sel
of clusters in such a way that two objects from the same cluster
are as similar as possible and the objects from different clusters
are as dissimilar as possible [1], [2]. Clustering technigues
have effectively been applied to pattern recognition, machine
leaming, biology, medicine, compuler vision, COMMUunIcations,
remole sensing, ete. A number of clustenng algorithms have
been proposed o suit different requirements [1], [2].

One of the most widely wsed prototype-based partitional
clustering algonthms 15 hard c-means (HCM) [1], where each
object must be assigned o exactly one cluster. On the other
hand, fuzzy c-means (FCM) relaxes this requirement by allow-
ing gradual memberships [3]. In effect, it offers the opportunity
to deal with the data that belong o more than one cluster at
the same tme. U assigns memberships o an object, which ane
inversely related 1o the relative distance of the object 1o cluster
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prototypes. Inaddition, it can deal with the uncerainties arising
from overlapping cluster boundaries.

Although FCM is a very useful clustering method, the result-
ing membership values do not always comespond well 1o the
degrees of belonging of the data, and it may be inaccurate in a
noisy environment [4]. In real-data analysis, noise and outhers
are unavoidable. Hence, 1o redouce this weakness of the FCM
and to produce memberships that have a good explanation of the
degrees of belonging for the data, Knishnapuram and Keller [4]
proposed a possibiliste approach o clustering which used a
possibilistic type of membership functoon in describing the
degree of belonging. However, the possibilistic c-means (PCM)
sometimes generates coimncident clusiers [5]. Recently, the use
of both fuzzy { probabilistic) and possibilistic memberships in a
clustering algonthm has been proposed in [5] and [6].

Rough-set theory [7] 15 a new paradigm that s vsed w deal
with uncertainty, vagueness, and incompleteness. It has been
applied o fuzzy-rule exraction, reasoning with uncertamty,
fuzey modeling, ete. [7]. In [8], Lingras and West introduced
a new clustermg method called rough c-means (RCM), which
describes a cluster by a prototype (center) and a pair of lower
and upper approximations. The lower and upper approximi-
tions are different weighted parameters that are used  compute
the new centers. Combination of fuzzy and rough sets provides
an mmportant direction in reasoning with uncertanty [99-[11].
Both fuzzy and rough sets provide a mathematical framework
Lo caplure uncertaintes that are associated with the data [9].
They are complementary in some aspects. Recently, combining
both rough and fueey sets, Mitm ef all [10] proposed a new
c-means algordthm, where each cluster is consist of a fuzey
lower approximation and a fuzey boundary. Each object in
lower approximation takes a distinel weight, which is its fuzzy
membership value. However, the objects in lower approxi-
mation of a cluster should have a similar influence on the
correspondimg centrond and cluster, and therr weights should be
independent of other centroids and clusters. Thus, the concept
of fuzzy lower approximation, which is introduced in [10],
reduces the weights of objects of lower approximation. In ef-
fect, it drifis the cluster prototypes from their desired locations.
Moreover, it 1s sensitive o noise and outhers,

In this paper, we propose a generalized hybrid algorithm,
which 15 termed as rough-fuzzy PCM (EFPCM). based on
rough and fuzzy sets. While the membership function of the
fuzey sets enables efficient handling of overdapping partitions,
the concept of lower and upper approximations of rough
sels deals with uncenanty, vagueness, and imcompleteness in
class definition. The algorithm attempts to exploit the benefits
of both probabilistic and possibilistic membership functions.
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Integration of probabilistic and possibilistic membership func-
tions avoids the problems of noise sensitivity of the FCM
and the coincident clusters of the PCM. Each partition is
represented by a set of three parameters, namely, a cluster
prototype (centroid), a crisp lower approximation, and a fuzzy
boundary. The lower approximation influences the fuzziness
of the final partiion. The cluster prototype depends on the
weighting average of the crisp lower approximation and fuzzy
boundary. The algorithm is generalized in a sense that all
existing variants of c-means can be derived from the proposed
algonthm as a special case. Several gquantitative measures ane
introduced based on rough sets o evaluate the performance
of the proposed algorithm. The effectiveness of the proposed
algonthm, along with a companson with the exising c-means
algorithms, is demonstrated on a set of benchmark data sets.

The structure of the rest of this paper is as follows. Section 11
brefly inroduces the necessary notions of the FCM and rough
sets. In Secton 11, we describe the RFPCM algorithm based on
the theory of rough sets and FCM. Section 1V introduces several
quantitative perfformance measures W evaluate the quality of the
proposed algorithm. A few case studies and a comparison with
other methods are presented in Section V. Concluding remarks
are given in Section VI

II. FCM anND ROUGH SETS

This section presents the basic notions in the theories of FCM
and rough sets.

A Fuzzy O-Means

Let X ={mxy,..., Tjs... Iyt be the set of n objects and
V= {v1,...,v...,v.} be the set of ¢ centroids (means),
where z; € W™, v, € W™, and v, € X, The FCM provides a
furzification of the HCM [3]. It partitions X into ¢ clusters by
minimizing the objective function

H= ZZ{“U)H” l=; — vl (1)

i=1i=1

where 1 < rfiy < oo 18 the fuzzifier, v; 1s the ith centroad
corresponding to cluster 3;, p; € [0,1] is the probabilistic
membership of the pattem z; to cluster 3, and | - || is the
distance norm, such that

1 L1 e
— ' ey — . ' e
1 =— E (i)™ 2y, where n; = E (i)
"
i=1 =1

(2}

& -1
IJ].. thy—1 i "
e (Z (E ) ) , where dfj =[z; —v)*

(3}

subject to ¥, py; = 1,%j, and 0 < Z;;l iy < 71, Wi

The process begins by rmandomly choosing © objects as the
centroids of the ¢ clusters. The memberships are calculated
based on the relative distance of the object x; to the centroids
{4 by (3. After computing the memberships of all the ob-
jeets, the new centroids of the clusters are caleulated as per (2).

The process stops when the centronds stabilize. That s, the
centroids from the previous iteration are identical to those
generated m the current ileration.

In the FCM, the memberships of an object are inversely
related 1o the relative distance of the object to the cluster
centroids. In effect, it is very sensitive 10 noise and outliers.
In addition, from the standpoint of “compatibility with the
centroid,” the membership of an object 2, in a cluster 4 should
be determined solely by how close it 1s 1o the mean (centrowd)
v of the class and should not be coupled with its similarity with
respect o other classes.

To alleviate this problem, Krishnapuram and Keller [4] in-
troduced the PCM, where the objective function can be for-
mulated as

T=Y " (wg)™lzy —wll?+D m Y (1-vy)™ @)
i=1

i=1 j=1 =1

where 1 < 1ia << oo is the fuzzifier, and +; represents the scale
parameter. The membership matrix @ that 1s generated by the
PCM is not a partition matrx in the sense that it does not satisfy
the constrimnt

e

Zuu=1. (3)

i=1

The update equation of w;; is given by

na s 1 (g —1]
by = . where D = =i — I? :
i3 5 s
(6)

subject to gy € [0,1],%6,5; 0 < Z;":l v = n, Wi and
max; vy = (L%j. The scale parameter 1; represents the zone
of influence or size of the cluster 3;. The update equation for
;15

P

Th = K - @ (7}

where

e i
P = Z{yujaiu |lz; — ||2 Q= Z,::E_,.U:l.-iu_
i=1 =1

Typically, K is chosen to be one. In each iteration, the
updated value of v;; depends only on the similarity between
the object z; and the centroid v, The resulting partition of the
data can be interpreted as a possibilistic partition, and the mem-
bership values may be interpreted as degrees of possibility of
the objects belonging to the classes, ie., the compatibilities of
the objects with the centroids. Updating of the means proceeds
exactly the same way as in the case of the FCM.

