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Abstract—This investigation deals with a new distance messure for
genes using their microarray expressions and a new algorithm for fast gene
ordering without clustering. This distance measure is called “Waxrange
distance,” where the distance between two genes corresponding to a par-
ticular type of experiment is computed using a normalization factor, which
is dependent on the dynamic range of the gene expression values of that
experiment. The new geneordering method called “Minimal Neighbor™ is
based on the concept of nearest neighbor heuristic involying D{nzj e
complexity. The superiority of this distance measure and the comparability
of the ordering algorithm have been extensively established on widely
studied microarray data sets by performing statistical tests, Aninteresting
application of this ordering alporithm is also demonstrated for finding
useful groups of penes within clusters obtained from a nonhierarchical
clustering method like the self-orpanizing map.

Index Terms—Bivinformatics, dustering, combinatorial optimization,
dats mining, dynamic range, evolutionary alporithm, gene expression,
omdering, self-organizing map (SOM), soft computing.

I. INTRODUCTION

The recent advances in DNA array technologies have resulted in a
significant increase in the amount of genomic data [1], [2]. The most
powerful and commonly used technigue is that involving microaray,
which has enabled the monitoring of the expression levels of more
than thousands of genes simultaneocusly. Due to the large quantity
of information available from microarray, it is necessary to find an
appropriate distance measure for genes and to employ a process of
classification of the data in order to obtain initial conclusions about
the genes.

This investigation deals with the tasks of measuring the distance
between genes, their unidirectional ordering without clustering, and
ordering within clusters. The widely used measures for finding the
similarity between genes are the Pearson correlation and the Euclidean
distance. In computing the similarity, all the aforementioned measures
do not assign appropriate weights to gene expressions obtained from
different types of experiments, where the expressions differ by orders
of magnitude from one type to another. Consequently, gene expression
values in the lower dynamic range do get dominated by those with
higher dynamic range. A new similarity measure between genes called
“Maxrange distance™ is defined in this correspondence, where local
(for a particular type of experiment) similarities between two genes
are first normalized with a factor dependent on the dynamic range of
gene expression values of that experiment (type) and then summed to
find a global distance.

Gene ordering [3] is primarily necessary for identifying groups of
highly coregulated genes ( discussed in detail in Section 11-B). Existing
methods using evolutionary algorithms |4, [5], local search (4], |5].
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and Concorde’s linear programming [6] for finding the optimal gene
order spend most of the time in repetitive searching for the lowest
value of the sum of global similarities within gene groups of the same
biological category and result in the same biological score for all
possible permutations of genes within the same group. To avoid this
situation, a fast gene-ordering algorithm called “Minimal Neighbor™
(MM}, using nearest neighbor (NN} tour construction heuristic and
involving ({n”) time complexity, is described.

The superiority of the proposed Mavrange distance measure over
related measures is established by using them on three different
ordering algorithms and one hybrid algorithm. Similarly, the compa-
rability of the MN algorithm as compared to two existing algorithms
is demonstrated for three different distance measures. An interesting
application of the MN for ordering genes in the clusters found by the
self-organizing map (SOM) is also demonstrated.

Il. EXISTING APPROACHES

A Gene Clustering Methods

Clustering methods can be broadly divided into hierarchical and
nonhierarchical clustering approaches. Hierarchical clustering ap-
proaches (single, complete, and average linkage) [1]-]3] group gene
expressions into trees of clusters. They start with singleton sets and
merge all genes until all nodes belong to only one set. Nonhierarchical
clustering approsches, such as & means 7], SOM [8], and CLICK 9],
separate genes into groups according to the degree of distance among
genes. The relationships among the genes in a particular cluster
generated by nonhierarchical clustering methods are lost.

B. Gene-Chiedering Method s

Hierarchical clustering does not determine unique clusters. So, in
the framework of hierarchical clustering, a gene-ordering algorithim
helps the user to identify subtrees that are clusters by means of visual
display and interpret the data [3]. For nonhierarchical clustering- hased
approaches as well as for hierarchical clustering approaches, microar-
ray gene ordering within clusters using gene expression information is
necessary for the following reasons:

1} Gene ordering helps to identify subclusters in big clusters by
means of visual inspection of the clustered gene expression
data [ 3.

2} Genes that are adjacent in linear ordering are often functionally
coregulated and involved in the same cellular process [1], [2].
Biological analysis is often done in the context of this linear
ordering [3].

