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SUMMARY. Consider the Neyman-Scott problem where we want to estimate the 

common parameter 0 based on the sequence {Xn}n & i, of independent random variables 

with Xi having the density/ (.,6, ft). Depending on the nature of the sequence {??}n^l, 

there are two set-ups, viz., the fixed set up where Si's are treated as unknown constants 

and the mixed set up or the mixture model where ?#'s are i.i.d with common distribution G. 

In this paper, we shall define a criterion for efficiency in the first model in terms of that in 

the second one and find an efficient estimate in the mixture model. The same problem in the 

other model will be discussed in part II. 

1. Introduction 

Neyman and Scott (1948) were the first to point out that the method of 

maximum likelihood fails to provide efficient estimates when the number of 

parameters grows with the sample size n. Consider the following examples 

introduced by them : 

Example 1.1. Let {Xt} be a sequence of independent random vectors in 

Rp, components Xy of Xt being independent normal with mean m and vari 

ance cr2. Here cr2 is the parameter of interest. It is easy to see that the 

maximum likelihood estimate for a*2 is not even consistent. It is also known 

(see Lindsay, 1980, Pfanzagl, 1982, van der Vaart, 1987) that if p > 2, the 

maximum partial likelihood estimate based on Xy?Xi is efficient. 

Example 1.2. This is similar to Example 1.1 except that the compo 

nents of Xi are independent normal with mean ?i and variance <r?. Here ?jl is 

the parameter of interest. It can be shown that the maximum likelihood 

estimate fi is consistent and asymptotically normal provided p ^ 3 and 
rt 

n~"x S of is bounded away from zero, but it is not efficient. Bickel and 

Klaassen (1986) for p =* 1, Bhanja and Ghosh (1987) and van der Vaart (1987) 
for general p show how an efficient, asymptotically normal estimate can be 

constructed. 
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Lindsay (1980) and Bickel and Klaassen (1986) provide an extremely 
useful general discussion of such problems. See also van der Vaart (1987). 

(After this paper was submitted much of van der Vaart (1987) has appeared 
in print, vide van der Vaart (1988).) 

A little reflection shows in most problems of this type the m.l.e. of the 

parameter of interest (6) will be inconsistent as in Example 1.1. However, 

it is not easy to construct examples where this can be demonstrated mathe 

matically. The following is a new class of such examples. 

Example 1.3. Let Xv X2, ..., Xn be independent random variables 

with Xt ~/(., 6, \\) where the function / is given by 

f(x, 6, ?) : = A(0, ?) exp{0 jr (x)+l x} 
for any real number x and for any (6, ?) in ?2, where 

?2 : = 
{(0,1) : J exp {6 f (x)+lx) dx < oo} 

and the real valued function ty is strictly convex or strictly concave. 

Here, one can show that the m.l.e. ? is inconsistent. The details of 

verification will appear elsewhere. 

The construction of efficient estimates in Examples 1.1 and 1.2 follow 

quite different routes. In the following pages we develop a general theory 

for constructing efficient estimates which is applicable to both these examples. 

However the efficient estimate constructed this way for Example 1.2 would 

differ from those in Bickel and Klaassen (1986) and van der Vaart (1987). 

We first formulate a general model. For this purpose we shall use the 

following notations. Let 0 be an open subset of ? with compact closure 

0, S a compact metric space and 3, the set of all Borel probability measures 

on S. The requirement of compact closure of 0 can be dropped when 6 is a 

location parameter, as in Example 1.2, and, more generally, when there is a 

uniformly consistent estimate of 6. Note that S is weakly compact. Equip 

0 with the Euclidean metric topology and ? with the weak topology. Let 

(S, S) be an arbitrary measurable space. Let Fn denote the empirical 

distribution function (e.d.f.) or the empirical probability measure based on 

n values of a random variable, In particular, for n elements ?x, ?2, ... 
?n from 

S, denote Fn(., ?1? ?a, ..., ln) by Gn. 

Model I. Let {Xi} be a sequence of independent random variables taking 

values in (S, S) with the distribution of Xi given by P$ fi>, 00 s 0, ?? e S. 

(The probability measure 
Pei 

is assumed to be well defined for 6 z 0, ? e S). 

The object is to estimate the so-called structural parameter d0. 
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In Model I, called the fixed set-up model by Bickel and Klaassen, 

invariance of the estimation problem under permutations suggests restric 

tion to the symmetric, i.e. permutation invariant sub-or-field of Sn. If one 
n n 

restricts II Pfi ? to this sub-cr-field, II Pp ? can be replaced by 

n 
2 II Pff 

? /n ! and one would expect, heuristically, on the 
set of all 1 ? *<*> 

permutations 
77 of {1,2, ...,n} 

basis of the analogy between simple random sampling with and without replace 

ment, that Model 1 can be approximated by the following : 

Model II. Let {Xt} be a sequence of i.i.d. random variables taking values 

in (S, S) with common distribution Pe Q where for A e S, 

P0Oi6o(?): 
= 

iP$o{(A)dOom. 

Model II, which is often called the mixed or mixture set up, was first 

proposed in the present context by Kiefer and Wolfowitz (1956). As pointed 

out by Bickel and Klaassen, an analogous idea underlies Robbins's develop 

ment of empirical Bayes methods to solve compound decision problems. A 

mathematical justification in the latter context, is provided by Hannan and 

Bobbins (1955) and Hannan and Huang (1972). 

The heuristic argument leading to Model II from Model I can be made 

rigorous in our problem if the error of approximation in Lj-norm of the 

symmetrized measures in Model I and Model II (with G == 
Gn) tends to zero. 

Unfortunately, it is easy to show that this is not true. However, the 

approximation can be verified directly for the special class of estimates which 

Bickel and Klaassen call "regular". The following definition gives the notion 

of regularity and efficiency considered by them in a suitably modified 

form that ensures uniformity. 

Definition 1.1. (i) Regularity : An estimate Tn of 60 is called 

(a) regular in Model I if there is &? : 0X?2-?B+ continuous s.t. 

AVn(Tn-0o)<r?(0? Gn)\UP9 ,) => ? (tf(0, 1)) 

uniformly on compact subsets of 0 X S00 

and (b) regular in Model II if there is crT : 0X*S->A+ continuous s.t. 

AVnPn-OoYriW? Qo)\%0o) *Am 1)) 

uniformly 
on compact subsets of 0 X &, 
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(ii) Efficiency : Among the regular estimates in a particular model 

any one for which the asymptotic variance is minimum is called an efficient 
estimate in the relevant model. 

As pointed out by Bickel and Klaassen (1986) if Tn is regular in Model I 

and efficient in Model II, then it is efficient in Model I. Thus it is enough 
to discuss efficiency problems in Model II. 

In a thesis, van der Vaart (1987, 103-104) has pointed out that this for 

mulation of efficiency in Model I is not wholly satisfactory, see in this connec 

tion our Remark 4.4. 

The estimates introduced by Neyman and Scott (1948) which are 

analogous to Huber's M-estimates and referred to as Cx-estimates by 
Kumon and Amari (1984) are regular both in Model 1 and Model II. 

These estimates are defined as a solution of 

Xf(Xt,d) 
= 0 ... (1.1) 

with the function i/r satisfying certain regularity conditions. Moro pre 

cisely, to ensure uniform asymptotic normality we strengthen the conditions 

given in Amari and Kumon (1985) as follows : 

Definition 1.2. Any Borel-measurable map r/r from Sx? to JB is called 

a C^kernel, if 

(i) for each x in X, y?r(x,.) is continuously differntiable on 0, with 

the derivative given by the function i?r'(x,.) and both ^r(x,.) and r?r'(x,.) 

have continuous extensions on 0, 

(ii) Sf(.,e)dP0?i 
= OY(O?), 

(iii) sup_ J ir\,0) dPB ? ?> 0 as a-? oo 
(O,()e0 x* {liM.,0)1 ><*} 

and 

(iv) (a) if(.,d)dPQ)^ov(d,?) 

(b) sup_ J {sup|n^)|}dP^<oo 
(d,Z)eex 

s e'ee 

Given any ^-kernel ijr, any estimate Tn, which is, simultaneously, 

\/n consistent for 60 and a solution of (1.1) with probability tending to one, 

uniformly on compact subsets of 0 X S is called a G-^estimate corresponding to ty. 