B. Rough Sets

The theory of rough sets begins with the notion of an approx-
imation space, which is a pair (I, ), where [V is 8 nonempty
sel (the universe of discourse ), and I is an equivalence relation
on [/ i.e, Risreflexive, symmetric, and transitive. The relation
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1 decomposes the set [ into disjoint classes in such a way that
two elements = and y are in the same class if and only if (iff)
{z,y) € K Let U/ R denote the quotient set of [ by the relation
Roandl/ /R = {X, Xoa, ..., Xon bowhere X is an equivalence
class of B, i=1,2,..., me. If the two elements @ and y in
L' belong to the same equivalence class X; € U/ R, then we
can say that ¢ and y are indistinguishable. The equivalence
classes of B and the empty set ) are the elementary sets in the
approximation space ({7, B). Given an arbitrary set X € 2V,
in general, it may not be possible to precisely describe X in
{00 Ry One may charactenze X by a pair of lower and upper
approximations defined as [7]

R(X)=

U\.mu Rx) = |J x.

X.CX XX

That is, the lower approximation (X is the union of all
the elementary sets which are subsets of X, and the upper
approximation (X is the union of all the elementary sets
which have a nonempty intersection with X. The interval
[R(X),R(X)| is the representation of an ordinary set X in
the approximation space {I/, i) or is simply called the rough
set of X, The lower (respectively, upper) approximation B X
[respectively, B X is interpreted as the collection of those
elements of [, which definitely (respectively, possibly) belong
to X . Furthermore, a setof X s said to be definable (or exact)
in {I/, R) iff R(X) = R(X).

In [7]. Pawlak discusses two numencal charactenzations of
imprecision of a subset X in the approximation space ([, i):
accuracy and roughness. Accuracy of X, which is denoted
by ng( X)), is the ratio of the number of objects on its lower
approximation to that on its upper approximation, namely

; |R{X)|
ap(X) = |EEY;:

The roughness of X, which is denoted by pgr (X)), is defined
as prlX) =1 —agp(X). Note that the lower the roughness
of a subset, the better is its approximation. Furthemmore, the
following conditions are noted.

1) AsR(X)S X CR(X),0< pr(X) £1

2) By convention, when X =0, R(X) =

priX) =0

3) priX) = 0iff X is definable in {IJ, ).

R(X) =, and

III. RouGH-Fuzzy PCM

Incorporating both fuzzy and rough sets, next, we describe
a new c-means, which s termed as RFPCM. The proposed
RFPCM adds the concept of fuzey membership (both proba-
bilistic and possibilistic) of fuzzy sets and the lower and upper
approximations of rough sets into c-means algorithm. While
the membership of fuzzy sets enables efficient handling of
overlapping partitions, the rough sets deal with uncerainty,
vagueness, and incompleteness in class definition. Due to the
integration of both probabilistic and possibilistic memberships,
the RFPCM avoids the problems of noise sensitivity of the FCM
and the coincident clusters of the PCM.
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————= Lugey Boundary B[S
with { i [0.1] and wij == [0. 1]

M 3j o probahilistic membership wyj: possibilistic membership

Fig. 1. RFPCM. Cluster 3 is represented by crsp lower bound and fuzzy
boundary.

A. Objective Function

Let A(3,) and A{ 3,) be the lower and upper approximations
of cluster 3, and let B{3) = {A(3)— A(3)} denote the
boundary region of cluster 3;. The proposed RFPCM algorithm
partitions a set of n objects into ¢ clusters by minimizing the
objective function

wx Ay +wx By, i A(S) £0,.5(5) #0
,.F':r_[;-p — | ,.'-'h illil:'.'.‘..:l }'E H Bl:'l--jg:l ={']
By, ifA(3) =0, B(53) #0
A = Z Z {a(um;) Mt b ub.:l”“} |z — wl?
=1 eA(%)
+Z::',.’f Z (1 —wyy) ””
=1 we Al
B = Z Z {u.{pu:l”"' + b{uuj’;'“} |z — 1.-',-||E
=14 ,eB( )
+ Z”‘ Z (1 —ay) i (%)
=1 #eB(A)

The parameters w and @ correspond o the relative impor-
tance of lower and boundary regions. The constants o and
b define the relative imporance of probabilistic and possi-
bilistic memberships, Note that g has the same meaning of
membership as that in the FCM. Similarly, v; has the same
interpretation of typicality as in the PCM. Solving (8) with
respect o gy and vy, we get

& e -1
{31.._.., iy —1 5 4
e (Z (a2) ) where df; = |z, — v
k=1
9y
1 i [ rfeg—1)
]. b:lj: — 1 ||E 1/ 1
Wiy = ———=, where B = § /4 11 )
‘T1+E { i
(1))

That is, the probabilistic membership gy, is independent of
the constant a, while the constant b has a direct influence on the
possibilistic membership ;. The scale parameter 1; has the
same expression as that m (7).

In the RFPCM, each cluster 1s represented by a centrond,
a cnsp low —=wimation, and a fuzzy boundary (Fig. 1).
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The lower approximation influences the fuzziness of final par-
tition. According to the definitions of lower approximation and
boundary region of rough sets, if an object x; € A7), then
z; & AlA ), WEh # 4, and 2y ¢ B(3), ¥, That is, the object =,
is definitely contained in ;. Thus, the weights of the objects
in lower approximation of a cluster should be independent of
other centroids and clusters and should not be coupled with
their similanty with respect 1w other centronds. In addition,
the objects in lower approximation of a cluster should have
a similar influence on the corresponding centroid and cluster.
Whereas, if z; € I3, then the object x; possibly belongs
to 4; and polentially belongs to another cluster. Hence, the
objects in boundary regions should have a different influence
on the centronds and clusters. Therefore, in the RFPCM, the
membership values of objects in lower approximation are p; =
v = 1, while those in the boundary region are the same as in
the FCM [(9)] and PCM [(10)]. In other words, the proposed
c-means first partitions the data into two classes—lower ap-
proximation and boundary. Only the objects in the boundary
are fuzzified. Thus, A; redoces o

A=Y 3 a—ul?

i=1xeA(d;]

and B has the same expression as that in (8).

B. Cluster Prototypes

The new centrowd 1s calculated based on the weighting av-
erage of the crsp lower approximation and fuzey boundary.
Computation of the centroid is modified 10 include the effects
of both fuzzy memberships { probabilistic and possibilistic) and
lower and upper bounds. The modified centroid calculation for
the RFPCM is obtained by solving (8) with respect w v,

if A(5) # 0, B(5:) # 0

w x Oy + = Ty, )

if A(3)#£ 0, B(3) =0
:| -
1

o )
v E =4 Oy

Dy, if A(3) =0, B(53) # 0

1= @@ > o= a1

xjeA K]
where | Al 3;)] represents the cardinality of A(3;) and
1

D, = =, Z {”'::J*.-_.':"’;“ it b'::“i_.':"l;u 7
] e B3]

where n; = Zz,s;B(.i,]{“‘{J*UT;H + bl )2}

Thus, the cluster prototypes (centrowds) depend on para-
meters 1w and w0 and constants o and b, and fuzezifiers 1y
and e rule their relatve influence. This shows that if b is
higher than «, the centroids will be more influenced by the
possibilistic memberships than the probabilistic memberships.
Thus, w reduce the influence of noise and outliers, a bigger
value for b than @ should be used. The correlated influence of
these paramelers, constants, and fuzzifiers makes it somewhat
difficult to determine their optimal values. The parameter w
has an influence on the pedformance of the RFPCM. Since
the objects lying in lower approximation definitely belong to
a cluster, they are assigned a higher weight w compared with
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1 of the objects lying in boundary regions. On the other hand,
the performance of the proposed c-means significantly reduces
when w = 100 In this case, since the clusters cannot see the
objects of the boundary regions, the mobility of the clusters and
the centronds reduces. As a mesult, some centroids get stuck in
local optimum. Hence, for the clusters and the centroids o have
a greater degree of freedom to move, ) < 17 < w < 1 subject to
w1 = 1. Inaddition, 0 < o < 1,0 < b< l,anda + b= 1.