3 It provides smooth display of clustered genes, where the func-
tionally related genes are nearer in the ordering [2].

4} The relationships among the genes in a particular cluster gen-
erated by nonhierarchical clustering algorithms are lost. This
relationship (closer or distant) among genes within clusters can
be obtained using gene-ordering approaches.

An optimal gene order can be obtained by minimizing the summa-
tion of gene expression distances (or maximizing summation of gene
expression similarities) between pairs of adjacent genes in a linear
ordering 1,2, .. ., . This can be formulated as [ 2]

Finm) = HZiC?_?; i

(1)
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where it is the number of genes, and ) ;. is the distance/similarity
between two genes ¢ and ¢ + 1 obtained from the distance/similarity
matris.

A hybrid method (first clustering then ordering ) for ordering genes
for a hierarchical clustering solution is proposed in [3]. A method for
ordering genes for a nonhierarchical clustering solution is currently
missing. Although gene-ordering methods exist (described in the next
paragraph ), the utility and application of these methods to individual
clusters of nonhierarchical solution are not reported. In the current
investigation, the summation of gene expression distances for a non-
hierarchical solution is defined as

sy

.
Fi(n) = _Z _Z I

where k is the total number of clusters, n; is the number of genes in
cluster j,and 7, is the distance/similarity between two genes { and
i + lincluster § obtained from the distance/similarity matrix.

Tsai et al [4] formulated the gene-ordering problem as a travelling
salesman problem (TSP). Concorde’s TSP solver [6] can obtain the
optimal solutions to 107 of the 110 TSPLIB | 10] instances; the largest
having 15 112 cities. Thus, Concorde appears to be the best TSP solver
currently available, and in Section ¥, comparisons of results for gene
ordering are shown with Concorde. Related works on gene ordering
are also available in [5] and [11].

(2)

III. MATERIALS AND METHODS

A Preliminary Concepis of Microarsay Technology

Huorescence is currently the predominant method for microarray
signal detection [ 12]. A critical component of a fluorescence scanner is
the photomultiplier tube (PMT), in which fluorescent photons produce
electrons that are amplified by the PMT gain. For many microarray
scanners, the calibration curve (i.e., the curve showing the relationship
between dye concentration and fluorescence intensity) depends on the
PMT gain setting [12]. This PMT gain is also varied for different
types of experiments of different biological origin. DNA microarray
measurements normally assume a linear relationship between the
detected fluorescent signal and the concentration of the Auorescent dye
that is incorporated into the clone DNA or RNA molecules synthesized
from the test sample. Each PMT has its own linear dynamic range
within which signal intensity increases linearly with the increase of

fluorescent dye concentration [12]. This linear dynamic range also
fixes the dynamic range of the recorded microarray data (log ratio
values) [12] within which the data values are most reliable and used as
the normalization factor in the proposed distance measure to remove
variations of biological origin. For example, in Cell-Cycle-related
experiments, for dyve Cy3, the PMT gain at 960 ¥ fixes the intensity
range from x1 to x2, and for dye Cy3, the PMT gain at 760 ¥ fixes
the intensity range from v1 to ¥2. So the linear dynamic range of
PMT fixes the linear dynamic range of the data from log,+1/y1 to
log, #2/y2. Note that this dynamic range is available either from the
supplementary information (website) of the article/data (Yeast data)
or upon request to the authors (Herpes data) and not from the data
sets, and hence is not sensitive to outliers. However, due to the wide
concentration range for genes expressed in a biological sample, the
detected fluorescence intensity does not necessarily remain in the
linear range for all genes tiled on a microarray. The proposed dynamic
range-based normalization (described in Section II-C) belongs to
the category of between-slide or multiple-slide normalization [13].
The two other normalization factors in this category, which aim to
allow experiment-to-experiment comparisons when different types
of experiment have substantially different spreads in log ratios, are
median absolute deviation (MAD) and variance regularization. The
two normalization methods, viz., MAD and variance regularization,
are dynamic range estimators (not the real one) and implemented for
the purpose of comparison. However, the results obtained were not
VErY encouraging.