For a fixed GQ, according to semiparametric theory, there is a function 

\[/(., ., GQ) (vide (2.2)-(2.4)) along with an estimate Tn (G0) which solves 

S ^(Z,,0,?O) 
= O ... (1.2) 
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with probability tending to one and is efficient at (0O, G0), provided certain 

regularity condition hold. If G0 is unknown, a natural thing to do is to solve 

? 4r(Xi,d,Gn) = 0 ... (1.3) 

where Gn is a consistent estimate of G0. 

Using a heuristic Taylor series expansion of the L.H.S. of (1.3) w.r.t. 6 

and G, one can show that (1.3) provides an efficient estimate if Gn is n? con 

sistent, for a suitable 8 > 0 or Gn is a consistent estimate independent of 

the Z/'s ^ is a "nice" function of (6, G) and 

W(.,d,G)dP9,G> 
= 

0Y(d,G,G') ... (1.4) 

holds, which is very similar to condition (ii) of Definition 1.2 and plays a 

similar role. 

For mixture models (1.4) always holds but unfortunately, in general, 
it is very difficult to prove the existence of an n6 consistent estimate of GQ. 

In our original unpublished work done before the publication of Schick 

(1986), we were able to resolve the problem only for the examples of Section 

5 and Section 6, with stronger regularity condition than in the present version. 

However, the requirement of n6 consistency of Gn can be dropped using 
the following idea of Bickel (1982) and Schick (1986), who show how, in effect, 
one can use an idnependent estimate of G0. Thus instead of (1.3) one solves 

S i?r(Xi, 6, Gnl) + ? ?r{Xu 6, Gn2) = 0 ... (1.5) 
i=i i-wx+i 

where Gnl, Gn2 are consistent estimates, Gnl is independent of Xv ...,Xn 
and Gn2 is independent of 

Xn+V ...,Xn and nx-^> oo, n? n^ oo. 

It is clear that such a method will also provide an efficient estimate in 

a general semiparametric problem if a condition like (1.4) holds. The equa 
tion can be shown to hold quite generally in models satisfying BickeFs condi 

tion G (vide Remark 2.3) or models considered in Hasminskii and Ibragimov 

(1983, ? 3). It seems that our construction of this sort is a part of the folklore 

of the subject. Certainly a streamlined version of it, using one step discretized 

Newton-Raphson method, seems implicit in BickeFs construction of adaptive 
estimates in orthogonal cases and has appeared recently in an explicit form in 

Schick (1986, 1142-1144) who also points out the importance of (1.4). 
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See also van der Vaart (1987), who introduces (1.3) but abandons it in favour 

of the alternative one-step discretized method. We have given in Section 3 

both our original version, in which one solves (1.5) leading to an intuitively 

plausible estimate but requiring stronger conditions, as well as the streamlined 

disoretized version of Schick (1986). 

Section 3 consists of a uniform version of Schick's results under stronger 

conditions. Under same conditions we get analogous results for Model I, 

i.e., the original Neyman-Scott formulation, in Section 4. Unlike the earlier 

treatments, e.g., van der Vaart (1987, 1988), we do not assume that the 

empirical d.f. of the nuisance parameters converges weakly. It is the relaxa 

tion of this assumption which requires that we have a uniform version of 

of Schick's results. As to the proof, the main new feature is that a preli 

minary randomization over indices is needed before applying the techniques 

of Section 3. 

In Section 4* we also indicate briefly (vide Remark 4.6) how the results 

of Section 3 and 4 can be modified when the dimension of X< changes with i. 

Such problems were also first posed by Neyman and Scott (1948). Recent 

references are Lindsay (1982), Kumon and Amari (1984) and Amari and 

Kumon (1985). 

It must be admitted that our conditions are somewhat ugly. Technically 

speaking, they ensure uniform continuity or uniform integrability of /'//1/2 

or the optimal score function \?r. The main conditions that are hard to check 

are those imposed on \?r. In the discretized version, ^ must be continuous 

in d & G and in the other version, one needs also something like differentiability 

in Q. In our problem, as well as, other semiparametric problems, it is not 

clear how to check this or even whether such conditions are expected to hold 

in general. For our problem this can be checked in two special cases illus 

trated by Examples 1.1 and 1.2, where one either has a special factorization 

of the density or 6 and G are orthogonal in the sense of semiparametric theory. 

These two cases are discussed in Section 5. 

It turns out that the conditions of \?r, can also be checked (via results on 

compact operators acting on a Banach space) if one has in addition indepen 

dent observation with distribution G. This allows us to provide a direct 

application of the results in Section 3 to the following problem, solved in a 

different way in Hasminskii and Ibragimov (1983, ? 3). Suppose one has 

a channel in which 6 is the input, ? is the noise and X is the observable output. 

* to appear in the next issue of Sankhy?. 
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In such a case X will have the distribution in Model II. But while the ? 
associated with a particular X will be unknown, one can get independent 
observations to study directly the distribution of noise. In other words 

one has in addition to X%%, independent observations F/s which are i.i.d. 

with distribution Gq%. The problem of estimating 6 is solved in Section 6. 

A preliminary announcement of these results appeared in Bhanja and 

Ghosh (1987). 

In subsequent communications we hope to study the problem of esti 

mation of ?<'s and to report some simulation studies to evaluate the behaviour 

of our estimate of d. The simulation studies, made for Example 1.2 with 

p > 3, are quite promising and indicate the asymptotics works well 

for n = 100. 

Let us summarise the major new contributions in this paper. We pro 

vide, a uniform version of Schick's results and then apply them to the original 

formulation of Neyman-Scott problem where the convergence of empirical 

distribution of ?<'s is not assumed. For Example 1.2 we get new asymptoti 

cally efficient estimates for all p. Using new techniques, a new solution is 

proposed for an interesting problem of Hasminskii and Ibragimov. 

2. Notations and preliminaries 

In this section, we shall introduce some notations and give some preli 

minary assumptions, definitions and results most of them in a form applicable 
to any semiparametric family involving (6, G). See in this connection Remark 

3.5 in next section. From Section 3 onwards 0 is usually a compact subset of 

a Euclidean space and ? is in the space of distribution functions equipped 

with the weak topology. 

To start with let us introduce some notations which will be used later in 

appropriate situations : 

(1) Let (X, d) be a metric space. For any x in X and for any positive 

number 8, we shall use the symbol B{x, 8) to denote the open ball of radius 

8 around the point x. In symbols, 

B(x, 8): = {yeX: d(x, y) < 8} Y xe X, Y 8 > 0. 

(2) If Z.is a Banach space, we shall denote the unit sphere around the 

point zero by S(X). In symbols, 

S(X): = 
{xeX:\\x\\ 

= 
l}. 
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(3) For any real valued function ^ onXx Y, we shall denote the ex 

tended real valued functions sup <f>(. , y) and inf <?>(. ,y)bj(?>(.,Y) and <f>(., Y), 
veY yeY 

' ? 

respectively. In symbols, 

(?>(x, Y) : ? 
sup <f>(x, y) and <?>(x, Y) 

? inf <J>(x, y) for all x e X. 
ver 

~~ 
veY 

Similar notations aro used for the functions sup <?)(x, .), inf <f>(x, .) etc. 
xzx xez 

(4) For any function <f> : d -+ R which is differentiable on 0, we shall 
fi 

denote the function 
^ (?> by </>'. In symbols, 

<f>'(6) : = 
^<t>(6), 

for all d in 0. 

(5) Let Xv X2, ..., Xm be topological spaces one of which, say X.% , is a 

m 
closed subset of the real line. Let X = n X<. Let r0 be a positive integer. 

Define {sj}^^ by 
f r0 if i = ?0 

[^ 0 otherwise 
for ? = 

1, 2, ..., m. 

Let (7e e ? (X) be the set of all continuous functions ? from X to R 

such that for any 1 < j < r0, -q-j- <f> exists on int (X) with a continuous 

extension on X, 

Remark 2.1. For the special case where Xl9 ..., Xm are compact, define 

|| II , ? from a a m (X) to R+ by 

i^iW..>%>:=? 

9 
^-7? ? for all ?inC0 0 0 (X). 

Then one can easily show that 

(i) Il IL ? . is a norm on Om m a (X) and 

(ii) (C. . . Il IL . . ) w a Banach space. 

In practice, we shall take X to be 0 or 0X?S or S2X0Xa 

or S2xS2X0X? where $2 is a compact metric space (vide Model III of 

Section 6), with obvious choice of ?0 and r0 
= 1, 2. 
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(6) For any probability space (Q, j?, P) we shall denote the space of all 

square integrable functions whose expectations are zero by L2(P). In symbols, 

Ll(P)' = 
{<?eL2(P):Ep((f>) 

= 0}. 

