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Abstract

Quanium Boolean circuit (QBC) synthesis issues

are hecoming a key arvea of research in the domain of

guantum computing.  While Minterm  gate  based
syathesis  and  Reed-Muller  based  canonical
decomposition  fechnigues arve adopted commoniy,
nearest neighhor synthesis technigue for QBC wiilizes
the guantum logic gates involving only the adjacent
target and control ghits for a given guanfum network.
Insiead of Quantum Boolean civcuit synthesis wsing
C*NOT gate, we have chosen the template-based
fechnigue for syathesis of QBC. This work defines new
minimization rules wsing nearest neighbor femplates,
which resulis in reduced number of quantum gates and
circuit fevels. The need of proper relative placements
af the guantum gates in ovder to achieve the minimum
gate configuration has also been discussed.
Keywords:  Quantum  Gales, Quantum  Boolean
Circuits, Nearesi-Neighbowr Synthesis.

1. Introduction

The model of Quantum Computing stands on the
understanding of quantum circuits and their application
to solve computational problems. A quantum circuit is
employed 1o process quantum bits (ghit). A gbit may
be considered as the equivalent of a binary bit in a
classical computer [1]. It can be taken as a particular
spin state of an electron, or a certain polanzaton state
ol a photon. The spin state of an electron may be up (1)
or (]} down; or the polarization state of a photon may
be vertical (]) or horizontal { « . The two quantum
mechanical states are represented i standard quantum
mechanics [2] by standard ket notation |0 and |1=.
The real difference between the classical and quantum
states is that while in the former, the states are definite
in quantum computing the states are superposed. For
example, a quantum state 15 represented by
superposition of two states as v = a|ll= + b= where a
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and b are the complex amplitudes representing the
probabilities of state |0= and [J> respectively
satisfying the condition [af+ |bf =1. Unlike a classical
computer in which a bit has exactly one value from the
set 40,1}, a gbit represents both states simultaneously.
The maximum number of possible states depends on
the number of gbits 1.e., # gbits can represent 2° states.
A 2-ghit vector can simultaneously represent the states
[00z, |01z, [l0=, |11= and the probability of their
occurrence depends on the complex amplitude value
y=Cy | 00= +C; | 01= +C; | 10= + C; |11=. Hence
comes the concept of quantum register [6] of m gbits
holding 2 simultaneous values. This also implies that
il we perform an operation on the contents of a
register, all possible  wvalues are operated on
simultaneously, thus leading to quanum parallelism
[5]. However, in practice it is quite complex to achieve
quantum parallelism, and 15 dependent on the property
of quantum decoherence [3,7].

The organization of this paper is as follows.
Preliminary concepts and definitions appear in Section
2. MNearest neighbor template based synthesis of QBC
has been briefed in Section 3. Nearest neighbor
templates for C°NOT and CNOT combinations, and
placement policy for minimizing the gate cost has been
discussed in Section 4. Synthesis results for benchmark
circuits using the minimization rules appear in Section
5. Concluding remarks are in Section 6.

2. Preliminaries

2.1. Reversible Logic

A Boolean function is reversible if each of the
values in the input set can be mapped with a unique
value in the output set. Landaver [8] proved that the
usage of tradiional irreversible circuits leads to power
dissipation. Bennet [4] showed that a circuil consisting
of only reversible gates does not dissipate power.
Above all, some of the specialized computational
applications like digital signal processing, computer



eraphics, cryptography, reconfigurable computing, ete.
demands the preservation of input data.

2.2. Reversible Quantum Gates and Circuits

A reversible logic gate implements a reversible
Boolean logic and it necessarily has equal numbers of
input and output wires. We now discuss about a few
reversible gates.

C*NOT Gates: A C'NOT possesses k+1 number of
input and output wires. 1t has & control inputs and the
k+1 " input is inverted at the output if all the & control
inputs are at logic high. For £=0 it is a NOT gate
which maps x — x & [ as shown in Figure lia), for
k=11t is termed as controlled NOT or CNOT which
maps (x, ¥ —fx, v & xJ as shown in Figure 1{b). The
C*NOT gate, also termed as TOFFOLI gate, it maps (x,
v, Z) = (%, v, 2 @ wy)as shown o Figure lic) A

C'NOT

is represented by & control gbits and a single target
gbit, it maps (Xg, Xj,.eeonne. Ky = (Mo, Xy
poXe B Mg Ko %.1). The control and the target

gbits are represented by o and @ respectively. A
generalized C*NOT is shown in Figure 1(d).

