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Here we propose an effident algorithm for computing the smallest enclosing circle whose
center is constainad to lie on a query line segment. Our algorithm preprocesses a given
set of n opoints P = {py, p2. ..., pa) such that for any query ling or ling segment L, it
efficiently locates a point ¢ on L that minimizes the maximum distance among the points
in P from ¢ Roy et al. [5. Roy, A, Karmakar, 5. Das, SC MNandy, Constrained minimum
enclosing cirde with center on a query line segment, in: Proc of the 31st Mathe matical
Foundation of Computer Science, 2006, pp. 765-776] have proposed an algorithm that
solves the query problem in O (log®n) time using Oinlogn) preprocessing tme and Oin)
space. Our algorithm improves the query time o O(logn); but the preprocessing tme and
space complexties are bath OinZ).

1. Introduction

The 1-center problem was originally posed in 1857 by
Sylvester [13]). Here the objective is to report the circle
of the minimum radius which can enclose a given set
P of n points. Elzinga and Hearn [4] first proposed an
0(n*} time algorithm for this problem. Later, Shamos and
Hoey [12], Preparata [9], and Lee [7] independently pro-
posed O(nlogn) time algorithms to solve this problem.
Finally Megiddo [8] proposed an optimal Oin) time algo-
rithm using prune-and-search technigue.

Megiddo [8] studied the constrained case of this prob-
lem where the center of the smallest enclosing circle of P
lies on a given straight line. He gave an Oin) time solu-
tion. Hurtado et al. [6] and Bose et al. [2] considered the
problem where the center of the smallest enclosing circle
of P is constrained to lie inside a given simple polygon of
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size m. The proposed algorithms run in Ok + (n + m) -
login + m)) time, where k is the number of intersec-
tions of the boundary of the polygon with the furthest
point Voronoi diagram of P. In the worst case, k may be
0 (n*). This result is later improved to O(in + m) logm +
mlogn) [3]. In particular, if the polygon is a convex one,
then the problem can be solved in O¢(n + m) login + m))
time [2]. In a further generalization of this problem, r (= 1)
simple polygons with a total of m vertices are given; one of
them can contain the center of the smallest enclosing cir-
cle of the point set P [3]. The time complexity of this ver-
sion is O((n+m)logn + (ny/T+m) log m+myT+r2 logr).
The gquery version of the smallest enclosing circle was
studied first by Roy et al. [11]. Their proposed algorithm
reports the center and the radius of the smallest enclosing
circle whose center is constrained to lie on a query line
segment in O{log®n) time. The preprocessing time and
space complexities of their algorithm are O{nlogn) and
0 in), respectively.

In this work, we will consider the problem posed
in [11]. We will reduce the guery time complexity to
Oilogn) using the technique of geometric duality. But the
preprocessing time and space complexities are both 0in?).
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2. Constrained 1-center problem

Given a point set P ={p;.pa.....py] and a query line
L, our ohjective is to enclose P with a minimum radius cir-
cle C whose center ¢ is constrained to lie on L. Mote that,
the smallest circle enclosing the vertices of the comvex hull
of the point set P will also enclose all the points in P. So
without loss of generality, we consider that the members
of P are in convex position. We also assume, py.pa.. ... Py
are ordered in clockwise direction along the comvex hull
of P.

21, Basic results

The furthest point Voronoi diagram Vi P) of a point set
P partitions the plane into n unbounded comvex regions,
namely Ripy). Ripa). .... Ripy), such that for any point
peRipy, S(p.pj)=s(p.py) for all k=1.2,....n, and
k # j. Here &(...) denotes the Euclidean distance between
a pair of points, The furthest point Voronoi diagram ViP)
can be constructed in Oinlogn) time using 0 (n) space and
for any point p in the plane, it's furthest neighbor can be
identified in O(logn} time by locating the region (py)
containing p [10].

Observe that the circle C must pass through at least
one point of P, If C passes through a single point py, © is
in R(p;} and c is the perpendicular projection of p; on the
query line L. We can conclude that p; € P is the furthest
point from line L. Let py.Pat1..... pn define the upper
hull, and py. Pogi. - ... pa defines the lower hull of P with
L as the x-axis. Here the indices of p; are considered as
modulo of n. Observe that the sequence of distances of the
points pa, Pa+1..... Py from the line L is unimodal. Sim-
ilarly it is true for the points pp. Pred..... Pa. Hence the
furthest point p; from L can be determined in O{logn)
time.