Convention If P < < Q, L2(P) = L2 ( ^ ) and L?2(P) =L%[^\. not a^o I not \ a(v ' 

We shall need the following useful definition. 

Definition 2.1. Let (Y,p) be a metric space. Let 0 be a continuous 

map from 0 X & to Y. Call a Y valued statistic Tn a uniformly consistent 

estimate of $(d0, Gn) in Model I ($H0O, @o) m& Model II) if for any compact 

subset 0O of 0, for any e > 0 and for any 0 < 8 < 1, there is iV0 > 1 such 

that for all n > N0, 

sup ( 
n P ) {{P{Tn,(?>{d?Gn))>e))<8 

< SUP Pl g0 ({PWn, M> Go)) > e}) < S). 

As a special case of the above definition, we can define the notions of uni 

formly consistent estimates of 60, Gn or (60, Gn) in Model I and 60, G0 or (d0, GQ) 

in Model II. 

Convention. Throughout the following discussion we shall abbreviate 

the phrase "in Model I"(II) by (I) ((II). 

Consider the following generalisation of the Glivenko-Cantelli Lemma. 

Proposition 2.1. Let Xv ..., Xn, ...be a sequence of independent random 

vectors in Rp, with Xi having the distribution function Fi, then, for any e > 0, 

where & denotes the set of all (probability) distribution functions on Rp. 

One can prove this by an easy modification of the argument in Lo?ve 

(1963, p. 20). 

As a corollary to Proposition 2.1, we shall now prove, using a method 

of Robbins (1964), the existence of a uniformly consistent estimate of (00, Gn) 

in Model I and (60, G0) in Model II. 

For this purpose, we shall need the following identifiability assumption. 

A 1-2 

sup Pp F ({?FJ. ,XV..., Xn)-2 FA >e\)-?0 
asn->co 
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(Al) For each n > \,PnM and P% are identifiable families in (0, G) and 

(0, Gn) respectively, where 

Pb-- = 
{nQ--{0,Q)e9x&} 

and P? : = 
{n Pw.:(MWui^?)e0xS| 

Let us now state the corollary. 

Corollary 2.1.1. // (i) (S,&) = (Rp, ?(Rv)) (ii) P$tas are dominated 

by the Lebesgue measure and (tii) (0, (?)-? F(. , 0,G) is continuous, where for any 

(6, ?)e0X? F(., 6, G) denote the distribution function corresponding to P0fG 
and the topology on &, as considered in Proposition 2.1, is generated by the sup 

norm, then under assumption (Al) the following holds. There is a statistic 

(?n, Gn) which is uniformly consistent estimate of (60, Qn) in Model I and (60, G0) 
in Model II. 

The proof is given in Appendix A. 

The following result shows that we can drop the condition of compactness 

of 0 at the cost of the condition of existence of a uniformly consistent esti 

mate of 0O. 

Corollary 2.1.2. Consider Model I and Model II, as defined in Section 1 

with the only exception that 0 is allowed to be unbounded. Assume (Al). If 

conditions (i)?(iii) of Corollary 2.1.1 hold and there is an estimate Tn of 0O which 

is uniformly consistent in Model I (II), then there is a uniformly consistent esti 

mate $n> ?J of (d0, Gn) in Model I ((0O, G0) in Model II). 

The proof is given in Appendix A. 

We shall also need the following definitions. 

Definition 2.2. Call an estimate Tn of 60 a uniformly ^n-consistent esti 

mate of 0q in Model I(II) if for any compact subset 0O of ? the family of laws 

{?(VMTn-Oo)\ nPVJ:(^Mu<^)e0oXSft,Ol) 

({AVn(Tn-60)\PlGo) 
: (d0,G0)e&0x^,n> 1}) 

is tight. 

Definition 2.3. Let Tn be an estimate of 60 and let Y be a Borel measur 

able map from SnX& to R. Consider the equation 

V((X1,X*,...,Xn),d) 
= 0. ... (2.1) 
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(a) Call Tn a \/n-consistent solution of (2.1) in Model I (II) if for any 

(0Oi{5i}i*<*?)e0xS? (for auy (0o>#o) in 8X5) the following hold. 

(i) (? ̂) (^n solves (2.1)) a 1+0(1) 

^?V (T* S0lveS {2,1)) = 1+0(1)) 

(ii) Tn is a yVconsistent estimate of d0 in Model I(II) 

and (b) call Tn a uniformly inconsistent solution of (2..1) in Model I (II) if 
for any compact subset 0O of 0, condition (a) holds uniformly on 0oxSn 

(?0X5). 

Definition 2.4. Call an estimate Tn of d0 regular (I) ((II)), or more 

accurately uniformly asymptotically normal in Model I (II) with asymptotic 
variance a% [in short, UAN (I) ((II)) with AVo%], where <tt is a continuous 

function from 0 x ? to ?, if 

sup sup |( 
n p^ i)({Vw(rw-^)<*})--*(*^1(^S?)) xeR I M=l ' 

sup sup I Pg G({Vn(Tn-e0) < *})-<&(* cr;1^, G0)) | -> 0 

as n?>oo, for any compact subset 0O of 0. 

We note the following. 

(I) As expected, for any concept defined through Definitions 2.1?2.4, 

the Model I-version is stronger than the Model II-version. 

Let us now state a generalized version of the Lindeberg-L?vy central 

limit theorem where the convergence is uniform in sup-norm. We shall 

need this result in the proof of our basic result Lemma 3.1 in Appendix B. 

Proposition 2.2. Let A be a non-empty set. For each a in A, let {Xn(a)}n^ t 

be a sequence of independent random variables with mean zero and finite variance. 

For each o? in A, for each n > 1, define Sn(a) and sn(a) by 

Sn(oc) : = 2 Xi(<x) andsn(a) : = 
^/Var{Sn(cx)} 

= 
V 2 Var({Xi(oc)}) 

i=i t=i 

and denote the probability distribution functions induced by Xn(oc) and Sn((x)?sn(<x) 
by Gn(., a) and Fn(., a), respectively. If 
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(i) inf liminf [ J x% d Gn(x, a)] > 0 
a A n ?> oo 

and 

(ii) sup limsup f J x2dGn(x, a) ]-> 0 as ?l-?oo 

? 
1 

? 

wAere Gn : = ? S ?<, /or a? w > 1, 

?Aew wp swp |Pn(#, a)? >(#))->0 as n-> oo 
ae A xeR 

The proof is given in Appendix A. 

(II) Instead of assuming the obvious uniform version of Lindeberg's 

condition, we are assuming a stronger but more easily verifiable pair of condi 

tions, viz., conditions (i) and (ii). 

Definition 2.5. We shall call a function ifr : Sx? X *fi-?B a kernel if 

??r(. ,6,G)eLg(P0f(?) for a11 (#, #) in 0X?> and denote the set of all kernels 

by?. 

Convention. Given any two kernels i/r, ty' such that 

f{. ,0,G) 
= 

F(., 0, G) a.e. [P0, Q] V (0, G), 

we shall call each a version of the other one. 

Consider the following assumption : 

(A2) There is a cr-finite measure ?i on (S, s) such that 

P0, g < < PV- (0, Gfe ?x& 

(III) In available semiparametric literatures, (A2) is always assumed. 

So, we shall assume it for the remaining part of this section and the next three 

sections. However, this condition will be dropped in Section 6. 

(IV) For the special case of the mixture models, (A2) is equivalent to 

JY?<</*V(0,?)eexB. 

Define / : 0 X <S-> L+ (fi) by 

f(.,0,G): = 
*Af* 

Y(0,G)e?x?. 

Convention. For ?eE, we shall use the notations f(-,0,8c) and 

/(., 0, ?) interchangably, where 8% denote the point mass at {?}. 
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From the general aemiparametric theory, the 0-acore se : Sx 0X.S-? R 

should be defined by 

M^?,?): = 
&^|jlm.>e>G)>o}H 

- (2-2) 

for a.YL{x,d,G)eSx 0Xa. 

Under the following assumption se ia well-defined and belongs to ,5V. 

(A3) (a) For each (x, G)eSx&, f(x, .,Q)eC1 (0), 

(b) 
l^'fl'^Q) 

d/i(.)<ooY(d,G)e?x?. 

In passing, we remark that, (A3) will be assumed to hold throughout the 

remaining portion of this paper. 

Let us now observe that / has an obvious linear extension on 0 X %At, 

where *M : = set of all signed measures on S. Let us denote this extension 

also by /. 