Swap Gates: A swap gate is a 2x2 reversible gate. It
interchanges the mput bit values at the output. Figure 2
illustrates the intemal architecture of a swap gate.

A QBC is a quantum system of N gbits specified by
ber=pea= ... and a number of reversible
quantum gates. The convention for QBC representation
is o have the nput gbits at the extreme lefi. These
interact with a number of reversible quantum gates as
desired, and the final output appears at the extreme
right with all the input values restored at the output.
The desired funcion is obtained with the help of a set
ol ancillary bits which are mitialized at the input with
[0=. Essentially, such a QBC is reversible and can be
synthesized with a set of transformation rules.

N ....E.T_\'}

2.3, Previous Work

Maslov and Dueck [13] have justified the use of
circuit templates in QBC synthesis for minimizing the
number of gates in the QBC. Younnes and Miller in
their work [9] have introduced the techniques for
representation  of quantum  Boolean circuils using
Reed-Muller expansions and have mainly focused on
generalized C*NOT hased circuit synthesis. Though
C*NOT gates are acceptable in high level logic design,
the technology based implementation of quantum
circuits demands the usage of only one, two and three
gbit quantum logic gates like NOT, CNOT, SWAP,
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C°NOT. Hence there is a need of defining efficient
synthesis technigques in quantum ecircuits involving
only the smaller gbit sized quantum gates, with small
fan-mn.

3. Nearest Neighbor Synthesis of QBC

Younnes and Miller [9] in their work have
mentioned about the interaction between the adjacent
only qbits is a needed technique for practical
implementation of QBC and have utilized the SWAP
gates 1o bring the control and target ghits adjacent.
SWAP gates play a key role in bringing the control and
the target gbits of any quantum gate on adjacent lines
in a quantum gate network which is defined as the
nearest neighbor configuration. The requirement of
nearest neighbor relationship between the control and
the target gbits is ruly justified due to the limitation of
the J-coupling force [ 14] required to perform multi-gbit
logic operations and this works effectively only
between the adjacent gbits.

We present below a set of circuit templates for non-
adjacent gbit controlled CNOT and C°NOT in our
nearest neighbor based synthesis approach. We
introduce the circuit templates for CNOT, and C°NOT
gates utilizing the SWAP gates in order to achieve the
nearest neighbor circuit configuration. In Fig 5, for a
C*NOT we use the notation {ctrl ot ? farge) where
the integers cirll, cirl2 and target are respectively the
indices of the nput gbits of the circuit for the top-
control, bottom-conrol and the target ghit of this
C’NOT gate. The same convention is also followed for
CNOT gate which is represented as CNOT (cfrl farget).
According to the convention for index values of input
gbit lines mentioned earlier, we assign index 1 to the
bottommost control gbit mput of the circuit, and the
successive index values are assigned as we go upwards
to the topmost ghit line. Thus, CNOT(43.1)
represents a C°NOT gate with its top-control on the 4th
input gbit ling, its bottom-control on the 3rd line and
its target 15 on the lowest (1st) input gbit line. The
exact number of SWAP gates required for nearest
neighbor  configuration  is  determined by the
differences in the index values of the two control gbits
with the target gbit, which can be calculated by the
following rules:

Rule 1: For a C°NOT gate with indices of its input
lines (ctril ctrl2 targed) in a QBC, the number of pairs
aof SWAP gates requived is 5, + s where 5, is max){ctrl!
— target-2),0} and sy, is max]fctri2 — target - 1),0/.