B, Description of Data Sefs

For gene ordering, data sets like Cell Cycle [14], Yeast Complex
[1]. [3]. All Yeast [1], [15], Fibroblast [16], and Herpes [17] are
chosen. Table I shows the name of the data sets, number of genes
in each data set, number of gene categories, name of experiment
types and number of experiments performed under each type, and
total number of experiments performed for a particular data set. The
dynamic range of expression values of each experiment type is shown
within parentheses. The dynamic range of available data represents
log ratios of — 1.2 to 1.2 for the cell-cycle experiments, —3.0 to 3.0
for sporulation, — 1.5 to 1.5 for the shock experiments, —2.0 to 2.0 for
the diauxic shift, —3.0 to 3.0 for Fibroblast data, and —13.0 to 13.0
for Herpes data. Herpes data are generated using radioactive probes
instead of fluorescent probes, and hence, a higher linear dynamic range
is observed compared to other data sets. The first three data sets of
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Seaccharomyces cerevisiae are classified into 16, 16, and 18 groups,
respectively, according to the Munich Information for Protein
Sequences (MIPS) [18] categorization. The genes in Fibroblast data
are classified into 1347 categories according to the Gene Omnibus
annotation. In Herpes data, the genes are broadly assigned to five
functional groups and available in [17]. For the Cell-Cycle data,
first, we downloaded 652 Cell-Cycle-regulated gene names from the
MIPS website. These gene names were then uploaded in the Stanford
Microarray Database [14], and corresponding gene expression values
are downloaded with default parameters by selecting all the cell cyele,
sporulation, heat shock, and disuxic shift experiments. Microarray
experiments often produce multiple missing expression values, nor-
mally due to various experimental problems. In this correspondence,
all the genes with more than 50% missing gene expression values are
first eliminated from the data set. Thereafter, for the remaining genes,
missing gene expression values are estimated using LSimpute [19]
software, a statistical java-based package to estimate missing values.

C. New Distance Measure

A number of measures of distance in studying the behavior of
two genes can be used, such as Manhattan [20], Euclidean [20], and
Pearson correlation distance [2]. Pearson correlation is oversensitive
to large threefold changes (peaks) in gene expression profiles due to
multiplication of expression vectors in dot product style and therefore
leads to false interpretation of distance between genes in certain cases.
Moreover, it is observed that often microarray data consist of different
sets of expression values corresponding to different ex periment types.
Existing distance measures usually take the same normalization factor
(like standard deviation for Pearson correlation) for a gene. This nor-
malization factor is independent of the type of experiment, varies from
gene to gene, and performs global normalization to all the expression
values for a particular gene, thus loosing useful local information. But
a closer look at the gene expression data reveals that the dynamic
range of expression values differs with the type of experiment and
remains the same for all the genes in the data set. So, using the same
normalization factor is undesirable for all types of experiments, where
expression values differ by orders of magnitude from one kind of
experiment to another. Consequently, it may be appropriate and better
if normalization is performed

+ separately for the different types of experiment with different
normalizing factors; thereby preserving the local information,

* keeping the same set of normalization factors for all the genes in
the data set.

Such an attempt is made in this correspondence, where two new dis-
tance measures are developed using Manhattan distance and Euclidean
distance, respectively (to avoid oversensitivity to threefold changes),
in which normalization is dependent on the type of experiment. This,
in turn, results in equal weighting of distance values for different
experiment types. The normalization factor is chosen as the linear
dynamic range of data values obtained from PMT for a particular type
of experiment.
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be the expression vectors (levels) of the two genes in terms of log-
transformed microarray gene expression data obtained over a series
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Fig. 1. Expmssion profile for three genes. According to Maxrange-M, the
distunce between genes X and Y is smaller than £ and ¥, which is in
oppasition with Pearson correlation and BEuclidean distance.

iy +ia + o+ iy, experiments in total. Using Manhattan distance,
the Maxrange distance between X and ¥ is defined as

M i e -
1 1 E T
Marrange — My y = — — M {3
T~ i, Max, — Min,_

=]

where Max._ and Min._ are the maximum and minimum log, (7 /G
values obtained from the linear dynamic range of the PMT (or radiosc-
tive probe) for an experiment of type ¢,.

The following can be stated about the measure:

1) 0< Mazrange — Mxy <1,
2y Mazrange — My y =0ifandonlyif X = ¥,
3) Marrange — My y = Mazrange — My x (symmetric).