(7) From now on, we shall denote by A the extension of the likelihood 

ratio defined by 

A(x, 0, G, 0', M) : = 
ff?6e[^ 

!((/(.,,, ? > o} (x). 

for all (x, 0, G, 0', M) e Sx?X&X?X+4i. 

Consider *Jt0 : = 
{M e *M \ M(E) = 

0}, 

For any (0, G)e?X?, define 

w^M= {Me^HQ: A(., 0, G, 0, M) e L\ (Pe,G) and 

J'1{/(.,e,(?)s=0}/(-^ili)^(-) 
= 

0} 
and 

fy.G 
' = 

{<f> e Ll(p0,o) : 3 M e vftw such that 

(?> 
= A (. , 0, G, 0, M) a.e. 

[P0>0]}. 
... (2.3) 

The elements of the space 7lgiQ may be thought of as the 'directional 

scores' with respect to small variations in G. However by no means it is the 

set of all directional scores with respect to G. 

Remark 2.2. Under assumptions (A2)?(A3), for each (0,G)e?Xa, 
the closed linear subspace of L\(f(. , 0, G)) obtained by taking the closure of 

the linear span of 
sQ(. , 0, G) and N^Q gives our tangent space ?20iQ at (0, G), 
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which is isometric to that considered in Schick (1986) and is the same as that 

considered in Lindsay (1980), Bickel (1982), Bickel and Klaasssen (1986) or 
van der Vaart. (1987) 

Following the above authors, let us now define an optimal kernel (ft) 

and the information (I) by 

?H,0,G):=Proj {s9{.,e,Q)} 
ae,0 

V(9,6) ... (2.4) 

We shall now establish (1.4) for the general semiparametric models as 

well as the mixture models under different regularity conditions. Let us now 

write down th?se conditions in the form of two assumptions. 

(GA4) f 
f% 

' d' 
y d?i (.)< oo for all (d, O, M) e 0 X ?X^T0 

J(. , u, Or) 

(A4) For any d e 0, (G, (?')-> J ft(., 6, G)f(., d, G') d fi(.) is a continuous 

map from aX? to R. 

We are now in a position to state the following result. 

Lemma 2.1. Consider (a) an arbitrary semiparametric model where (A2), 

(A3) and (GA4) hold or (b) a mixture model where (A2)?(A4) hold. In either 

case, 

lft{^d,G)f(.,d,G')dli(.) = ^^(d,G,Gt) ... (2.5) 

Proof. Let us start with the following observation which is an obvious 

consequence of the fact that ft is a kernel 

ift(-,0,G)f(.,d,G)dii(.) = 0>t(d,G) ... (2.6) 

So, it remains to show 

?ft(.,d,G)f(.,d, -G)dK.) 
= 

OY(09G,Gf) ... (2.7) 

For the general semiparametric models use (GA4) to conclude that 

A(., 6, G, 0, G'-G) e N0iG Y (0, C, G'). Then (2.7) follows from that fact 

that ft(., d, G) e 
N$t Q Y (#, #). 
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For the mixture models, let us observe that, for any (6, G, ft) with 

(d,G)e<?x? and <j> e L\(G), A(., 6, G, 6, <?> d G) e N9pG proving 

M.,0,'tyf(-,09idtyd/ii.) 
= 0 ... (2.8) 

for all (d, G, <f>) with (d,G)e?x? and ft eL\(G). 

Now for any (r-finite measure v on (S, S (S)), let gv denote the set of all 

probability density functions with respect to v those are bounded and bounded 

away from zero. For any g e gv, let G denote the corresponding probability 
measure and denote the set of all such ?'s by ?v, i.e. 

&v : = 
{G:gegv}. 

Let us consider (d, G,G')eQx&X?. Define v = G+G'_. 

Case I. G, G, e ?v. Let g, g' be versions of 
?7?,-^?which belong to gv. 

/_ 
Put 0 

= -?- in (2.8). By an easy algebra one can show that/(., 6, <j> dG) 
= 

y 

/(., d, G'-G), so that (2.7) holds for the given point (6, G, G'). 

Case II. G, G' arbitrary. Let g, g1 be any two versions of -r- 
and?j?, 

respectively. One can get two sequences {gn}n ^ t and {g'n}n ̂  t of functionsi n 

gv such that \\gn?g ||Li(v) 
-> 0 and 

\\gn?^||Li(v) 
-> 0. Clearly this implies 

w 

that Gn ==^ G and G'n =^ G'. Again by Case 1, (2.7) holds for (0, Gn, G'n), 
for any n > 1. Hence by assumption (A4), (2.7) holds for (6, G, Gr). 

Remark 2.3. Note that Lemma 2.1 (a) holds for general semiparametric 
models satisfying Bickel's condition C, i.e. models with the space ?? of nuisance 

parameters convex and for any x,6eSx ?,/(#, d, .) an af?ine function, with 

the additional condition that ? is compact, The corresponding result for the 

orthogonal case was noted by Bickel (1982), vide his remark before Condi 

tions C and S*. 

In order that (1.2) makes sense, let us make the following assumption 
which is a local version of (Al). 

(A5). 1(6, G)>0 for all (d, G) in 0 X ?. 

For the next two sections, we recall Definition 2.5 and introduce the 

following notations. 

(8) Let?X*:=={fteJ?:Pe,G({\ft(.,6,G)\ > 0}) > 0 Y(#, C)}. 
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We shall denote by J the function from 0 X G X ?%* to ? defined by, 

j(v,i*,yr).- 
[Sr{.,0,Q)f(.,0,G)dM(.)] 

for all (0, G, ft) e?x?xj?*. 

(9) Let ?ft?** : = 
{ft e J?* : J(0, G,ft)>Q*f (0, G)}. We shall denote 

by V the function from ?X?XJH** to ? defined by 

V(0, G,ft): = \?J(0, G, ft) 

for all (0, G, ft) e ?XaX?**. 

Note that 

(V) Obviously, (Ad) implies ft e ?*f* and J(0, G,ft) = 1(0, G) V (0, G). 

(10) We shall denote the Prohorov metric on 3. by d. In other words, 

the metric d is defined as follows : 

Let p denote the metric on S. For any e > 0, for any iQS, let Ae 
denote the set {? e A : p(?, A) < e}. We can now define d by the formula 

d(Ql9Q2) = 
w?{e>0:G1(A)< G2(Ae)+e and 0??)< Gx(A*)+e, for all 

A in ? (S)} for all Gv G2 e ?. 

Later we shall need an estimate of distribution function based, say, only 
on Xf's, i odd, or only on Z<'s, i even. This is formalised below. 

(11) Let (A, ji), (B, S) be two measurable spaces. For each n > 1, 

let (?>n be a measurable map from (A, ji)n to (B, &). For each w > 1, we 

shall define two more measurable maps from (A, jt)n to (B, S) by the relation 

<f>%({<H}l*i?n) 
= 

^(n-[n/2J)(Wi<t^n, * odd) 
and 

0n(K}l*^n) 
= 
WWl^n, ? ?Ven), 

for all {afozi^n e ?n. 

3. Mixture models 

In this section, we shall state one auxiliary result and prove two main 

results in the mixture model. The auxiliary result will give conditions on 

the density function/ and a kernel ft (vide Definition 2.5) so that there exists 
an estimate Tn(ft) of 0O, which is a uniformly yVcoiysisteitfj solution (II) of 

S ft(Xh 0, GEn)+ 2 ft(Xt, 0, G?) = 0 ... (3.1) i odd i even 
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/s. 

(vide Definition 2.3), where Gn is a uniformly consistent (II) estimate of G0 
A. A A. 

(vide Definition 2.1) and G% and ?? are obtained from Gn using even and odd 

numbered observations, respectively (formal definition is given in (11) of 

Section 2). Further conditions on ft, guaranteeing uniform asymptotic 

normality (II) (vide Definition 2.4) of such estimate Tn(ftYs are also given. 

The two main results will prove optimality of, respectively, Schick's 

and our estimate under the assumption that a simpler version of the codi 

tions mentioned in the last paragraph hold for / and the optimal kernel ft 
(vide relations (2.2)?(2.4)). 

Before stating the auxiliary result, let us note the following assumption 

(Bl) (a) There is a uniformly ̂ -consistent (II) estimate Un of 6Q (vide A. 
Definition 2.2) and (b) there is a uniformly consistent (II) estimate Gn of G0 

(vide Definition 2.1). 

Let us now give a rigorous definition of our estimate Tn(ft). 

Definition 3.1. For any kernel ft, we shall define the estimate Tn(ft) as 

a solution of (3.1) which is nearest to Un, if there is a solution of (3.1) lying in 

(Un?log n\^Jn, Un+\og n\^Jn) and equal to Un otherwise. This can be done 

in a way that ensures measurability. 