Some limiting properties of the RFPCM algorithm related 1o
the probabilistic and possibilistic memberships are stated next.

1, ifdiy<dy VeAT

i _ . -
limm e, 14 {pris {{}. otherwise L)
1, ifbd;; <
|iltl,;u_[+{i-",._l.} = T;-. iri'”-ia_.l =Tk (13)
0, ifbdy; =
1 1
Iinl,,:ll_.h{p,_..} =—, Iiru,;h_.h{u;_..} =z (14}
i 2
limyg, iy oefvi} = ZJ:J = B, l<i<e (15
i=1
1, ifh=10
i { ,—;._ if bdy; = 1 (16)

C. Convergence Condition

In this section, we present a mathematical analysis on the
convergence property of the proposed c-means algorithm. Ac-
cording to (11}, the cluster prototype of the proposed c-means
algorithm is calculated based on the weighting average of
the crisp lower approximation and fuzzy boundary when both
A(3) # 0 and B(3,) # 0, ie.,

1.‘?‘FP =w X u'am'ﬂp + 1 % i'gm'ﬂp (17)
where
a 1
RFP
vl = = — T (18
: YT AB))] IR :
- oy Al
1 : :
~RFF __ T ' rhey ' o o,
D= 3 {alu)™ +bw) "}y
e B
where
n = Z {:J.{;AU:I';” + fﬁ{i.-',_l.:l";“z} . (19)

= B(A;)

In the RFPCM, an object may not belong o both lower
approximation and boundary region of a cluster. Thus, the
convergence of v1FF depends on the convergence of vIFF and
sRFP
ikl

Both ( 18) and {19) can be rewrllen as

(BN = D = (20)
xjeA( K]

(rg) ¥RFP = Z {u{y,_..:l“:”+f3{i-',_..:I’F”}_r:_... (21}
i EB(%:)
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Thus, (20) and (21) represent a set of linear equations in lenms
of vBFF and vRFF jf both iy and vy, are Kept constant.
A simple way o analyze the convergence properly of the
algorithm is to view both (18) and (19) as the Gauss—Seidel iter-
ations for solving the set of linear equations. The Gauss—Seidel
algorithm is guaranteed to converge if the marix representing
each equation is diagonally dominant [12]. This is a sufficient
condition, not a necessary one. The ileration may or may not
converge if the matrix is not diagonally dominant [12]. The
matrix corresponding 1o (18) is given by

[AB)] 0 e oD
gl 4 MP e | @
R 0 A8

where | A(3;)| represents the cardinality of A( 3;). Similady, the
matrix corresponding 1o (19) is given by

g O - oo D '|
fofd o B} g
I. ] ] -J'AJ.J

where 1, = ¥, (s, {0l )™ + blw;)2} which repre-
sents the cardinality of B{3;). For both A and A to be diag-
onally dominant, we must have

|A(F) =0 n = 0. (24)

This is the sufficient condition for matrices A and A to be
diagonally dominant. Under this condition, the iteration would
converge if (18) and (19) were repetitively applied with
and e, which were kept constant. In practice, (911} are
altematively applied in the iterations. The condition in (24) is
still correct according o the convergence theorem of the FCM
of Bezdek et al [13] and Yan's convergence analysis of the
fuzzy curve-tracing algorithm [14]. Both the matrices A and
A are also the Hessian (second-order derivative) of 4, and 5,
(8) with respect to viF and 775 respectively. As both A and
A are diagonally dominant, all their eigenvalues are positive. In
addition, the Hessian of 5, with respect to both gy and e can
casily be shown 1o be a diagonal matrix and is positive definite.
Thus, according to the theorem denved by Beedek er al. [13]
and the analysis done by Yan [14], it can be concluded that
the proposed algorithm converges, at least along a subsequence,
to a local optimum solution as long as the condition in (24) 15
satisfied. Intuitively, the objective function Jgpp [(8)] reduces
in all steps comresponding to (93 11); therefore, the compound
procedure stictly makes the function Jypp descent.

D Details of the Algorithm

Approximate optimization of Jyppe [(8)] by the RFPCM
is based on Picard iteration through (9)—(11). The process
starts by randomly choosing ¢ objects as the centroids of the
¢ clusters. The probabilistic and possibilistic memberships of
all the objects are calculated using (9) and (10). The scale
parameters 1; for ¢ clusters are obtained wsing (7). Let u; =
(241,25 Wiy iy 1y, | represent the fuzey cluster 3; associated
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with the centroid 1, and w;; = {agp; + by b After computing
1, for e clusters and n objects, the values of 1, for each object
@ are sorted, and the difference of two highest memberships of
@ is compared with a threshold value & Let u;; and uy; be the
highest and second highest memberships of ;. respectively.
If (1ti; — ug;) = 4, then z; € A3, as well as z; € A3
otherwise, r; € A(3), and =; € A(3y). After assigning each
object in lower approximations or boundary regions of different
clusters based on 4, both memberships p;; and v of the objects
are modified. The values of gy and v, are set o one for the
objects in lower approximations, while those in boundary re-
zions are held unchanged. The new centroids of the clusters are
caleulated as per (11). Hence, the performance of the RFPCM
depends on the value of 4, which determines the class labels
of all the objects. In other words, the RFPCM partitions the
data set into wo classes—Ilower approximation and boundary,
which are based on the value of §. The § represents the size of
eranules of rough—fuzzy clustering. In practice, we find that the
following definition works well:

C 1,
d=” Z;“Iu_”*:-':"
4=

& represents the average difference of two highest memberships
of all the objects in the data set. A good clustering procedure
should make the value of § as high as possible.

(25)

E. Generalization of Existing C'-Means Algorithms

Here, we describe two derivatives of the RFPCM, namely,
rough FCM (RFCM) and rough PCM (RPCM), and prove
that the proposed c-means is the generalization of the existing
c-means algorithms.

Rough FCM (RFCM): Let D < 4§ < 1 and a = 1, then (8)
and (11) become

w ® Ag + 10 = Ba,
Az,
B,

Aa = Z Z “J'_,. — W "2

i=1 xie Al )

i=1 x e B(;)

if A(3)#0, B(3) #0
if A(3)#0, B(3) =0
if A(3) =0, B(3) #0

Jip =

(26)

w x Co+ 10 x Da, ifA(B) # 0, B(3) # 0

ultF = £ (s, if A(3)#0, B(3)=0
T, ifA(F) =0, B(3)#£0
= 1
e BN
xieA(d: )
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That is, if () < 4 < 1 and a = 1, the RFPCM boils down
to the RECM, where each cluster is consist of a crisp lower
bound and a furzy boundary with probabilistic memberships.
In [10], a preliminary version of the RFECM has been proposed,
where each cluster is consist of a fuzey lower approximation
and a fuzzy boundary. If an object z; € A( 5 ). then pyy =
if k=4, and pg; = 0, otherwise. That is, each object z; €
Al3) takes a distinet weight, which is its fuzzy (probabilistic)
membership value. Thus, the weight of the object in lower
approximation is inversely related to the relative distance of
the object wo all cluster prototypes. In fact, the objects in lower
approximation of a cluster should have a similar influence
on the comesponding centroid and cluster. In addition, their
weights should be independent of other centroids and clusters
and should not be coupled with their similarity with respect to
other clusters. Thus, the concept of fuzzy lower approximation
of the RFCM, which is introduced in [ 10], reduces the weights
of objects of lower approximation and effectively drifis the
cluster centroids from their desired locations.