Using the Euclidean distance, the Maxrange distance between X
and ¥ is defined as

p——
: e e
L& Ve
Mazrange — Exy = — = x Max, — Min
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Throughout the literature, we have used Maveange-M and
Maxrange-E for representing Maxrange distance measure using Man-
hattan and Euclidean distance, respectively.

Let three genes X, ¥, and 2 with four different types of ex-
periments have the gene expression values X = (.02, —(.1, 2.9, (1.1,
-0.1,0.1, =0.15,0.1, ¥ = 0.1, =0.05,0.15,-0.2, —0.3, 0.64, 0.0,
03, and £ =013, -009,0.1,-02,12,12,1.7,19.

Assume that the first two expression values for all the genes
correspond to cell-cycle experiments with dynamic range between
1.2 and —1.2, the third and fourth values correspond to sporulation
experiments with dynamic range between 3.0 and —3.0, the fifth and
sixth values correspond to shock experiments with dynamic range
between 1.5 and — 1.5, and the seventh and eighth values correspond to
dizuxic shift experiments with dynamic range between 2.0 and —2.0.
So, the Maxmange-M distance and the Pearson correlation distance
between genes X and ¥ are 0.11208 and 0.85202, respectively.

To illustrate the difference between Maxeange-M and Pearson
correlation, consider Gene X and Gene Y in Fig. 1, which shows
two profiles (of length 8), which are highly similar according to the
Maxrange-M but almost dissimilar (uncorrelated) according to Pear-
son correlation. This is mainly due to the comparatively large value of



the threefold change in Gene X. As opposed to this, in Maxrange-M,
sensitivity to threefold change is avoided using Manhattan distance,
and normalization with a dynamic range of experiments correctly
reflects the fact that both profiles have similar expressions for three
types of experiments, namely cell cycle, shock, and diauxic shift, and
differs in only one expression (among two expressions) for sporulation
experiments. Maxrange-E distance also shows similar performance as
Maxrange-M. The Euclidean distance between X and Y is 28382,
and between Y and 2, it is 28317, But X differs with ¥ in only one
expression value of high-range experiment type (Max,_—Min,_= 6),
whereas Z differs with ¥ in three expression values of relatively
small-range experiment type. So in the case of Euclidean distances,
experiment types with high range dominate experiment types with
small-range ones. As opposed to these, the Mawange-M distance
between X and ¥ is 0.11208. which is less than the distance between
Y oand £ (0.19365). The Maxrange-E distance between X and Y is
also less than the distance between ¥ and 2.

I New Ovdering Algorithm

Existing methods, using evolutionary algorithms [4], [5] for finding
the optimal gene order, spend most of the time in repetitive searching
for the lower value of the sum of gene expression distances in gene
groups (genes belonging to same category) and result in the same
biological score for all possible permutations of genes within the same
group. Under this situation, to avoid repetitive searching, the NN tour
construction heuristic can be used to find a near-optimal gene order
in terms of gene expression distance. The NN tour has the advantage
that it commits only a few severe mistakes in tour construction, while
there are long segments connecting nodes with short edges. It has
a disadvantage that several genes that are not considered during the
course of the algorithm are inserted at high costs in the end. To
overcome this to some extent, we propose a new heuristic-based MMN
algorithm.

Let 1.2,....4....,n represent the indices of n genes in the
microarray data set, and let the distance between gene i and i + 1 be
denoted as ' ;. Given this microarray data set of n genes to be
ordered and pairwise distance/similarity (of each gene with all other
genes) kept in an n = v matris {after caleulating), the different steps
of applying MN are explained below.

Step 1) Find the closest (most similar) pair of genes and merge
them into a single array (string) so that there remains n — 2
enes.

Step 2) Consider only the two end genes of the new array and find
the two closest genes for each of them from the remaining
genes. Out of these two selected genes, find the one closer
toone of the end genes of the array and then place it next to
that. The other selected gene is not connected and kept with
the remaining genes. The index of this gene is stored for use
in the next step. (Note that if both the selected genes are the
same in this step, then no gene index can be stored and in
the next step we have to compute twice for the selection
of two genes, else, only one closest gene is needed to be
computed. }

Repeat Step 2) until all genes are aligned into a single array

of size .

Step 3)

The computational complexity of Step 1) is ({n/2)%) as the
distance matrix is a symmetric one. This step can also be performed
during the calculation of n = n distance matrix. For Steps 2)-3), the
wiorst case complexity is O02 & (i — 2) » n). So the total complexity
of the algorithm is O{n?).