Let ft be a kernel. Fix (d0, G0) in 0 X SI. Define a stochastic process Dn 

indexed by 6 as follows. 

Dn(6) - 
-\- 

I {f(I,,?, ?5)-}ir(Z(> ?0,G0)+(?-?a)ff (??o.?ol/'t.^o.?o)^.)} 
Vn ??1 

i odd 

+4r- 2 '{HXt, e, frn)-ir{Xi, e0, o0)+(d-e0) w(.,e0, G0)f'(.,e0, ojdM-)} 
Vn?L ... (3.2) 

for all 0 in ?. 

Consider the following conditions : 

(i) 
J{A(' '^'^Lgf^'1 

-M- *o. 
?0)}2/(-. 

0o. GW*/*( )-* o *? e-* e0 

where sg is the kernel defined by equation (2.2). 

(ii) There is 8$\G >0 such that 

(a) f^(.,?,?)/(.,?0,?0) rf/?(.)< oo Y(d,G)sB(d0, 8$lGo)xB(G0,S%Go) 

and (b) lim f{^(., 6, G)-x?r{., 0O, G0)}*f(., 80, G0) d?i{.) = 0. 
(e,a)-+(o0,a0) 

A 1-3 
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(iii) Assumption (Bl)(b) holds with a choice of Gn so that for any c > 0 
and e > 0, 

sup P? ({| y/n ?ft(., 0, Gn)f(., 0, G0) d/i(.) | > e})-> 0 as n-> oo. 
{Si \e-e0\<d,jn} 

?,lxo 

(iv) (a) There is ?<2> > 0, such that for all x in S and G in B(G0, ?<2> ), 
0O.QO ?0?G0 

ft(x,.,G)eC(B(0?8fa )), 

(b) f^(.^0,?0)/(.,?0,?0)^(.)<oo. 

(This condition follows from (ii) (a) but is given separately for ease in 

later references.) 

(c) Sft(.,do,Go)f'(.,0o,Go)dp(-)^O. 

(v) There is ?<3> > 0 and A(. , 0O, G0) e Lx(f(. , 0O, G0)) such that 
?0'?0 

| ft (., 0', G)-ft(., 0, G) |< 10'-01 A(., 0Q, G0) 

for all 0, 0' in B (0O, ?<3> ) and G in B(G0, 8 ). 
0o,go ?^Gq 

Clearly, one can, without loss of generality, assume 

e0,&0 e0,a0 e0,G0 
? v J/ 

Let 80 be as above. For any condition G among (i)?(v), let UC denote 

the condition that G, with 0O, 0, 0' replaced by 0, &, 0" and G0, G replaced by 

G, G', holds uniformly with respect to 0, 0', 0" in B(0O, 80) and G, G' in B(G0, 80). 

In addition to U(i)?U(v), we shall need the following condition. 

U(vi)(a) sup lUMr(?6,G) > K) ft%, 0, G)f(.,0, GW(.)}IJ(0, G, ft)] 
(d,G)e B(d0,?0) x B(G0,d0) -? 0 as Z-> oo 

and (b) (0, ?)-? J(0, G, ft) is continuous, where J is the function defined in 

(8) of Section 2. 

Note that, because of compactness of ?, one can without loss of generality 
assume that the number 80 considered in U(i)?(vi) depends only on 0O. 

We can now state the auxiliary result. 

Lemma 3.1. Assume (Bl). Fix (0O,GO) in 0X5. Let ft be a kernel. 

Let Dn be as defined in the relation (3.2). Also, whenever it makes sense, let 

Tn(ft) be the estimate defined in Definition 3.1. We can draw the following 
conclusions. 
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(I) // conditions (i)?-(iii) hold, then for all c > 0 and e > 0 

sup Pn ({| Dn(d) | > e})-> 0 as n-> oo. 
{O: |0?l ̂ cj^n) eQ'?0 

(II) // conditions (i)?(iv) hold, then 

(A) for any sequence {cn} increasing to infinity, 

Pn ({There is a solution of (3.1) lying inside the interval (0o?cJx/n, 
0o,Go 

?o+cJVn)})~+ l as n-*oo 

and (B) under assumption (Bl) (a), Tn (ft) is a \/n-consistent solution (II) 
of (3.1) 

(III) // conditions (i)?(v) hold then 

(A) for any c > 0 and e > 0, 

P"a a ({ sup \Dn(d) | > e})-> Oasn-+ 
e0'G& {$: \d-60\ ?clVn] 

and (B) under assumption (Bl)(a) 

sup | P" fl ({VW1-?J < *})-? (*/P (#o> ?0, ??0) I -> 0 as n-? oo, 

wAere F is the function defined in (9) o/ Section 2. 

(IV) Por ara/ conclusion C among (I)?(III) let UC denote the conclusion 

that C holds uniformly with respect to (0O, G0) in compact subsets of 0 X *S. Then 

U(l), U(II) and U(III) (A) hold if the relevant conditions among U(i)?U(v) 
hold whereas U(III) (B) holds if U(i)-U(vi) hold. 

The proof is given in Appendix B. 

Remark 3.1. Condition Z7(iii) is a uniform version of condition (2.8) 

Schick (1986, p. 1144). For Cx-kernels this condition holds by definition. 

For the optimal kernel ft, in view of Lemma 2.1, this condition holds even for 

the general semiparametric families satisfying Bickel's Condition C, provided 
suitable regularity conditions hold (cf. Remark 2.3). 

Remark 3.2, Note that for any kernel ft, 

?Q[m-,0,G)f(.,d,G)dii(.)-\ 
= 0 V(d,G) 

under suitable regularity conditions, which, in turn, implies 

W (., 6, G)f(., 6, G) dfi(.) = -J f(.,0,G)f'(., 6,G)dii{-) V (0, G) 
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This will help in putting the Taylor's expansion used in the proof of the above 

result in the usual form. This idea goes back to Bickel (1975, vide relation 

(2.8) of page 429). 

Let us now consider the following 

Definition 3.2. Any kernel ft satisfying the conditions U(ii)?U(vi) will 
be called an estimable kernel in Model II (or in short, an EK (II)) and any 

uniformly ^-consistent solution (II) of (3.1) (vide Definition 2.3) will be 
called a generalised C^estimate in Model II corresponding to ft (or in short 

a GC(1I) estimate). 

In view of Definition 3.2, conclusion U(III) (B) of Lemma 3.1 can be 

restated as 

Lemma 3.1a. Assume (Bl). If f satisfies U(i) and ft is an EK (II), 
then Tn(ft) is a GCX (II) estimate (corresponding to ft) as well as a UAN(II) 
estimate with AV V(. , ., ft). 

Example 3.1. All C^-kernels are EK(II) and all C^-estimates correspond 

ing to it are GG^II) estimates. 

Example 3.2. It can be verified in several cases that ft 
= 

/'// is an EK(II) 
and Tn(ft) is a GC^II) estimate. 

The following is the construction of an efficient estimate as given in 

Schick (1986, 1140-1144). 

Let l* : aSx?X?-? R and Q : ?x^X?-> R be defined by 

r(x, 0, G) : = ft(x, 0, G)?I(0, G) for (x, 0,G)eSx?x? 

and Q(0, G, G') : = J l*(., 0, G)f(., 0, G')d?i(.) for (0, G, G)e0X?X? 
... (3.3) 

Consider the estimate 

ZB: 
= 

^n+i- S nXi??nM)+~ 2 l*{Xt,?n,Gl)... (3.4) ft- K i< * n l^i^n 
i odd i even 

where Un is a discretized version of Un, i.e. Un 
= 

(nearest integer to 

^n Un)l<\/n. 
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Assume that 

(B2) (a) For any x in S, f(x, ...,)eCt,0(?XM) 

and (b) for any compact subset 0O of 0, there is 80 > 0 such that the family 
of functions 

is uniformly integrable with respect to ?i. 

Remark 3.3. If (S, S) 
= 

(Rv, J3P) and assumption (B2)(a) holds, then, 
in view of Corollaries 2.1.1. and 2.1.2, one can easily drop assumption (Bl)(b) 
even if 0 is unbounded. 

Remark 3.4. Let ft be a Borel-measurable function from Rv to R+. 

Let sv s2, ..., sjc be k Borel-measurable functions from Rp to R. Define 

SI = ( w e Rk : J ft(x) exp j ? s^x)^\dx < oo >. 