Rough PCM (RPCM): Let <4 < 1 and a =0, then (8)
becomes

ur X ,.4.;5 + 1 ® 5;5._ |f.»-_1{c'i,:| ?é . B{;"},j ?é [0}
3

Jap = 4 As, if A(3,) # 0, B(3) =0
By, it A(F,) = 0, B(3,) #0
A=Y 3 e —ul?
i=1 ;£ A %)

Ba=Y_ > (w)™|z;—wi?

i=1 x; eB(5%)

+ Zm Z (1- ug-).:l”h.

(28)
i=1 x;eB(3;)
Similarly, (11) reduces to

wx Cy+amx Dy, WWAG)F#Q, B(3)#0

oRF = L ¢, if A(3) #0, B(3) =0
Ds, if A(3) =0, B(3) #0
1

% = 1A

g = Z |;:E-"j_|,:|”u.

xiEB(3:)

(29)

Therefore, if 0 < 4§ < 1 and a = 0, the RFPCM meduces o
the RPCM, where each cluster is represented by a crisp lower
bound and a fuzzy boundary with possibilistic memberships.

Rough C-Means (RCM): W0 < § < 1, and for any nonzero
fig and gy, if we set gy = vy = 1, ¥4, 4, then (8) and (11)
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become

wx Ay +10 x By, if A(B) £0, B(3)#D
Ay, if A(3) £0, B(3) =10
B,. if A(3,) =0, B(3)# 0

A4=Z Z Iz — vi)? 54=Z Z |2; — |2

Jr =

i=1 ;e Al i=1x;eB(5:)
(30)
wx Cy+ix Dy, ifAG) £D, B(B) £ 0
oR = Cy, if A(3,) #0, B(3) =0
1 1
c_; =!‘.-_'-1|;';i:|| Z J.-J 1:'1 = |B|:H£:|| Z J"_." f:ﬂ}l

x e Bl )

This is equivalent to RCM of Lingras and West [8]. In the
case of RCM, both lower bound and boundary are crisp. Thus,
the difference of RCM with RFPCM/RFCM/RPCM is that,
while in RFPCM/RFCM/RPCM, each object in the boundary
region Lakes a distinet weight; in RCM, the uniform weight is
imposed on all of the objects in the boundary region. In fact, the
objects in boundary regions should have a different influence on
the centronds (means) and clusters,

Fuzzy PCM (FPCM): If we set § =1, then A(3;) = 0 and
A(3) = B(3,). Henee, for 0 < a < 1,(8) and (11) reduce to

Jee =3 3 {alpy)™ + by )} 2 —vil?
i=1 3=1
33— v @
i=1 i=1
1 T . . ¢
1_,:-“P =t {alp)™ + blwy )™ } o (33
i _,I_I-

where n; = Z;;E{u{ﬁg_,:l';“ + bluy) )

Therefore, for & = 1 and () < a < 1, the RFPCM boils down
to the FPCM algorithm of Pal et af. [5].

Frzzy C-Means (FCM): If § = 1 and a = 1, then

Je =33 ()™ |z —wil®

i=1 3=1

(34)

. 1 e ) B e B
F e Sy b Tt
¥ = = ZU;,J] ‘xy, where n; = Z{jij_-,:l ;
i=1 i=1
(35)

which is equivalent to the FCM algorithm proposed in [3].
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Fig. 2. Plot of memberships for a = (L0, 0.5

Jand 1.0y and for § = (095 and 100 {2) FCM: a = 1K), & = 104k (h) PCM: a = (LiK), § = LKL jc) FPCM:

a = (Li § = 100 (d) RFCM: a = 104, § = (L95. {¢) RPCM: a = (LKL, § = .96 (f) RFPCM: a = (L50, § = (L.94.

Possibifistic C-Means (PCM): If§ =1 and a = (), then

fp—ZZ )™ 25 — v, +Z”=Z“—“

i=1 =1 i=1

(36)

T
=3 ()™
i=1

(37)

e

v = E {?-'.._,.:I"”J’_,u-

whene

i=1

Thus, for ¢4 =1 and o =1, the RFPCM mreduces o the
PCM algorithm introduced in [4].

Hard C-Means (HCM): If § =0, then B{3;) =10 and
A(3) = A(3) = 3. Ineffect, (8) and (11) become

(38)

Jn = Z > e

=1 &; £

1
a
— ”— q_.*jH — —” E "‘1‘:_."

¢ e 3

Hence, for § = (1, the RFPCM boils down o the HCM.

Fig. 2 shows the membership values of all the objects o
two Gaussian-distnbuted clusters for the values a = (L0, 0.5,
and 1.0, and § = 0.95 and 1.0. The different shape of the
memberships, particulardy for objects near to the centers and
for objects far from the separating line, is apparent. Detailed
analysis reported in this section confirms that the proposed
R7PCM is the generalization of the exising c-means algo-
ahms. It effectively integrates HCM, FCM, and PCM using
the concept of lower and upper approximations of rough sets.

IV, QUANTITATIVE MEASURES
In this section, we present some guantitative indices Lo
eviluate the performance of rough—fuzzy clustering algorithm,
incorporating the concepts of rough seis [7].
o Index: 1Lis given by

T B Z w A”-fﬂr JEN e
where
A; = Z {”-{J*’e_.':'r;” + h‘i""ujrh} = |A(B)] ©0)
xiEA(S: )
B; = Z {”-{I*a_a:'ﬁ" + fﬁ{u,_;:'ﬂ:u} ; (41)
x,£B(8;)

iy and v represent the probabilistic and possibilistic mem-
berships of ohject 2 in cluster 3;, respectively. Constants o and
b define the relative importance of the probabilistic and possi-
bielistic memberships, while pammelers w oand @ comrespond Lo
the relative importance of lower and boundary regions.

The o index represents the average accuracy of ¢ clusters.
It is the average of the ratio of the number of objects in
lower approximation to that in upper approximation of each
cluster. In effect, itcaptures the average degree of completeness
of knowledge about all clusters. A good clustering procedure
should make all objects as similar to their centroids as possible.
The o index mereases with an merease i similarity within a
cluster. Therefore, for the given data set and ¢ value, the higher
the similaritv values within the clusters, the higher would be the
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o value. The value of o also increases with o In an extreme case
when the number of clusters s maximum, e, ¢ = n, which is
the total number of objects in the data set, the value of o = 1.
When A(3;) = A(3), ¥i, ie., all the clusters {3, are exact or
definable, then we have o = 1. Whereas, ift A(3) = B{3;), ¥,
the value of o = (). Thus, () << o = 1.

o Index: The p index represents the average roughness of
cclusters and is defined as follows:

1 Z JI‘A..
o wA; +wh,

=1

g=l—a=1-— (42)

Note that the lower the value of g, the better is the overall clus-
ter approximations. In addition, 0 < p < 1. Basically, g index
represents the average degree of incompleteness of knowledge
about all clusters.

o Index: Itcan be defined as

o’ = % = iu‘ﬂg

i=1

D =Y {wA + @B}
i=1

(43)

The o index represents the accuracy of approximation of all
clusters. It captures the exactness of approximate clustering.
A good clustering procedure should make the value of o as
high as possible. The o index maximizes the exactness of
approximate clustering.