E. New Hybwid Al govitin for Ordering Genes in
Nontierarchical Clustering

It is mentioned in Section 11-B that a method for ordering genes for
a nonhierarchical clustering solution is currently missing, and that the
utility and application of existing gene-ordering methods to individual
clusters of nonhierarchical solution are not reported in literature. Here,
we propose a simple hybrid algorithm where MN is applied separately
on each of the gene clusters found by SOM to identify subclusters
within large clusters and to group functionally correlated genes within
clusters. This algorithm is referred to as “SOM + MN." The number
of nodesiclusters of SOM is chosen according to MIPS categories
for Yeast data and available information in relevant literature for
Fibroblast and Herpes data. This hybrid method is proposed to show
the efficiency of MN in improving the solution quality of a nonhierar-
chical solution in a computationally effective way.

IV, BIOLOGICAL INTERPRETATION

A biological score, which is different from the similarity/distance
measures, is used to evaluate the final gene ordering. Each pene
that has undergone MIPS categorization can belong to one or more
categories, while there also are many unclassified genes (no category ).
A vector Vig) = (vy.ve.. .. ;) is used to represent the category
status of each gene g, where j is the number of categories. The value
of v; is 1 if gene g is in the jth category and 0 otherwise. Based
on information about categorization, the score of a gene order for
multiple-class genes is defined as [4]

N=-1
Sim) =Y Glgigis1) (5)
i=1

where IV is the number of genes, gi and g1 are the adjacent genes,
and G{gy, gi4.1 ) is defined as

i
Gloi giv1) = Z Vigi1aVigiri e (o)
fe=1

where V(g )i represents the fth entry of vector Vig: ). Note that S{n)
can also be used as the scoring function for single-class genes. Using
scoring function S(n), a gene ordering would have a higher score
when more genes within the same group are aligned next to each other.

Y. EXPERIMENTAL RESULTS

The algorithms of gene ordering and clustering are implemented us-
ing mex files in Matlab 7 on Sun Fire ¥V 890 (1.2 GHz and 8 GB RAM).
The codes for single, average, and complete linkage and the method
of Bar-Joseph er al. |3] are downloaded from [21]. The performances
of the proposed Maxrange-M and Mavrange-E distance are compared
with Pearson correlation, Euclidean distance, and Manhattan distance.
whereas the MN algorithm for gene ordering is compared mainly
with Concorde s linear programiming |6 al gorithm. SOM is used with
16, 16, 18, 6, and 5 nodes (clusters) for clustering Cell Cyele, Yeast
Complex, All Yeast, Fibroblast, and Herpes data, respectively. Finally,
MM is applied separately on the gene clusters obtained by SOM in the
new hybrid algorithm (SOM + MN).

AL Comparative Performance of Algorithms and
Distance Measures

Table I shows the summation of gene ex pression distances in terms
of Fin) (computed using (1} for Concorde, MN, and Bar-Joseph)
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and Fi(n) value {computed using (2) for SOM + MN) with

(1} Maxrange-M, (2) Pearson correlation, and (3) Euclidean distance
for all the data sets and four ordering algorithms. Hereafter, the serial
numbers of these distances are used to denote them in the tables. In this
comparative study among ordering algorithms, Concorde provides the
lowest sum of gene expression distances in terms of F{n) (1) value
for all the distance measures and data sets, although it has the highest
computational complexity (CH{2™)). MN and Bar-Joseph's algorithm
provide comparable results in terms of F{n) value.

The ultimate goal of an ordering algorithm is to order the genes
in a way that is biologically meaningful. In this regard, Table III
compares the performance of our proposed approach with those of the
other ordering methods in terms of the S value (5). Three distance
measures are considerad, namely: 1) Maxrange-M: 2) Pearson; and
3} Euclidean. The biological scores corresponding to Manhattan dis-
tance are found to be comparable to those for Pearson correlation
distance and hence omitted here. The percentages of improvement over
the lowest biological score (in terms of S value) in a particular data set
are shown within parentheses and defined as

PIL . — d; ; — ming(d, ;)

100 T)
o min ;{d; ;) * {

where d; ; indicates the biological score (5 value) in the ith row and
Jth column of the result matrix in the concerned tables (Tables 1 and
IV}, and min, (d; ;) indicates the minimum biological score in column
f for alli.

