A NOTE ON THE EXACT DISTRIBUTION OF 4.

BY K. RAGHAVAN NAIR

STATISTICAL LABORATORY, CALCUTTA.

 In Biometrika, Vol. XXV. pp. 379—410, Karl Pearson had developed what he called the P(λ_s) text, for "determining whether a sample of size s. supposed to have been drawn from a parent population having a known probability integral, has probably been drawn at random,"

If x_1, x_2, \dots, x_n are the variates of the sample and p_1, p_2, \dots, p_n the corresponding probability integrals, then λ_n is defined by

$$\lambda_{n} = p_{1}, p_{2}, \dots, p_{n}. \dots (1)$$

Kurl Pearson had shown that the p's follow the rectangular law of distribution (Ibid, p. 380). For the application of the test he evaluated the probability integral of λ_n , viz, $P(\lambda_n)$, and showed its connection with the incomplete Γ -function.

The expression for $P(\lambda_n)$ had been obtained with the help of hyperspace geometry. It is easy to derive the frequency distribution of λ_n from this expression for $P(\lambda_n)$.

Suppose $f(\lambda_n)$ to be the distribution law of λ_n . Then

$$P(\lambda_n) = \int_{a}^{\lambda_n} f(\lambda_n) \cdot d\lambda_n \qquad ... \quad (1.1)$$

or, in another form.

$$\frac{dP(\lambda_n)}{d\lambda_n} = f(\lambda_n) \qquad \cdots \qquad (1,2)$$

Karl Pearson had shown that

$$P(\lambda_n) = 1 - \lambda_n \left[1 - \frac{\log_n \lambda_n}{1!} + \frac{(\log_n \lambda_n)^2}{2!} - \dots + (-1)^{n-1} \frac{(\log_n \lambda_n)^{n-1}}{(n-1)!} \right] \dots (2.1)$$

Vol. 3] SANKHYA: THE INDIAN JOURNAL OF STATISTICS [PART 2

Therefore,
$$\frac{dP(\lambda_n)}{d\lambda_n} = -\left[1 - \frac{\log_2 \lambda_n}{1!} + \frac{(\log_2 \lambda_n)^2}{2!} - ... + (-1)^{n-1} \frac{(\log_2 \lambda_n)^{n-1}}{(n-1)!}\right]$$

 $-\lambda_n \left[-\frac{1}{1!\lambda_n} + \frac{2 \log_2 \lambda_n}{2!\lambda_n} - ... + (-1)^{n-1} \frac{(n-1)(\log_2 \lambda_n)^{n-1}}{(n-1)!\lambda_n} \right].$ (2.2)

which, on simplification, gives

$$\frac{dP(\lambda_{a})}{d\lambda_{a}} = -\frac{1}{(n-1)!} (-\log_{a} \lambda_{a})^{n-1} \cdots (2^{n})$$

Since λ_n lies between 0 and 1, $-\log_n \lambda_n$ is positive. We see therefore that $dP(\lambda_n)/d\lambda_n$ is negative, which simply means that the probability integral of λ_n has been measured from that end of its distribution which makes $P(\lambda_n)$ decrease as λ_n increases. We can, therefore, write the distribution of λ_n as

$$f(\lambda_n) = \frac{1}{(n-1)!} (-\log_e \lambda_n)^{n-1}$$
 ... (3.0)

2. This result can be obtained in another way without using hyperspace geometry. The p's follow the rectangular distribution $\theta(p) = 1$, so that the chance of a variate falling between (p) and (p + dp) is dp. Since $\lambda_n = p_1, p_1, \dots, p_n$, we have

$$(-\log_a \lambda_n) = (-\log_a p_1) + (-\log_a p_2) + \dots + (-\log_a p_n) \dots (4.1)$$

Let u =

 $u = -\log_a p_a$ and let $\varphi(u)$ be its distribution. Then

$$\phi(u)$$
 . $du = \phi(\phi)$. $d\phi = d\phi = d(e^{-\alpha}) = -e^{-\alpha}$. du ... (4.2)

Thus,
$$\varphi(u) = -e^{-u}$$
 ... (4.3)

and
$$-\log_a \lambda_n = u_1 + u_2 + \dots + u_n = (n \cdot U)$$
, say ... (4.4)

The distribution law of U_r , the mean of a sample of n from the population $y = -e^{-n}$ has been given by I_r . Neyman and E_r . S. Pearson*

$$-\frac{n^n}{(n-1)!}(U)^{n-1} \cdot e^{-nU}$$
 ... (5·1)

From (4.1), the distribution law of $(-\log_a \lambda_a/n)$ is found to be

$$-\frac{n^n}{(n-1)!}\left(-\frac{\log_n\lambda_n}{n}\right)^{n-1}\cdot\lambda_n\qquad\cdots\qquad (5\cdot2)$$

On the Use and Interpretation of Certain Test Criteria for Purposes of Statistical Inference, (Blometrika, Vol. XXA, pp. 175-240).