~ Index: 1t is the ratio of the total number of objects in the
lowwer approximations of all clusters to the cardinality of the
universe of discourse [ and is given by

=B here R = S 14 5=l

44
5 (44)

= 7.

=1

The -~ index basically represents the quality of approximation
of a clustering algorithm.

V. PERFORMANCE AMNALYSIS

The pedormance of our three hybrd algorithms, namely,
RFCM, RPCM, and RFPCM, is compared extensively with
that of different c-means algorithms. The algorithms that are
compared are HCM [ 1], FCM [3], PCM [4], FPCM [5], FPCM
of Masulli and Rovetta (FPCM™™) [6], kemel-based HCM
(KHCM) [15], kernel-based FCM (KFCM) [16], [17], kemel-
based PCM {KPCM) [ 17]. kemel-based FPCM (KFPCM) [ 18],
RCM [8], and RFCM of Mitra er al. (RFCMMET) [10]. All the
algonthms are mplemented in C language and run in LINUX
environment that has a machine configuration of Pentium 1V,
3.2 GHe, 1-MB cache, and 1-GB RAM.

To analyze the performance of the proposed algorithms, the
experimentation has been done in two parts. In the first par,
we have used some benchmark data sets. In the second part,
we present the results on segmentation of brain MR images.
The major metrics for the evaluation of the performance of
different algorithms are the indices proposed in Section IV such
as o, g7, and o, as well as some existing measures like the
Davies—Bouldin (DB) and Dunn (D) indexes [ 19]. The values of
4 for RCM, RFCM, RPCM, and RFPCM algorithms have been
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TABLE 1
PERFORMANCE ANALYSIS ON [RIS DATA SET

Algnrithims Prarctypes w= 2 Frarcdepey o= -
etlicls DG | Dwowy | Time | DR | Do | Tome
FioM 01l | 12355 13 i 432 74
P 112 WIF 15 - - -
FI'Ch 1L | 1LY n3 et 185 a%
PRCMME | o | oo 4 035 | 2k 2
KHC M 12 ] 1208 f .52 227 15
KFCA 01l 1234 P 025 ZE4 53
KFCM (F e 0.5 1% - - -
KHPCM 011 11.44 ul 0,20 A12 e
[ 000 | 1549 A 021 7a I3
RECAMDE | ] 1322 17 02 B4 32
LA | Dol | 151 12 0,22 1.5 2
RPCM e | 11eT i .22 T3 i
[ AR RS L1 | 1A et .21 T.75 2
TABLE 11
Ql.‘;\NTITﬁTWI.' EvALUATION OF RouGH-Fuzzy CLUSTERING
Sl Behily i Imilex o Imides Il v I
e | RLCHMMTTE L peanana | oo [ osmesss | oalEain
(L4 Y| DU e A VAT A I e R I IR T e
KPP CLEVRIGRD | L0240 | Qs [ 0S06me T
RFIHT CUIRIEC [ S HO00TA | OARRES [ 04860 T
c=3 [ RECMMPFE T nouaus T oamnn2e | ossead | ia2s
RTCAM 0HCR0Es | Q000014 | O9%A%EE [ OLRKICD
AR Y| CLAGAIGES | ILHOROTT | OLASUaRS | (.5579344
RFPCM ECRCRT | QALY | ORaRRE [ 0TESsEST

caleulated using (25). The final prototypes of FCM are used 1o
mitialize PCM, FPCM, KFCM, KPCM, and KFPCM, while the
Gaussian function is used as the kemel.

A. Benchmark Dara Sets

This section demonstrates the performance of different
c-means algonthms on some benchmark data sets hike Ins,
Glass, lonosphere, Wine, and Wisconsin data sets. All the data
sets are downloaded from hitpdfwwwics.uci edu/~mlearn.

The performance of different c-means algorthms on Iris
data set is reported next for ¢ = 2 and 3. Several runs have
been made with different initializations and different choices
of parameters. For the RFPCM, the values of § are 051 and
048 fore = 2 and 3, respectively, considering w = 0.99, iy =
vita = 2.0, and @ = b= (1.5, The parameters are held constant
across all muns.

For ¢ =4, all the c-means algonthms, except PCM and
KPCM, generate good prototypes. The final prototypes of
FCM are used to mitialize PCM, FPCM, KFCM, KPCM, and
KFPCM. Even if three initial centroids belong o three different
classes, PCM and KPCM generate comeident clusters. That s,
two of the three final prototypes are identical in case of PCM
and KPCM. Tables 1 and 11 depict the best results obtained
using different c-means algorithms for ¢ = 2 and 3. In Table L,
the performance of different algorithms is reported with respect
to DB index, D index, and CPU tume (in milliseconds). The
results reported in Table | establish the fact that, although each
c-means algonthm generles good prototypes with lower values
of the DB index and higher values of the D index for ¢ = 2, the
EFPCM provides the best result that has the lowest DB index
and highest D index. The results of other versions of rough
clustering are quite similar to that of the RFPCM.
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TABLE 111
PERFORMANCE OF [NFFERENT C-MEANS ALGORITHMS ON GLASS, [ONOSPHERE, WINE, AND WISCONSIN BREAST-CANCER DATA SET

Alporithme Cilivs Drata Sof lonoaphone Dats Sct Winc Llati St Wisconsin Dara St
Il I [ Dumn | Tene [ 10H Dune [ T | 13E Daom [ Theoe | DE ] Donn | Time
Hi™M 328 [ D2 14 I3h a3k 17 2y 252 11 019 | 5.5% an
[T | 252 | 045 333 1.51 (.AY 15% | 1% 278 i 017 | 613 0%
TPCM - - - - - - {3 1.40 204 - - -
TPCM™ R 248 | 011 20 152 089 24 58 1.78 17 013 | 829 13
KHOM A0 043 A5 | 23 05U 74| A 2a2 Z | 0a9 | Ta | 40
Krcs 251 .05 132 1.a1 (.40 a0 | Gl 276 1% | QR | 584 723
KFMCM - - - - - - 4y 154 454 - - -
Rk Lag [ 037 k] 101 .37 27 2 308 1a 016 | THS 17
RECM™EE | 151 | 013 12] 1.0 L5 og el 318 34 0lG | T.ad 77
RFCH 145 | 049 124 | by L L1 1y 313 44 012 | K2 2
R 1.1 0.3 47 T4 158 207 | L2 A0 A [ 0nd 0 TS 157
RIPCM nas | 04l Tt 111 |04 195 | 1% 387 1441 013 | 8AR2 08
TABLE IV