Assume that 

(a) Si ^ ci. 
Consider the exponential family of densities defined by 

h(x, <o) = (d0 (w))-1^35) exp{ S 5/ (#) ttyl. V co. 

for all a? in Rp and <o in ?i, where the function d0 is given by the formula 

do!40) 
= ? ?K*) exp{ S Sj(x)t?j\dx V co. 

Consider the family of marginal distributions of s 

{<2w:coef?}. 
Assume that 

(b) The above family is dominated by the ?-dimensional Lebesgue measure. 

(c) There is ?-dimensional rectangle J contained in the support of all the 

Qto9*. 

Let 7TV 7T2, ..., 7Tje be k functions in C2yQ(?XE). 

Assume that 

(d) n : = 
(nv n2, .., nje) is one-one and bimeasurable. 

(e) Range of n is contained in the interior of Si. 
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Finally, let us assume that 

(f ) (S, S) = (R?, ?P) and the density / is given by the formula 

/(*, 6, 0 = 
dj~y 

ft(x) exp { 
S s,(x) 7T0, ?)} 

for all x in S, 0 in 0 and E in S, where d stands for the function dQo n. 

Assumptions (a)-(d) and (f) are needed to prove assumption (Al) whereas 

assumptions (a), (e) and (f) are needed to prove assumption (B2). We shall 

now prove the first assertion. The proof of the other one is simple and hence 

omitted. 

In view of assumption (d), it is enough to prove the identifiability of 

{/?(.,co)d?(<a):#e^} 

where J? denote the set of all probability measures on ?2 with compact support. 

Consider any two probability measures Hx and H2 in J?. By assum 

ption (b), for i = 1,2 

Ai(s) : = J exp { 2 c?jSj \ dQ (co))-1 dHi(<?) < oo 

for almost all s and hence, by assumption (c), for all s in J. 

Moreover, ifHv H2 give rise to the same marginal of X then A-^s) 
= 

A2(s) 
for almost all s and hence, by continuity of ^4<'s, for all s in J. 

Therefore 

MoM)-1 dH, (to) ? (??(co))-1 dH2(t*) 

by a well known result on moment generating functions. Hence by continuity 
of d0 and choice of Jt, H1 

= 
H2. (At this stage, note that in the case of Lindsay 

(1980), to be discussed in Section 5(b), we don't need the identifiability of G 

so that one can easily replace assumptions (b) and (c) by 

(b) The family {h(., o>) : toef?} is identifiable.) 

Next, observe that, assumptions (b)?(c) imply that the family {Q : <o e Si} of 

probability measures is identifiable. The assertion follows by Theorem 10.0.3 

of Prakasa Rao (1983, p. 440) and the definition of 
QJ$. 

In order to prove the efficiency of Zn, we need one more assumption, 

namely, 
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(B3) There is a version of the optimal kernel ft such that 

(a) For all x in Srft(x, .,.)eC(?x?) 

and (b) for any compact subset 0O of 0 the following statements hold 

(i) there is 80 > 0 such that the family of functions 

{ft2(, d', G')f(.,d, G) : (6', G') e 0ox*S with 10-0'| +d(G,Gf) < 80} 

is uniformly integrable with respect to ?i and 

(ii) sup [{ J ft\,d,G)f(.,d,G)dii(.)\lI(0,G)] 

-? 0 as K?> oo. 

Observe that 

(1) Assumption (B2) is a stronger version of assumption (A3) and it 

implies condition U(i). 

(2) I* (and hence Zn) is well defined only under assumption (A5). More 

over if (0, ?)-> I(d, G) is continuous, then any condition among (ii)?(v) and 

U(ii)?U(vi) holds for the kernel I*, if and only if it holds for the kernel ft. 

(3) Assumptions (B2)(a), (B3)(a) and (B3)(b)(i) imply that (d, G)-> 

1(0, G) is continuous. They also imply a local version of assumption (A4) 

with 0 and G replaced by B (%, 81) and B(G0, 8q), respectively, where 8* = 8J2. 

(4) Assumption (B3)(b)(ii) implies assumption (A5). 

The relation between assumption (B3) and the relevant conditions of the 

lemma will become apparent from the proof of the following result which 

establishes the efficiency of Zn. 

Theorem 3.2. Assume (Bl)~(B3). The estimate Zn of 60, as defined 

through (3.3)-(3.4), is VAN (II) with A V (1//) (vide Definition 2.4). 

Proof. Let us start with the following simple observation. 

j 1% , 6, G) f (., 6, G)dn(.) = 1 Y(0, 0). ... (3.5) 

Next, we shall show that 

sup 
xeR 

PS a({ -L S l*(Xt, 0O, (?0)< x\ ) -?(x I"%0O, G0)) 

as ?-> oo, uniformly with respect to (0O, G0) in compact subsets of 0 X 3.. 

0 

... (3.6) 
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We shall proceed as follows. 

First observe that, ft being a kernel, /*(., 0, (?) has zero expectation under 

Pd} g, Fix any compact subset ?A of 0 X ?S. By assumption (B3), conditions 

(i)?(?) of Proposition 2.2 holds with Xn(<x) 
= 

l*(Xn, a), for all a in A and for 

all n > 1. Hence by Proposition 2.2, L. H. S. of (3.6) goes to zero uniformly 
with respect to a in A. Since A is arbitrary this proves (3.6). 

In view of (3.4)-(3.6), it is enough to show that 

P*v ^({1^(^)1 
> e}) ->0 as n -> oo, ... (3.7) 

uniformly with respect to (0O, G0) in compact subsets of 0 X *S. 

Again as Un (and hence Un) is a uniformly v^-consistent (II) estimate of 

0Q, it is enough to show that for any c > 0 and e > 0, 

P0O, <??(( I D?(?n) I > e} fl {V? I U?-0O I < c}) -> 0 as ? -> oo ... (3.8) 

uniformly with respect to (0O, G0) in compact subsets of 0 X *S. 

Now Vn\ Un?0O\ < c if and only if y/n 0o?c<^^n Un K\/n0o+c 

and by definition of Un, \Jn Unm an integer. Therefore Un can only assume 

values of the form ?/=^ where >Jn 0O?c < i < \/n ?0+c and there can be at 
yn 

most [2c]+1 such values. (This is so because given any two real numbers 

a < b, there can at most [6?a]+l integers in [a, b].) Thus (3.8) (and hence (3.7)) 

holds if ?7(I) of Lemma 3.1 holds with ft 
? I*. So, in view of observation 

(1), it remains to check conditions U(ii) and U(iii) with ft = I*. 

In view of observations (2) and (3), assumptions (B2)(a), (B3)(a) and 

(B3)(b)(i) imply condition U(ii) for the kernel I*. 

In view of observation (3) and a local version of Lemma 2.1, with ?x?X?? 

replaced by B(0O, 8^)xB(G0, S*0)xB(G0, 8*), one can easily conclude that Q = 0 

on B(0O, 8*0)xB(G0, 8l)xB(G0, 8*0) guaranteeing U(iii). 

Remark 3.5. The proof of Theorem 3.2 is similar to that of Bickel (1982) 
or Schick (1986) but differs in many details. In particular, we need uniformity 
unlike them. 

For the next result, we need the following stronger version of 

assumption (B3). 
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(B3s) There is a version of the optimal kernel ft such that 

(a) for all x in S, ft(x,., .)e ChQ(?X?) 

(b) for any compact subset 0O of 0, there is 8Q > 0 such that 

(i) (B3)(b) holds and 

(ii) sup [ J { sup | ft\.,6\ G' | /(., 6, G)d / (.)] < oo. 
(6, Q)G*oX?l 

l (0', Q')* B{($9 G), ?0) J 

We can now state the final result of this section. 

Theorem 3.3. Assume (Bl), (B2) and (B3). The estimate Tn(ft) of 0O, 
as defined in Definition 3.1, is UAN(II) with AV(l/I). 

Proof. In view of Lemma 3.1a and observation (1), we have to check 

conditions U(ii)?-U(vi) for the kernel ft. In the proof of the last theorem, 
we have checked conditions ?(ii)?U(iii) for the kernel I*. Also, observation 

(3) guarantees the continuity of (6, G)?> 1(6, G). Hence, in view of observa 

tion (2), the conditions U(ii)?U(iii) hold for the kernel ft also. So, it remains 

to check conditions U(iv)?U(vi). 

U(iv) (a) follows from assumption (B3)(a), U(iv)(b) from assumption 

(B3)(b)(i) and U(iv)(c) from assumption (B3)(b)(ii) and the definition of ft. 