Table I'V shows the performance of our proposed approach “SOM +
MN" with respect to SOM alone for the same set of parameters.
These T values in Tables 11 and IV are used in the next section for
conducting t-tests.

For Fibroblast data, no biological score can be provided as genes
in the same biological group for these data are rare. For each of the
distance measure and any algorithm, the biological scores {in terms
of 8 value) obtained using MAD (or variance regularization factor)
normalization are found to be inferior to the biological scores with
Maxrange normalization and hence are not provided here. Although in
most cases, Maxrange-E distance is found to be superior to Euclidean
distance and inferior to Maxrange-M: for All Yeast data, it performs
better (S({n) = 2431) than Maxrange-M (S(n) = 2388) for the MN
algorithm. However, the superiority of Mawange-M is evident when

TABLE Il
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different types of experiments are present in a particular microarray
data. For example, superior results are obtained with Maxrange-M for
most of the available algorithms for the Cell Cyele, Yeast Complex,
and All Yeast data sets (shown in first row for each algorithm in
Table HI). The available measures for gene distance, like Manhattan
distance, Evclidean distance, and Pearson correlations, are suitable for
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the same ty pe of ex periments in microarray data, but they are unable to
assign different weights of distance for different types of experiments.
In contrast, the Maxrange-M and Maxrange-E distance provides this
flexibility, and hence, better results are obtained for multiple types of
experiments.

B, Statistical Analysis of Maxeange -M Distance Measure and MN
Oredering Al gorithm

To statistically compare the performance of Mawange-M distance
with Pearson correlation in the case of ordering algorithms, t-tests

are performed with the 7 (7) values shown within parentheses in
Table 111 using
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where P, and Varianee P, are the mean and the variance of all the
available T values for Maxrange-M distance in Table 111, PT is used
for Pearson correlation and ny; = no = 16, as there are 16 P11 values
available in total from Table HI for each of the distance measures
with four data sets and four algorithms. So, the degrees of freedom
for t-test are 16 = 2 — 2 = H). Similarly, t-test is also performed for
Maxrange-M distance and Euclidean distance. The two ¢ values and
related p values are shown in Table V. The alternative hypothesis
i H1) that the average of “percentages of improvement over the lowest
biological score” for the Maxrange -M distance is better than the related
one {Pearson or Euclidean) is used in the calculation of t-statistics.
After finding the p values (from t-table) for corresponding ¢ values,
we reject the null hypothesis for both cases with significance level
of 0.001 and 0.02, respectively, which suggests that there is strong
evidence against the null hypothesis in favor of the alternative.

Similar types of t-tests for the MN and related algorithm (Concorde
or Bar-Joseph) are also performed with the percentages of improve-
ment shown in Table 11 The results are shown in Table ¥1. For
each algorithm, there are 12 PT values (for four data sets and three
distance measures), and hence, 12 x 2 — 2 = 22 degrees of freedom
are available for each t-test. From the results of t-test and p values,
the null hypothesis that “there is no difference between the averages
of “percentages of improvement over the lowest biological score”
for the two algorithms™ is accepted for the pairs MN-Concorde and
MN-Bar-Joseph. The alternative hypothesis that the average of
“percentages of improvement over the lowest biological score” for
“S0OM + MN” is better than SOM is favored in t-test with the 7
values shown in Table 1'V.

From the biological scores (Table 111} and t-test results {Table V1), it
is evident that MN provides biologically comparable gene order with
respect to Concorde for all data sets and distance measure. Note that
the time complexity of MN is (}{n”), whereas the time complexity
of Concorde is ((2"), where n is the number of genes. Therefore,
it is preferable to use the MM algorithm since it has the minimum
complexity. For example, MN took 0.008 s to order Yeast Complex

147

TABLE VI
RESULTS OF t-TEST FOR [NFFERENT PAIRS OF ALGORITHMS
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Fig. 2. Comparing 5OM with “S0OM + MN" for (a) and (b) Fibmhlast
data and {c) and (d) Yeast Complex data using Mavrange-M distance. The
expression profiles are represented as lines of colored boxes using treeview
software [1]. Some grouped genes obtained by MN [(b) and (d)] have similar
exXpression pattems.

data (979 genes) as compared to Concorde and Bar-Joseph's method
that took 272 and 3.328 5, respectively.