Example: In C°NOT(4,3,1) (Fig. 3(a)) the difference
in index value between the top-control and target is 4-
1=3 and that between the bottom-control and the target
15 3-1=2, hence we require two pairs of SWAP gates,



one each to make the top-control and bottom-control as
the nearest neighbor of the target gbit. In
C*NOT(4,2,1) (Figure 3(c)) the difference between the
top-control and target is 4-1=3 and that between the
bottom-control and the target is 2-1=1 | hence we
require only one pair of SWAP gate.

Rule 2: For a CNOT gate with indices of its inpa lines
(ctrl, target) in a QBC, the number of pairs of SWAP
gates requived is 5. where s, is maxffctrl — farget -
1),0}.

Example: In CNOT(4,1) (Figure 3(d)) the difference
in index value between the control and the target gbit is
4 -1=3, hence we require 2 pair of SWAP gates, for
similar reasons we require a single pair of SWAP gate
for CNOT{3,1).The circuit in Figure 4(a) afier being
synthesized using the nearest neighbor  template
C'NOT(4,3,1) (Figure 3(b)) leads to the circuit as
shown in Figure 4(b), and we can see an merease m the
gate count and circuit level. Hence we need to focus on
the minimization of gate count and number of levels in
the QBC, which will reduce the quanum circuil cost.

A quantum  Boolean circuit  may  involve
generalized C*NOT gates depending on the number
variables mvolved and hence we have to convert each
of the C*NOT gates to an equivalent C°NOT bhased
representation. Figure 5 shows a C'NOT equivalent
circuit for a C*'NOT gate involving two ancillary gbits.
The number of (°NOTgate required for a single
C*NOT is 2(k-2)+1 and the number of ancillary gbits
required 15 k-2, where k 15 the number of control gbits
in the C*NOT gate.

Ohservation: Any Quantum Boolean Circuit ( QBC)
can be synthesized using C°NOT, CNOT, NOT and
SWAP gates.

4. Minimized Nearest Neighbor Synthesis
of QBC

The nearest neighbor template based synthesis of
QBC generally involves a large number of quantum
gates due to the conversion of individual C2ZNOT and
CNOT 1o its equivalent nearest neighbor forms, hence
we iy o find out whether there is any scope of
minimization in the number of gates in the circuit. In
this section we propose the minimization rules for the
QBC in terms of quantum gates and levels by using the
nearest  neighbor  templates  for  the  different
combinations of C°NOT and CNOT gates. The
combinations of the C°NOT and CNOT gate can be
represented with minimized number of SWAP gates
for nearest neighbor synthesis if they have the same
target gbit and at least one of the control gbits
common. We have only taken those combinations of
the C*NOT and CNOT gates, which are not in nearest
neighbor configuration.

In Figure 6 we show the two equivalent nearest
neighbor templates for each of the C°NOT and CNOT
gate combinations ie. CNOT(4,3,1) + CNOT(4.1),
C'NOT(4,3,1) + CNOT(3,1) and C'NOT(4.2,1) +
CNOT(4,1) . one by combining the nearest neighbor
templates for the individual C*NOT and CNOT gates,
and the other one 15 generated by removing the
redundant SWAP gates. We have used the notation of
C'NOT (ctrllctr2 targety + CNOT(ctrltarget) for
representing the combination of C°NOT and CNOT
gales.

The nearest neighbor templates formed afier the
removal of the redundant SWAP gates reduces the total
gate count and level count for the templates and hence
they can be termed as the minimized nearest neighbor
templates. From Figure 6 we can see that using the
minimized nearest neighbor templates we have reduced
the total number of gates and the number of levels by
a value of 2, reduction in the number of gates and
levels are larger for circuits having higher gbits. The
reduction i the gate count and level count for the
minimized nearest neighbor templates can be easily
eeneralized by the following rules:

Rule 3: If the top-control ghit of @ CNOT gate and the
control ghit of a CNOT gate ave on the same ghit line
in a QBC, then the number of pairs of SWAP gates
reguived is one move than that reguived for the CNOT
gate only.