When C passes through two points p;.p; € P, the cen-
ter ¢ lies on the Voronoi edge separating R.(py) and Rip;).
Since ¢ also lies on L, it is the intersection point of the per-
pendicular bisector of p; and p; with the query line L. In
the degenerate case, C may pass through three or more
points of P where ¢ will be a vertex of V(FP) lying on L.
Below we concentrate on the case where the minimum en-
closing circle passes through two points,
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For any point g in ®{p;). pig) is defined as the Eu-
clidean distance between g and p;. Thus pig) =
ma,gjlﬂ(&(q. pi}). Let L intersect the edges eq.e5,....ey of

Vi P}y in order at the points ay.as. ..., 0y, respectively. For
any a; as center, 2(a;) is the radius of the smallest enclos-
ing circle of P, and the sequence {piay). ploa), ... play)]
is unimodal [11].

Let g be the center of the unconstrained smallest en-
closing circle of P; g lies on an edge or a vertex of Vi F).
We may consider V(P as a tree T with g as root node,
all the Voronoi vertices are the internal nodes of T, and
all the Voronoi edges are edges of T (see Fig. 1(a)). We
will use (v} to denote the path from g to a point v on
an edge in T, Observe that, as we traverse from g along
a path in T, the p-value of the nodes along that path in-
creases monotonical by

3. Algorithm

For any constant « = 0, let us define a region Q (o)
such that for any point g & Q (@), we have pig) = @. Now
we have the following lemma.

Lemma 3.1 Ifo = p(g) then Q (@) =#; butifo = pig) then
Qi } is @ nonempty convex region containing the point g.

Proof. The first part of the lemma is obvious. For the
second part, let Dip.o) denote the circle centered at a
vertex p e P with radius o@. Since o = pig), Qlw) =
ﬂj'=1 Dip;. o) is a comvex region. Agin, since g e D(p;. o)
for all i, we have ge Qix). O

Mote that, for a given o = pig), we can also write
Qi) = j'=1 (Ripjym Dip.a)), and for a pair of points
pi and pj, i # j, the interiors of the convex regions
RipynDip.a) and Rip;) " Dipj. ) are disjoint. The
region ) (@) is bounded by circular arcs, and has at most
n vertices. Each vertex of Q(w) lies on an edge of Vi(P)
(see Fig. 1(b)). Let us now consider the regions Q (o),
i=1,2.... m, where o, @3, ..., @, are the p-values of
the vertices of V{ P} in nondecreasing order. Thus Q (o4 )
QioadC Qiay) - Z Qiog). Let z be the smallest in-
dex, such that L intersects ) (o;). If @ denotes the length
of the radius of the constrained minimum enclosing circle,
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thenm ;1 = o = ;. Now we need to consider the follow-
ing two cases.

(i) L does not intersect any Voronoi edge inside Q (o).
(i) L intersects some of the Voronoi edges inside Q (w:z).

In case (i), L intersects a single circular arc D(p,. «;) (say).
This in turn, implies ¢ is the projection of the vertex py
on L, and the minimum enclosing circle passes through pg
only. In Section 2.1, we have discussed the method of obh-
taining the solution for this case.

In case (ii), the possible locations for ¢ are the inter-
section points of L and the Voronoi edges inside Q (o).
Let af. ). ..., oy . be the p-values attached with those
intersection points. The objective is to compute o =
min{a}. @, ... ).} A straight forward computation of o
needs Oin) time. But we can expedite our search using the
fact that the sequence {o).c..... ¢y | is unimodal [11].
While searching for z we may simplify the situation by
assuming Qo )'s are convex polygons. For each Qo)
its set of vertices remains same but each circular arc is
replaced by a straight line segment connecting the corre-
sponding pair of vertices.

We will use geometric duality to solve this problem.
The duality transform maps a line [: y =ax + b in the pri-
mal plane to a point I' = {—a. b} in the dual plane and
also maps a point p=(a’.b’) of the primal plane to a line
p':y=da'x+b" in the dual plane [1].