U(v) follows from assumptions (B3s)(a) and (B3s)(b)(ii). 

U(vi) is a consequence of assumption (B3)(b)(ii) and observations (3)?(4). 

Remark 3.6. In view of observations (3)?(4), assumptions (Bl), (B2) 
and (B3s) imply I* is an EK (II) and for any compact subset ?0 of 0 and e > 0 

sup P% G ({Vn| Zn-TJp) | > e})-+ 0 as n-+ oo. 
(0>G)eeoX? 

?' ? 

Remark 3.7. As indicated in Remark 2.3, all the results stated in this 

section hold for the general semiparametric families satisfying BickeFs Condi 

tion C also. 

Remark 3.8. In view of Remarks 3.3 and 3.4, for Euclidian S and ex 

ponential / it is enough to check assumption (Bl)(a), i.e. the existence of a 

uniformly ^n-consiBtent (II) estimate of d0, and assumption (B3) or (B3s), 
i.e. smoothness properties of the optimal kernel. 

A 1-4 
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Appendix A 

Proof of Corollary 2.1.1. One uses an idea implicit in Bobbins (1964). 

Fix n > 1. Define 

an(xpnXli 0, G) 
= 

sup \Fn(y, x)-F(y, 0, G) \ 
ytRv 

for x e RP", (0, G) e 0 X &. 

then (i) an : (?2 x ?XA, ?(R*n X0X?))->(B, ?(B)) is measurable and 

(ii) for each x e Rp?, an(x, ., .) e C(?X?). 

Therefore, the set 

D : = 
{(x, 0, G) : an(x, 0, G) 

= 
sup_ an(x, 0', G')} 

(d',G')zex& 

is measurable. 

So, by the von-Neumann selection theorem [vide Theorem 7.2 of 

Parthasarathi (1972, p. 69)], there is a Borel-measurable map (?n, Gn) from 

RP? to 0xa satisfying 

<*>n(X> hi?), ^n(^)) 
= "tf_ ?n(*> #> ?)> 

outside a Lebesgue null set. 

Therefore, an(Xx, ...,Xn, 9n(Xl9 ...,Xn), Gn(Xx, ...,Xn)) 

J 
an((Xv ..., Xn), 0O, Gn) in Model I 

L an((Xv...,Xn),0Q,Go) inModel II 

outside a Lebesgue-null set. 

But, by Proposition 2.1 

(A.1) 

np? ?. 

an((Xv ...,Xn), 0O, Gn)-> 0 uniformly on 0 x S? 
, o? in Model I 

an((Xv ..., Xn), 0O, G0)-> 0 uniformly ouox? 
in Model II 

(A.2) 

From (A.l), (A.2) and condition (iii), 

\\F(.Jn, Gn)-F(., 0O, Gn)\\mp-+0 uniformly on 0XSw in ModeLL 

and 

l|P(-> $w Gn)-F(., 0O, GQ)\\sup-> 0 uniformly on ? X-S in Model II. 
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Let us now observe that assumption (Al) and condition (iii) together 
imply that the inverse map F(., 0, #)-> (6, G) is well-defined and compactness 

of 0X?S implies that it is continuous. The rest is easy. 

Remark A.l. Note that the boundedness of ? is needed only to ensure 

the continuity of the inverse map F(.,6,G)-> (6, G). 

Remark A.2. It is interesting to note that the null set of Corollary 2.1.1 

can be dropped in the following manner. First note that the compacntness of 

0X*S and the continuity of an(x, ., .) for all x together imply that the 

?-sections of D are compact. Next apply Corollary 3 of Maitra and Rao 

(1975) to get the required selection. See also Theorem 4.4.3 of Srivastava 

(1982, p. 106). 

Convention. For any k > 1 such that 0* : = 0 f] [k, ifc+1] ̂  <?, 

we shall use the notation (0n(k), Gn(k)) to denote the minimum distance esti 

mates considered in Corollary 2.1.1 for the models 

P?* : = 
{ 

? 
P^ ,. : (0o,{?*}i* ? i) e 

0*XSW} 

and 

nk. 
= 

{%Go-(e0,G0)e@kxsy 

Proof of Corollary 2.1.2. Let @0 be a given compact subset of ?. Let 

0 < S < 1 and e > 0 be given. We want to show that there is N > 1 such 

that for all n, > N, 

sup ( ? Pt>() ({\6n-0\ +d(Gn> Gn)>e})<S ... (A.3) 

( sup P%s ({\9%-d\ +d(Gn>G) > e}) < 6) 
(?,ff)e e0x.S 

where (8n, Gn) : = {0n([Tn]), Gn([Tn])). 

Fix an t] in the open interval (0, 0.5). Using uniform consistency of Tn 

choose and fix N0 > 1 such that for any n > N0, 

sup ( ft PeA({\Tn-0\ > n}) < ?/2 ... (A.4) 

( sup n,9({\Tn-0\>y})<dl2) 
(AO)?*oS.?? 
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Let us observe that by compactness of 0O, there are integers k and I 
i 

with I > 1, such that 0O Q (J 0*_/+i 
i-i 

Define 

i0=min{i> l:EieZ30o^U 
?*^-i} 

- ... (A.5) 

Then, there is a unique integer ka auch that ?0 ? U ?t +i-i 
j=i 

*o ?- . 

Using Orollary 2.1.1 choose and fix Nx > 1 such that for any n > J^x, 

aup sup 
Kj<h (e.{5?>i<<<:n)??oXS? 

( ,5 P"> {< ) (il^o-J+l)-?| +d(Gn{k0-j+l), G_?) > 
e}) 

< 5/8 ... (A.6) 

( sup sup p?g\q?n{k0-j+i)-6\ + 

d(Gn(k0-j+l), G) > e}) < a/8 
) 

Let N = N0 V #i- Then, for all n> N, 
L.H.S. of(A.3) 

sup (n Pe.) ({\6n-d\+d(Gn,G)>e}) 

sup ( 
n p,. ) ({Tn W]-i-v, ffl+i+v)}) 

+ i aup ( n ptf. ) 

X({I ?n(d]-2+j)-d\ +d(Gn([6]-2+j), G) > e}) 

< sup ( fi P9.)({\Tn-0\ > V})+?.S?8 

(= sup Pne,G({\?n-0\+d(Gn,G)>e}) 

< sup p??iG({Tni([e]-l-y,[d]+l+v)}) 
(e,G)ee0xg 

+ S sup Plo({\K(m-2+j)-d\+d(Gn([d]-2+j)fG)>e}) 
M(6,G)ePoX? 

< 
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< sup Pgf G({\Tn-d\ > ?/})+4.5/8) by(A.5) and (A.6)) 
(S, Q)ee0 x^ 

< 5/2+5/2 = 8 by (A.6) proving (A.3). 

Remark A.3. In view of Remark A.2, we can drop condition (ii) from 

Corollaries 2.1.1 and 2.1.2. 

For the proof of Proposition 2.2, we shall need the following two auxiliary 
results 

Lemma A.l. Let A be a nonempty set. Consider the following two families 

of probability measures on (R, ? (R)). 

*>00: = 
{Pn(.,*):aeA,n> 1} 

and 
^: = 

{P(,a):a4 

Assume that the following conditons hold. 

(i) ?P? is tight, 

(ii) F is tight as well as unifomly absolutely continuous with respect to the 

Lebesgue measure and 

(Hi) for any bounded continuous function g from RtoR 

sup | ?g(.)dPn(., a)? $ g(.)dP(., oi)\-> 0 as n-+ cc. 

Then, 
sup sup | Fn(x, <x)?F(x, a) | -> 0 as n->oo. ... (A.7) 
?M %*R 

where Fn(., a) and F(., a) denote the distribution functions corresponding to 

Pn(., a) and P(., a), respectively. 

Proof. Let us first show that for any x in R. 

sup \Fn(x, a)?F(x, a)] -? 0 as n-> oo ... (A.8) .- 
??>- 

' ' 
- 

Let e > 0 be given. Using uniform absolute continuity of IP choose 

and fix 8 > 0 such that 

sup | F(x+8, a)-F(x-8, a) | < e/4 ... (A.9) 
?8^4 

Define g : ?-> R by 
1 if y < x-8 

g(y) = < 

0 otherwise 
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Clearly, g is a bounded continuous function from R to R. Therefore by 
condition (iii), there is nx > 1 such that for all n > nv 

sup | ?g(.)dPn(.,*)-$g(.)dP(.,*)\ < e/4 ?M 

Therefore, for n > nv 

LHS of (A.8) = sup |Fn(x, oc)-F(x, a) | 
aeA 

sup | JV?,x]dPn(., a)-JV?) x]dP(., a) \ 
aeA 

sup I J{1(-.,.)( )-?( )W-, a) 
?64 

-/{!(?,.](')-fl<-)}<HV-.?) 