O Subeluster Fdentification and Grouping of Coveelated Genes by
MN with SOM

To show how MN helps to identify subclusters within large clusters
and groups functionally correlated genes within clusters to improve the
solution quality of a nonhierarchical solution, MN is applied separately
on the gene clusters found by SOM. The results/improvements found
by combining these two algorithms are shown in Tables 11 I, and VI
Here, the visual displays are presented for Fibroblast [Fig. 2(a) and
(b} | and Yeast Complex [Fig. 2(c) and (d)] data. Fibroblast genes are
first clustered using SOM with six nodes. A visual display of these
six clusters is shown in Fig. 2(a). Observing this visual pattern, no
subcluster can be identified ineach cluster. After applying MN on each
cluster, closely related genes with similar expressions are aligned next
to each other, as shown in Fig. 2(b). Gene ordering here suggests that
two or more subclusters exist at least in Clusters 1, 4, and 6, and it
will be useful to increase the number of nodes of SOM to at least nine
for Fibroblast data. Note that lyer of al [16] identified ten clusters of
genes for these data.

The Yeast Complex data set is first clustered in 16 groups using
S0M with 16 nodes. A visual display of the first six clusters/groups
is shown in Fig. 2{c). When the genes are ordered in each cluster with
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TABLE VI
GENE SUBCLUSTERS IN THIRD AND FOURTH CLUSTER AND THEIR
FUNCTIONAL CATEGORY INDEXES FOR YEAST COMPLEX D ATA.
THESE SUBCLUSTERS ARE IDENTIFIED UsinG SOM + MN
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MM, four, four, five, and two distinct subclusters are identified using
visual display inclusters 2, 3, 4, and 5, respectively. Gene names along
with their functional category (indexes) for each subcluster within
the third and fourth cluster are shown in Table VIL The name of
the functional categories corresponding to their index is shown in
Table VI For example, all the nine genes in the third subcluster of
cluster 4 (YBROIOW, YNLO3IC, YBLOO3C, YDR225W, YDR2MC,
YNLOZOW, YBRODOC, YBLOOZW, and YPL256C) are involved in
Cell Cycle and DNA processing, Transcription, and Protein with
Binding Function or Cofactor Requirement. While using SOM, these
genes are distributed in the cluster 4 and no subcluster can be identi-
fied. After ordering with MN, they are tightly grouped and identified
easily using visual display.

V1. CONCLUSION

A new measure called Maxrange, for evaluating the distance be-
tween genes, and a new MN gene-ordering algorithm are described in
this correspondence. These are used for efficiently ordering the genes
in terms of their expression values for complete microarray data sets
as well as in individual clusters found by SOM for those data sets. In
Maxrange-M and Maxwange-E distance, normalization is performed
separately with different normalizing factors for different types of ex-
periment. This makes it suitable for both single type and multiple types
of experiments. As a basic distince measure, Manhattan/Euclidean

TABLE VI
FUNCTIONAL INDEXES AND CORRES PONDING FUNCTIONAL CATEGORIES
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distance is used in Maxrange for their insensitiveness to large threefold
changes in the gene expression profiles.

In MM, the repetitive searching for optimal gene order in gene
groups (closely related genes) is avoided. While this results in reduced
time complexity ((J{n”)) for MN, in terms of biological score, it is
comparable with Concorde ((3{27)), the best TSP solver currently
available. Also, it will be computationally expensive to apply Con-
corde or similar local search-based evolutionary algorithms to order
genes in individual clusters of a nonhierarchical clustering solution.
A novel hybrid method of gene ordering in SOM and its utility in
finding useful subgroups of genes within clusters is also demonstrated.
Experiments for each data set are also conducted with /% nodes for
S0OM. Inall these cases, the cluster number increased marginally, many
nodes are found with no genes associated with them, and some clusters
are found where genes belong to different biological categories and
cannot be identified without gene ordering.

A huge number of different types of experiment by different re-
search groups all over the world are conducted over genes to find
the functional correlation between them. In the future, more exper-
iments are likely to be appended in the same existing microarray.
This demands a distance measure like Mavrange-M, and a growing
number of genes for the same microarray data sets require fast ordering
algorithm like MN. It is evident from the experimental results that
Maxrange-M with MN performs the best in such situations. As such,
this combination seems to be a promising tool for microarray- and
gene-expression-related experiments.
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