QUANTITATIVE ANALYSIS OF ROUGH-FUZZEY CLUSTERING ON GLASS, [ONOSPHERE, WINE, AND WISCONSIN BREAST-CANCER DATA SET

Adaovithms Class Data Set Innoephere Data Set Wine Data Seat Wisconsin Data Sat
Sdethods £t o ~ o i “ o o ¥ o o i
RECHMMET | 0ogd] | 09719 | 03123 | 09915 09627 | 06217 | Q8387 | 08231 | O3HN [ 48977 09123 [ 06349
RECM 09942 | AT [ 06250 | 49927 00712 [ a5 | OEWH | 09230 | 08275 E9E1 0.9386 | DE1TS
RPN AT | (hO7Ta | 0178 | 9913 09681 | 5125 | 08433 | 09306 | (L6355 | (RRSSD 0S¥ | 07724
R 0S| SE0d | D250 | B99ET 0070 | EETT | OMRE | 09238 | 07334 | P 0188 | D812T
In the Iris data set, since classes 2 and 3 overlap, it may N  TABLE '[:f o _
be thought of having two clusters. However, to design a clas- PERFORMANCE OF [MFERENT (C-MEANS ALGORITHMS
sifier, at least three clusters have to be identified. Thus, for (o 501 Algormuns | TOB ] oo | 0 Timz
such applications, RECM, RPCM, and RFPCM will be more IMAGE HEM: | &da | ad | Jedi) oeld
e ; i ; : T el 4] 4 | oz | o1z | o
useful because they are not sensiive 10 noise, they can avoid e s | 5u% | G5 G
coincident clusters, and ther DB- and D-aindex values are far G | e T T T T T
better than that of other algorithms, as reported in Table 1. In K HCR R f 2T 1T | 20T
additon, the execution time of different rough—fueey clustering Hl-fl'argﬂ“p 'f'::]li j‘fi {wl'rﬁf ]I;;;E’l
algorthms is significantly lesser than that of different fuzzy and RECM a1 :';’:9 16 | 1033
kemel-based fuzey clustering algonthms. RPC 01| 2a1 | 12es | 1w
Table II compares the performance of different mough—fuzzy i i R I S )
Jugtarine: slootithme. with mgnect 4 * and ~. The TADE HI M TIE | LE8 | 1207 | 7
clustering u_gunl ms with respect 1o a, {;,M{:;f’.l v The A9TITEY Fe are | oo | e | e
proposed RFCM pedomms better than RECM? . The perfor- BECR™MHE | os | 2o | 1241 | s
mance of RFPCM is intermediate between RFCM and RPCM FITCH 0| 20l I | T
for ¢ = 2 and is better over other mough—fuzzy clustering algo- }Eg\h{] :‘:Il; il‘:i i }:q.:[ ].'?qﬁf'
rthms having ¢ = 3. However, it is expected that RFPCM will T UL ) R |E];.; i
be more useful as it is nol sensitive 1o noise and outhiers and RFCM 04| 212 | 1330 | 1aL7
does not produce coincident clusters. R e I A
RFICM 0,40 2ER | 13a% | 10A7

Finally, Tables Ul and IV present the comparative perfor-
mance analysis of different c-means algorithms on some other
benchmark data sets with respect to DB, D, o, 0", and ~ indices
and CPU time (in milliseconds ). The following conclusions can
be drawn from the results reported in Tables T and 'V,

1y The performance of the proposed three algorithms
(RFCM, RPCM, and RFPCM) is significantly better than
other fueey, kernel-based fueey, and rough algorithms
with respect 1o DB, D, o, o™, and ~ indices.

The execution time required for the different rough clus-
tering algorithms is much lesser compared with the fuzey
and kernel-based fuzzy algorithms.

Some of the existing algorithms like PCM, FPCM,
KPCM, and KFPCM gencrate coincident clusters even
when they have been initialized with the final prototypes
of FCM.

The performance of kernel-based algorithms is better than
their nonkemel-based counterparts, although they requine
MOTE LHMe W0 Converge.

3)

4

B. Segmentation of Brain MR Images

In this section, we present the results of different c-means
algonthms on the segmentation of bramm MR images. The
experimentation has been done in two parts. In the first
part, we have used some real braoin ME images. More than
1O brain MR images with different sizes and 16-bit gray
levels are tested with different c-means algorithms. All the
brain MR mmages are collected from Advanced Medicare
and Research Institute, Salt Lake, Kolkata, India. In the
second part, we present the segmentation mesult on some
benchmark images obtained from “BrainWeb: Simulated Brain
Database™ (hitp:fwww. bic.mni.megill ca/brainweb/f). The com-
parative performance of different c-means is reported with
respect o DB and D indices, as well as the 7 index [20].

1) Results on Real Brain MR Images: Table V compares
the performance of different c-means algonithms on some brain
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(el (r {g) ik

Fig. 3. IMAGE-2049776 1. Original and segmented versions of differsnt c-means algorithms. {a) Orginal. {b) KHOM. {c) FCM. {d) RCM. (&) RECMMBF,

{f) RECM. (g) RPCM. {h) REPCM.

) (c)

3] {h)

Fig. 4. IMAGE-2497763. Original and segmented versions of different c-means algorithms. (1) Original. (b) HCM. (¢} FCM. {d) FPCM™M®. (o) RCM.

() RECM. () RPCM. {h) RFPCM.

MR images with respect 1o DB, D, and 7 indices and CPU
time, considering ¢ = 4 {background, gray matter, white matter,
and cerebrospinal fluid). The original images, along with the
segmented versions of different c-means, are shown in Figs. 3
and 4. All the results reported in Table Vo and Figs. 3 and 4 show
that, although each c-means algorthm, except PCM, FPCM,
KPCM, and KFPCM, generates good segmented images, the
valves of DB and D, and 7 indices of the RFPCM are better
compared with those of other c-means algorthms.

2) Results on Simulated Brain MR Images: Funthermore,
exlensive experimentation has been done 1o evaluate the pedor-
mance of the RFPCM algorithm on simulated brain MR images.
Figs. 5-7 show the orginal and segmented images obtained
using the RFPCM algorithm for different slice thicknesses and
noise levels. The noise is caleulated relative 1o the brightest
tissue. The resulis are reporied for the three different slice
thicknesses of —1, 3, and 5 mm., and the nose vanes from
0% to 9%. Finally, Table VI compares the values of DB, D,
and 7 indices of different c-means algorithms for different slice
thicknesses and noise levels. All the results shown in Figs. 5-7
and Table V1 confirm that the proposed RFPCM algorithm
generates good segmented images that are irrespective of the
slice thickness and noise level. In addition, the pedommance of
the RFPCM in terms of DB, D, and 3 indices is significantly
better compared with other e-means algorithms.

The following conclusions can be drawn from the results

reported in this paper.

1y It is observed that the RFPCM is superor o other
c=means  algorithms. However, the RFPCM  requires
higher time compared with the HCM. However, the
performance of the RFPCM is significantly higher than
the other c-means. The performance of the RFCM
and RPCM s inermediate between the RFPCM and
FCM/PCM. In addition, the RECM performs better than
the RECMMEF,

2) The use of rough sets and fuzzy memberships (both prob-
abilistic and possibilistic) adds a small computational

load to the HCM algorithm; however, the comesponding
integrated methods (RFCM, RPCM, and RFPCM) show
a definile increase in the D index and a decrease in the
DB index.

3) Itis seen that the performance of the RFPCM is interme-
diate between the RECM and RPCM with respect o o, g,
o, and ~. However, the RFPCM will be more useful than
the RFCM and RPCM as ils prototypes are nol sensitive
to outliers and can avoid coincident cluster problem.

4) The execution time required for the different rough clus-
tering algorithms is significantly lesser compared with
the different fuzzy and kernel-based fuzzy clustering
algorithms.

5) The proposed indices, such as o, p, o, and -, based
on the theory of rough sets provide good guantitative
measures for rough—fuzey clustering. The values of these
indices reflect the quality of clustering.

The best performance of the proposed RFPCM algorithm is

achieved because of the following reasons.

1) The concept of crisp lower bound and fuzey boundary of
the proposed algorithm deals with uncenainty, vagueness,
and incompleteness in class definition.