A NOTE ON THE EXACT DISTRIBUTION OF L

If I() be the frequency distribution of \(\lambda_a \).

$$f(\lambda_n)$$
, $d\lambda_n = -\frac{n^n}{(n-1)!} \left(-\frac{\log_n \lambda_n}{n} \right)^{n-1} \cdot \lambda_n$, $d\left(-\frac{\log_n \lambda_n}{n} \right) = \frac{(-\log_n \lambda_n)^{n-1}}{(n-1)!}$, $d\lambda_n$ (5.3)

whence

$$f(\lambda_n) = \frac{(-\log_n \lambda_n)^{n-1}}{(n-1)!} \cdots (3a)$$

For practical work the distribution of $\{-\log_2 \lambda_2\}$ is more convenient than $I(\lambda_2)$ because it makes possible the direct use of the Incomplete P-function Tables. Thus if $I = -\log_2 \lambda_2$, the distribution of I is given by

$$-\frac{1}{(n-1)\,1}\,\,l^{n-1}\cdot\,e^{-t}\qquad \cdots \qquad (6)$$

This is a Type III curve, which is also the distribution curve for the Pearsonian χ^2 . This is why the probability integrals of both χ^2 and λ_a can be obtained from Tables of the Incomplete F-function. In fact if we take

$$\chi^2 = -2 \log_e \lambda_e \qquad \dots (7.1)$$

with the degrees of freedom = 2n, then the corresponding value of $P(\chi^2)$ will be equal to $Q(\lambda_0)$, that is

$$P(\chi^{\pm}) = Q(\lambda_{0}) = 1 - P(\lambda_{0}) \qquad ... \tag{7.2}$$

3. A third proof for the exact distribution of \(\lambda_n\) is available in Section 21, I of R. A. Fisher's Statistical Methods for Research Workers, 6th edition (1936) where the author briefly explains how to make use of the P(x*)-Table when a number of probability integrals derived from independent samples for testing separately the significance of each sample estimate of a statistic (as for example, t, z, r etc.) have to be combined to yield a single comprehensive test of significance. A detailed exposition of Fisher's method is attempted below.

Let p_1, p_2, \ldots, p_n be the probability integrals, one or more, for each sample. It is not a condition of the problem that the p's derived for the various samples refer to the same statistic, a point emphasized by Karl Pearson in his paper on $P(\lambda_n)$ test. Thus for n_i of the samples we might derive p's for t-distribution, for n_i of the samples the p's may be for the sample means and so on.

In virtue of this property that the distribution of P is unaffected by the particular distribution of the statistic of which it is the probability integral, there is no objection in making the assumption that each P is got as the probability integral of any continuous statistical population. Fisher selects for the latter the distribution of χ^* with 2 degrees of freedom, which choice brings out in a simple way the relationship between the $P(x_n)$ and $P(x_n)$ tests.

Now the probability integral of the x1 distribution with n = 2 is

$$\int_{-X}^{\infty} e^{-\frac{1}{4}X^{2}} \cdot X^{d}X = e^{-\frac{1}{4}X^{2}} \qquad ... \quad (8.1)$$

Thus if $p = e^{-\frac{1}{2}\chi^2}$, $-2 \log_2 p$ follows the same distribution as χ^2 with 2 degrees of freedom.

Therefore

$$\log_a \lambda_n = \log_a p_1 + \log_a p_2 \dots + \log_a p_a = -\frac{1}{2}(\chi_1^a + \chi_2^a + \dots + \chi_n^a) \dots (8.2)$$

Because of the additive projecty of χ^1 , the right hand side of (8·2) follows the χ^1 -distribution with 2n degrees of freedom. The distribution of $-2\log_2 \lambda_n$ is therefore the same as that of χ^2 with 2n degrees of freedom.

This property has been derived earlier in (7·1) and (7·2) by a different route; without assuming the distribution of x^1 we deduced that of λ_n and hence of $-2 \log_n \lambda_n$ which latter turned out to be identical in form with the distribution of x^1 with 2π degrees of freedom.

SUMMARY

The paper describes three different methods of getting the exact distribution of λ_n , the product of the probability integrals of n independent values of a variable following a known continuous distribution.

71h November, 1936.