Example: In the combination C’NOT(4,3,1) +
CNOT(4.1) the top-control gbit of the C°NOT gate and
the control gbit of the CNOT gate is on the same ghit
line. By Rulel C°NOT(4,3,1) requires 2 pairs of
SWAP gate and hence considering CNOT(4,1) the
combination will require 2+1=3 pairs of SWAP gale in
the minimized nearest neighbour template as shown in
Figure 6(a). The same is also wue Tor the template
shown in Figure 6(c)

Rule 4: If the bottom-control ghit of a C°NOT gate and
the control ghit of @ CNOT gate in a QBC are on the
same line then the total SWAP gate requirement is
same as that of the C°NOT gate alone.

Example: In the combination CNOT(4.3,1) +
CNOT(3.1) the bottom-control gbit for the C°NOT
gate and the control gbit for the CNOT gate is in the
same gbit line. By Rulel C°NOT(4,3.1) requires 2
pairs of SWAP gate and hence the combination will
require the same number of SWAP gate pairs as
shown in Figure 6(b), no extra pair is required for the
CNOT(3,1) gate.

Utilization of the nearest neighbor templates as shown
in Figure 6 also depends on the proper placement of
the C"NOT and CNOT gates relative 1o each other such
that the initial circuit configuration becomes favorable
for the nearest neighbor synthesis.



Rule 5: The C°NOT and CNOT gates which work on
the same targei ghit and have af least one control ghit
common, should be adjacent.

Example: Figure 7{a) and 7i{b) the shows the QBC and
its equivalent nearest neighbor circuits. Figure 7 (a)
uses the individual templates for the C°NOT(4.3,1),
CNOT(4,1) gates placed at circunt level 2 and 4
respectively. In Figure 7(b) the C°NOT(4,3,1) and
CNOT(4.1) gates both having the 4 gbit as a common
control bit are being adjacently placed at circuit level 2
and 3 which results 1o a reduction in the gate count
and level count by 4 .

6. Results

We have applied our synthesis techniques for the
reversible logic benchmark circuits and obtamed the
following results as shown in Table 1.

Table 1: Nearest Neighbor Synthesis for
Reversible logic Benchmark Circuits

- Name | # | Extra | # Swap Gates |  #
Ciates | Swap after Ancillary

o | . | Gates | Wmmiztion’ | Cits

_rd32 | 4 | 4 | 24 _ None

dmodT | 5 | 6 | 6 Nome

| Smod3 | 10 14 14 3
rd 53 16 w2 T6 2
rafd 28 182 138 Mone

The results show that though the nearest neighbor
technique itsell requires quite a large number of SWAP
gates, a considerable amount of reduction is possible
through the new minimization rules discussed in
Section 4. The ancillary gbits are due to the
decomposition of the generalized C*NOT (& = 3) gates
present in the given circuits, into a number of C°NOT
approprately.

5. Conclusion

Our work focuses on  defining the synthesis
techniques for quantum Boolean circuits utilizing the
nearest neighour templates for CNOT and C'NOT
eates. We have presented the generalized rules for the
creation of nearest neighour templates and have also
defined the cost-effective  synthesis  rules  and
placement policies which leads to the minimized QBC
in respect to the number of quantum gates and circuit
level. Our future work will be to define a general
automation technique utilizng the proposed rules, for
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generating optimized QBC in terms of quantum gate
cosL.
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Figure 1: (a) NOT gate, (b) CNOT gate, (c) C:NOT gate, (d) C*NOT gate.
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Figure 3: Nearest neighbor templates

x> %2> %> ez
24> [x= [xy= =
[Xe= [%a> [%a= o=
0> —§ |f;= 0= Ify=

(a) (b)
Figure 4: (a) An example QBC (b) Synthesis using nearest neighbor templates
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Figure 5: C'NOT gate equivalent circuit for C'NOT gate
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Figure 6: Nearest neighbor templates for C:NOT and CNOT combinations (a) C:NOT(4,3,1) +
CNOT(4,1) (b) C:NOT(4,3,1) + CNOT(3,1) (c) C°NOT(4,2,1) + CNOT(4,1)
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Figure 7: (a) Nearest neighbor circuit using individual templates of C*NOT (4,3,1), CNOT(4,1) and
CNOT (3,1) gates (b) Minimized nearest neighbor circuit using the templates of C*NOT(4,3,1) +
CNOT(4,1),CNOT (3,1) and placed according to Rule 5
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