2) The membership function of the RFPCM efficiently han-
dles overlapping partitions.

3) The probabilistic and possibilistic memberships of the
RFPCM can avoid coincident cluster problem and make
the algorithm insensitive to noise and outliers.

In effect, good cluster prototypes are obtained wsing the

RFPCM algorithm with significantly lesser time.

V1. CONCLUSION

The contribution of this paper lies in the development of a
generalized methodology, which judiciously integrates c-means
algorithm, rough sets, and probabilistic and possibilistic mem-
berships of fuzey sets. This formulation is geared toward max-
imizing the utility of both rough and fuzey sets with respect to
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{h 3 (=)

Fig. 5. Slice thickness = 1 mm. Original and segmentad versions of RFPCM algorithm for different noise levels, {a) Onginal. (b) Naoise = (74, (¢} Noise = 1%,
{d) Noise = 3% (2] Noise = 5%. () Noise = 79 {g) Noise = 9%,

fa) (dy

Fig. 6. Slice thickness = 3 mm. Original and segmentad versions of RFPCM algorithm for different noise levels, {a) Onginal. {b) Noise = ("%, {¢) Noise = 1%,
{d) Noise = 3% (e) Noise = 5%. () Noise = 79, (g) Moise = 9%,

® o

{a) ihy ic) () {e) iy (g

Fig. 7. Slice thickness = 5 mm. Original and segmented versions of RFPCM algorithm for different noise levels, (o) Onginal. (b) Naise = (1. {¢) Noise = 1%,
{d) Noise = 3% (e) Noise = 5%, (£) Naise = T%. {g) Noise = 99,

TABLE W1
VALUES OF DB, [, AND 7 INDICES FOR SIMULATED BRAN MREI
Thick  Alporithuns D3 Tndes ¢ Nodse (%0 Dunn Dndex £ Moise (5 O Tndex S Moise (%)
Y Slethacly [ 3 5 i 4 n Kl a T 4 1k 3 3 7} i
1 mm HE R Ih3b | G35 0035 [ 056G [ 1E38 AT | A0 [ Zas [ 309 297 62 [ 353 347 | Fa| 3F5E

FCh 029 | 029 030 | 030 | 0230 || 363 366 | 7R | 382 | 390 | 416 | 404 | 395 37E| 350

FReMM |z | oz2e 026 | 02s | 027 || 3T 3as | s7s | 3av | 3ee | 41 | 40e | s a1 | ne

KT T | 031 O30 | 030 | 030 || 718 | 200 | 3. | 330 | 337 | 303 | 353 | o0 34| =1

KPR 129 | 028 02 | n2e | 029 || Fed | 36R | A9 | 401 | 40 | 417 | ane | 394 w0 | 360

JFTaAT | UI7T [ LIF U7 | GBI | 009 || 5.3 | 5358 | 690 | 565 | 743 | 350 | 257 | 427 05| B2
RFECMMTE | 026 | 025 027 | 027 [ 027 || 613 | 638 | 680 | 703 | 695 | 460 | 452 | 438 | 400 | w3

RICM a2 | o1z 0ad | oad | aa || B4 £79 | RER | A00 | B33 | S50 | se0 | S22 S0 | 452
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3 mm j [ o4l | 030 042 | 042 | 042 || 251 256 | 267 | 248 | 270 | 327 290 | 27E | 240 | 223
FCM 031 | 930 032 | 032 | 032 || 341 343 | 252 | 353 | 359 | 35e | 327 | 20 0S| 246

FROMR L pan [ o om | oan | ot || sde | ssn | dad | 340 | aTs | asT| 3| m2 | M4 s

EHCH U [ 036 a7 | e | 035 || 301 319 | LI9 [ 3233 | 3.8 | W3[50 | 7 & | 01

KFCh 020 | 029 020 | pan | 031 || 340 343 | 35T | 350 350 | 360 | 320 | 31L& 30T | 208

RE2% 02F | 00 o9 | oaw | 008 || 3Es | avz | 509 | 573 547 | 3o | ans | a0y 4z | 393
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REFCM | 013 | 013 003 | 013 [ 013 || 842 | 829 | 844 | 389 | 935 | 504 | 497 | 490 | 468 | M3
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(rCy™P | 030 | 031 030 | 031 | 030 || 307 | 328 | 328 | 321 | 334 | 330| 308 | 281 276 273
KHCM A3 | AEE VA3 | A3 | 3 || 2ES | T 2R [ 30 | A06 | 313 23R [ 294 273 ] 240
EIChT 131 | 051 030 ) D30 [ 020 )] 303 | 308 | 3008 [ 324 | 332 32T 304 | 30l TR | 2E
R AL [ 2 2 [ [ AR ] 53 ) AT [ 54N | 3493 | A8 [ MRZ [ FREF | 3ES ) AnA [ 3K

EFCM™MEY | 028 [ 028 029 | 030 | 029 || 531 502 | 409 | 471 | 495 | 436 | 402 [ 385 300 388
RECM 015 | 05 003 | 0AF [ A1S || 576 | A0k | 585 [ 603 | A0S | AR | AKE [ 4T3 dAsa | 30
RFCM Q15 | a4 0old | Gold | 0ol4 || el | alll | 828 | 623 | 420 454 ) 438 [ 420 413 | 410
REPCR 14 | 0014 004 | 14 | 0014 TAR | B34 | TRe | THE | T2 a6 | 478 43K 450 | 4200
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knowledge-discovery tasks. Several new measures are defined
based on rough sets to evaluate the pedformance of rough—fuezy
clustering algorthms. Finally, the effectiveness of the proposed
algorithm is demonstrated, along with a comparison with other
related algorithms, on a set of synthetic as well as real-life
data sets.

Although our methodology of the integration of rough sets,
furey sets, and c-means algorithm has efficiently been demon-
strated for benchmark data sets, the concept can be applied to
other unsupervised classification problems. Some of the indices
{eg., o, o, p,and ~) that are used for the evaluation of the
quality of the proposed algorithm may be used in a suitable
combination to act as the objective function of an evolutionary
algorithm for rough—fuzey clusienng.

ACKNOWLEDGMENT

The authors would like to thank the anonymous referees for
providing helpful comments and the Department of Science
and Technology, Government of India, for funding the Center
for Soft Computing Research: A National Facility under its
Inensification of Research in High Priority Areas scheme. This
paper was done when one of the authors, 5. K. Pal, was a
1.C. Bose Fellow of the Government of India.