The dual of the upper (resp., lower) hull of a convex
polygon is a polyzonal chain representing the lower (resp.,
upper] envelope of the set of lines obtained by the dual
transformation of the vertices of the polyzon [1]. The lower
hull and upper hull of a convex polygon Q; = Q (o) maps
to a pair of x-monotone chains (xf.xj"b. respectively, in
the dual plane. Fig. 2 demonstrates the dual of Qs for i =
R m. The interior region of the comvex polygon ) in
the primal plane is mapped to the region Q. bounded by
the pair of chains (xf. xj“]- in the dual plane. The following
lemma leads to the fact that Q) C Q3 C QyC .- C Q)

(see Fig. 2(bj).

lemma 3.2. Let the sets 17 = {}1. ¥5..... %) and I3 =
(%1 X3+ Xm]- Then,

{a) any pair of chains from the set MU I are non-=intersecting

(b} each chain in My lies above all the chains in Iy and each
chain in Iy lies below all the chains in I,

(c) forany i = j, x‘] lies above xj and similarly KJ" lies be-
low .

Proof. Let us consider a pair of chains xf and xj (i= Ji,
which have a common intersection point. Then we can al-
ways find two points p and g in the dual plane such that
p lies above xf but below xj and g lies above xi and be-

low x‘]. Then the corresponding line p' in the primal plane
intersect 0 ; but does not intersect Q. Similarly q" inter-
sect (), but does not intersect Q. This contradicts the fact
that Q) C Q. Thus part {a) of the lemma follows.

Parts (b) and (c) follow from the standard order pre-
serving rule among points and lines in the primal plane
and their corresponding duals in the dual plane [1]. O

Lemma 3.3. Let £ be the smallest index such that L intersects
;. The point L' in the dual plane corresponding to the line L,
willliein Q24 Q).

Proof. If z is the smallest index, then L intersects Q:.
Q:01..... 0, but does not intersect },_,. Hence L' lies
inside ); but does not lie in Q] ,. This corresponds to a
pair of open regions A; and B, where A; is bounded by
#7 and x| and B; is bounded by x! and xi_r O

31. Preprocessing

The p-values of nodes in T are sorted and these are
o, oa. ..., 06 ). We compute Q) fori=1.2...., m as fol-
lows. We start from the root g of T and perform a breadth
first search to identify all the edges of T that contains
a point having p-value egual to ;. These set of points
define ) (oq). After computing Q; we compute Q. by
searching all the branches of T in a breadth first manner
starting from their earlier positions.

i

Fig. 2 (a) A set of concentric comvex polygons and (b) their duals
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Mext we compute the duals of Q4. Q2. .... Q. These
are a set of 2m x-monotone chains F=N Uik =
Lo xb ¥ oo x%). We rename the members in I°
as {¥.¥2.....¥2ml. These splits the plane into 2m + 1
disjoint x-monotone regions R = {ry.re..... Fpe] where
ri is bounded by p and pjpg. i=2.....2m-1.n is
bounded above by 3y and rag4q is bounded below by rap,.
See Fig. 2(b) for demonstration. In order to perform a pla-
nar point location query among the monotone subdivisions
R in the plane we construct a data structure as described
in [5] which supports the query in O(logn) time. Thus we
have the following theorem.

Theorem 1. The time and space complexities of the preprocess-
ing phase of our algorithm are O ()

3.2, Query

Our algorithm for finding ¢ proceeds in two phases as
follows:

Phase 1: Compute the lowest index z, ie, locate Q) and
@, such that the dual L' of the line L lies in Q; but
it does not lie inside Q..

Phase 2: Among the intersection points of L and the edges
of V() inside Q ;, find the one whose distance is min-
imum from it's furthest point. This is the center c. As
the sequence of p-values of the intersection points on
the line L is unimodal we can apply binary search for
finding c.

Lemma 3.4, The query time complexity for searching the center
¢ of the minimum enclosing circle of the pint set P is O(logn).

Proof. In Phase 1, we identify Q: from the preprocessed
data structure in Of(logn) time. Let & be the subset
V1. V3. ... v. of vertices of Q; in clockwise direction that
lie in the other side of g with respect to line L. Mote that,
v] and v . can be located in O(logn) time. Consider e}
to be an edge of V(P) incident to v}. Here, line L inter-
sects the edges e].e5.....e;. of V(P) inside Q;. Now c
is an intersection of L and an edge in €}.€5..... €. that
has minimum p-value. We search ¢ among e7.€5.... e,

m*
using binary search. [

In case L is a line segment, then we first locate the
center ¢ on the line containing L. If ¢ is not on the line
segment L, then one of the end points of L nearer to ¢ is
the solution. We now have the following theorem.

Theorem 2. Givena point set P = {py. pa..... py ] and a guery
line L, the minimum enclosing circle having center on L can
be reported in O{logn) time. Both the preprocessing time and
space complexities are O ().
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