REFERENCES

[1] A K. Jain and B. C. Dubes, Algorithms for Clustering Dara.
Cliffs, NI: Prentice-Hall, 1958,

[2] R. O, Dada, P. E. Hart, and D, G. Stork, Pattern Classification and Scene
Analysis.  New York: Wiley, 1999,

[3] 1. C. Berdek, Partern Recogrition With Fuzzv Objective Funoion
Algorithm.  Mew York: Plenum, 1981,

[4] K. Krishnapuram and 1. M. Keller, “A possibilistic approach to cluster-
ing,"” fEEE Frans. Fuzzy Svsr, vol. 1, no. 2, pp. 98-1 10, May 1993,

[5] M. K. Pal, K. Pal, . M. Keller, and 1. C. Beadek, “A possibilistic fuezy
c-means clustering algorthm,” fEEE Trans. Fuzzy Svse, vol. 13, no. 4,
PP S17-530, Aug. 2005,

[6] F Masulli and 8. Fovetta, “Soft transition from prohabilistic to possibi lis-

tic fuzzy clustering,” FEEE Trans. Fuzzy Sver, vol. 14, no 4, pp. 516527,

Aug. 2006,

2. Pawlak, Rough Sets, Theoretical Aspects of Reasaning Abow Dara,

Dvordrecht, The Nethed ands: Klwaer, 1991

F. Lingras and C. West, “Interval set clustering of web wsers with rough

W-means”" S fnrell fnfl Svse, val. 23 no. 1, pp. 5-16, 2004

[9] D. Dubais and H. Prade, “Hough fuzey sets and fuzzy rough ses” for 1
Gen. Sysi, vol. 17, no. 23, pp. 191208, 1990,

[10] 5. Mira, H. Banka, and W. Pedrycz, “Rough—tuzzy collaborative
clustering,” fEEE Frans. Svif, Man, Cyberne 8, Cybern, vol. 36, no. 4,
Pp. MI5-805, Aug. 2006,

[11] P Maji and 5. K. Pal, “Rough-fuery C-medoids algorithm and selection
of hio-hasis for amino acid sequence analysis,” FEEE Trans. Knowl. Data
Eng., vol. 19, no. &, pp. 859872, Tun. 20007,

[12] G. James, Modern Engineering Mathemarics.  Reading, MA: Addison-
Wesley, 1996,

[13] 1. Berdek, R. 1. Hathaway, M. 1. Sabin, and W. T. Tucker, “Convergence
theory for furey c-memns: Counterexamples and repairs” fEEE Trans.
Syt Man, Cyvbem., vol. SMC-17, no. 5, pp. 873877, Sep.fOct. 1987,

[14] H. Yan, “Convergence condition and efficient implementation of
the furzy curve-tracing (FCT) algorithm,” (EEE Trans. Svir, Man,
Cybem. 8, Cybem., vol. 34, no. 1, pp. 210-221, Feb, 3004,

[15] M. Girolami, “Mercer kernel-based clustering in featune space” (EEE
Trans. Newral Netw., vol. 13, no. 3, pp. TRO-T784, May 2002,

[16] 5. Miyamoto and I, Suizu, “Fuzzy c-means clusterng using kernel func-
tions in suppont vector machines” £ Adv Compur. erell. farell. fnf,
vol. 7, no. 1, pp. 25-30, 2003,

[17] D). Zhang and 5-C. Chen, “Kernel based fwey and  possi-
bilistic c-means clustering,” in Poc. (CANN, Istanbul, Turkey, 2003,
pp. 122-125,

Englewood

[7

&

[EEE TR ANSACTIONS ON S¥STEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 37, NO. &6, DECEMBER X7

[18] X.-H. Wu and 1.-1. Zhou, “Possibilistic fuezy c-means clustering model
using kernel methods," in Proc fer. Conf. Compus. fntell. Madel, Contrl
Auram, 2005, pp. 465470,

[19] 1. C. Bezdek and N. R, Pal, “Some new indexes for cluster validity,™
TEEE Trans. $vsr, Man, Cybem. 8 Cybern., vol. 28, no. 3, pp. 301-315,
Jun. 1958,

[20] 5. K. Pal, A. Ghosh, and B. U. Sankar, “Segmentation of remotely sensed
images with furzy thresholding, and gquantitative evaluation,” fer £
Remate Sens., vol. 21, no. L1, pp. 22692300, Jul. 2000,

Pradipta Maji received the B 5c. (Hons.) degmee in
physics, the M.Sc. degree in electronics science, and
the Ph.D). degree in computer science from Jadavpur
University, Kolkata, India, in 1998, 20040, and 2005,
respectively.

Currently, he is a Lecturer with the Machine Imtel-
ligence Unit, Indian Statistical Instinote, Kolkata. He
i also with the Center for Soft Computing Research:
A National Facility, Indian Statistical Institute. His
research interests include pattern recognition, bioin-
formatics, medical image processing, cellular au-
tomat, soft computing, etc. He has published amund 40 papers in intemational
journals and conferences. He is also o Reviewer of many intemational joumals.

Sankar K. Pal (M'E1-SM"84-F"93) received the
Ph.D}. degree in mdio physics and electronics from
the University of Caleutta, Kolkata, India, in 1979
and the Ph.[}. degree in electrical engineering, along
with the Diploma of the Imperal College, from
Imperial Caollege London, University of London,
London, UK., in 1982,

He was with the University of California, Berke-
ley, and the University of Maryland, College Park,
from 1986 1o 1987, the NASA lohnson Space Center,
Houston, TX, from 1990 to 1992 and in 1994, and
the LS. Naval Research Laboratory, Washington, DC, in 2004, Since 1997,
he has been a Distinguished Visitor of the [EEE Computer Society (US.)
for the Asia-Pacific region, and he has held several visiting positions in
Hong Kong and Australisn universities. He is curently the Dimector and o
[hstinguished Scientist with the Indian Statistical Institute, Kolkatn, He is also
a 1.C. Bose Fellow with the Govemment of India. He founded the Machine
Intel ligence Unit and the Cemer for Soft Computing Research: A Mational
Facility, Indian Statistical Institute, He is a coauthor of 14 books and about
300 research publications in pattern recognition and machine learni ng, image
processing, data mining and Web intelligence, soft computing, neural nets,
genetic algorithms, fuezy sets, rough sets, and bioinformatics.

Dr. Pal is a Fellow of the Academy of Sciences for the Developing World,
the Intemational Association for Pattern Hecognition, the International Fuzey
Systems Association, and all four national academies for sdencefengineering in
India. He isthas actingincted a5 an Associate Editor of the [EEE
TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
{2002-2006), IEEE TRANSACTIONS ON NEURAL NETWORKS { 1994—1998
and 2003-X106), Parern Recognition Letters, mtemational Jowmal of Pattern
Recogrition and Artificial Intelligence, Newrocompurting { 1995-2005), Applied
Inretligence, Infarmarion Sciences, Fuzzy Sets and Svstems, Fundamenta Infor-
maticas, Intermational Jonmal of Compusational Intelligence and Applications,
and Pmcesdings of the Indian National Science Acadenv-A. He is 1 member
of the Executive Advisory Editorial Board of the [EEE TRANSACTIONS
oM Fuzzy SYSTEMS, fnremational Jowmal on Image and Graphics, and
International Joumal of Approximarte Beasoning: and a Guest Editor of [EEE
COMPUTER. He received the 1990 5. 5. Bhatnagar Prize {which is the most
coveted award for a scientist in India) and many prestigious awards in India
and abroad, including the 1999 G, D0 Birln Awand, the 1998 Om Bhasin
Aweard, the 1993 Jowaharlal Nehm Fellowship, the 2000 Khwarizmi Interna-
tional Award from the Islamic Republic of Imn, the 2000-2001 Fedemtion of
Indian Chamber of Commerce and Industry Award, the 1993 ¥ikram Sarabhai
Research Award, the 1993 NASA Tech Brief Award (USA), the 1994 IEEE
TRANSACTIONS ON NEURAL NETWORKS Owstanding Paper Award (USA),
the 1995 NASA Patent Application Award (USA), the 2005-2006 Indian
Science Congress—F. C. Muhalanobis Birth Cemtenary Award (Gold Medal)
for Lifetime Achievement, the 1997 IETE-R. L. Wadhwa Gold Medal, and the
2001 INSA-S. H. Zaheer Medal.




	rough set based generalized fuzzy c means algorithm1.jpg
	2.jpg
	3.jpg
	4.jpg
	5.jpg
	6.jpg
	7.jpg
	8.jpg
	9.jpg
	10.jpg
	11.jpg
	12.jpg