+/9r(.)?Pti(.,a)-J9r(-)dP(.a)| 

(A. 10) 

<sup[J 11<-.,,]( )-?( ) I ?IPX. ?)] 
?e? 

(A.10) 

here 

%)= i 

+ .Sup[/|l(_Wi:c](.)s-(-)|dP(.,a)]+T 

(A.9) 

< sup[JA(.,a)?P?(.,a)]4-|+T 

0 if \y-x\ > S 
? 

I y?* I otherwise 
2? 

(A.11) 

Clearly h is also a bounded continuous function from A to it. Hence, by 

condition (iii), let us choose and fix an n% > 1 such that for all n > n2 

sup |/?(.)dPn(.,a)-j?(.)dP(.,a)| <e/4 .. (A.12) 
aeA 

Let w0 =% V n2. Then for any n >w0 

LHS of (A.8)and(A.ll)< sup | ?h(*)dPn(-, oc)-fi(-)dP(.), (a)\ 
aeA 

+ sup [j?(.)dP(., ?)]+e/2 

(A.9) and (A.12) < e/4+e/4+e/2 = e proving (A.8). 
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Let us now prove relation (A.7) from (A.8). 

Using tightness of P& and P, choose and fix K > 0 such that 

sup sup Fn(?K, a) < e/4 sup F(?K, a) < e/4, ... (A, 13) 
n~&\ a .A a A 

I inf inf Fn(K,a) > l-e/4 and inf F(K, a) > l-e/4\ 
\n^l aeA ne A 

J 

Then, 

sup sup \Fn(x oc)?F(x a) | 
a A \X\^E 

< sup sup \F(x, <x,)?Fn(x, a)I + sup sup \Fn(x, a)?F(x, a) | 
a A x^-E *EA *&R 

^ max isup sup Fn(?K, a), sup, F(?K, <x)\ 
\m6A 

n&l aeA 
J 

+max fsup sup {l?Fn(K, a)}, sup {1?F(K, a)}] 
[a 

? n^l a A 
J 

<e/4+e/4 
= e/2 by (A.13) ... (A.14) 

Using uniform absolute continuity of p and compactness of [?K, K] 

choose and fix m ^ 1 such that 

sup sup \F(xf+1, a)?F(x?, a)| < e/4 .... (A. 15) 
aei *=0,1, ... , 2m?1 

where #< 
= ? 

K-{-= (-) K for i = 
0, 1, ..., 2m. m \ m I 

Using (A.8) choose and fix N > 1 such that n^ N implies 

sup sup | Fn(xi a)?F(x? a) | < e/4 ... (A. 16) 
aeA t=0,1, 2, ... , 2m 

Then, for n > AT 

sup sup | Fn(x, a)?F(x, a) | 
aeA \x\<,K 

< sup sup \Fn(xt, a)-F(xi, cc)\ 
aeA ?=0,1, ... ,2m 

-|- sup sup \F(Xi^1a)?F(xiOL)\ 
aeA t=0,1,... ,2m?1 

<e/4+e/4 = e/2 by (A.15) and(A.16). ... (A.17) 
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From (A.14) and (A.17) it follows that, for any n > N, 

sup sup \Fn(x,oc)?F(x,a)\ <e, 
aeA xeR 

proving (A. 7). 

Lemma A.2 (Theorem 7 of Ibragimov and Hasminskii, 1981, 365). 
Let A, Pa> and P be as in Lemma A.l. Assume that the following conditions 

hold. 

(i) Poo is tight, 

(ii) sup | ?eitx dPn(x, a)??eita dP(x, a) | -? 0 as n-+ oo. 
aeA 

Thus, for any bounded continuous function g from R to R 

SUP I ? 9(x)dPn(%, OL)-~?g(x)dP(., a) | -> 0 as n-> oo. 
aeA 

A proof of this result is given in Ibragimov and Hasminskii (365-366). 

Proof of Proposition 2.2. For any a in A, let Pn(., a) stand for the pro 

bability measure corresponding to the distribution function Fn(., a). Then 

condition (i), which is common to both Lemmas A.l and A.2, follows from 

the definition of Fn(., a)'s. Next, condition (ii) of Lemma A.2 follows from 

conditions (i)?(ii) of the proposition and the definition of Fn(., cx)9s by an 

application of a uniform version of the proof of Theorem 2.7.2 of Billingsley 

(1979, 310-312). Again, p being a singleton containing the standard normal 

probability measure, condition (iii) of Lemma A.l holds for it. The proposi 
tion follows by an application of Lemma A.2 followed by Lemma A.l. 

Appendix B 

Proof of Lemma 3.1. (/) For 6e?, define, 

Dni(d) = -L. s {ft(Xi, e, Gi)-ft(Xi, d0, g0) 

and Dn2(0) 
= 

Dn(6)~Dni(6). 
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Fix c> 0,e>0. 

It is enough to show that, 

and 

sup PU({|i)J)|>?/2}H0 ... (B.l) 
{0.-|0-0ol<c/?M 

?'"0 

sup P? ({|Dn#)| >e/2})-*0. 
{?:|?-0ol<c/J?} 

0> ? 

We shall only show that 

sup P? ({| 2)^(0) | > e/2}) -? 0. ... (B.2) 
(ftlfl-ftKe/J?) ?' ? 

The other statement will follow by a symmetrical argument. 

Now, for any sequence {#n}s.t. \6n?d0\ ^ c/\/? Y ^ 

E 
^Dm(dn) 

| Xz, ...,X r?-i 
I 

(*-[t1) = 
VL^ 

~ 
{/ ^ ?., G*)/(?, 60, G0)dfi(x)+0 

+(0n?6o) S f(x> #o> Go)f'(x> do> ̂o^M*)} [since f is a kernel] 

= - 
!??J-L{f>.-%) 

\/n 

[/{#*, 6n, Gi)-f{x, 60, G0)} 
{M^o)-M^Qo)} 

dfl{x) 

+ Sf(x> <??. Go) {ft*' 
g"' 

go)j/(X' 
** ?o) -/'(?, ?0,?0)} ?M*)] 

+Op? (1) by (iii). 
?o.eo 

Therefore, by conditions (i), (ii) and assumption (Bl) for any t? > 0 

? ({ SUP l^.?? (Z)?i(?)|iiZ4/...>i?[ii/ij)l>9})->0. 

...JB.3) 
Let us also observe that, for any sequence {0n} s.t. 10n?0Q | < c\y/n V* n, 

Var?oC?(> (.Dwi(?n)JZ2J 
^ > 

^?l) 

n 

Al-5 

J^fo 0?, GEn)-f{x, 0O, G0)?f(x, 60, G0]dfi(x). 
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Therefore, by uniform continuity of ft and uniform consistency of Gn 

(and hence #f ), we get for any t? > 0 

P[?({{e:1e4T<6M5>Va^GoM)l^Z--%])>^)^0 ... (B.4) 
From (B.3) and (B.4), we get, for any r? > 0 

P 
^PlGo({\Dnx(0)\>V}\X2,Xi,...,Xmiii)~-%O. 

... (B.5) 
{?:|??OoKc/V?} 

' 

Then (B.2) follows by D.C.T. from (B.5) with r? 
= 

e/2. 

(II) (A) First observe that, because of (B.l), there is a sequence {cn} 
of nonnegative real numbers increasing to infinity such that for any e > 0 

8UP _ pl Go({ I Dn{0) | > e})-> 0 as n-> oo. ... (B.6) 
{e-.\e?eQ\ <e?/N/?} 

?' ? 

Claim : Given any sequence {dn} of non-negative real numbers s.t. 

dn < cn Y n and dw f oo, 

P2 e I 
j 

There is a solution of (3.1) lying inside 

(*.--^.*- 
+ 

A_)))-> 
1?*^?. ... (B.7) 

Then (II) (A) will follow because given any arbitrary sequence {dn} 

increasing to infinity, one can always work with the sequence {d'n} defined by 

d'n 
= min {dn, cn} V n. 

Proof of the Claim Fix any sequence {dn} s.t. dn < c?, for all n and 

dn ? oo. By (B.6) 

^ro?-^l) 
-> O- - (B.8) 

Again, by condition (iv)(b), 

M -^ I ^(^^??)[p??9>6J}n>1iatight 
and by condition (iv) (c) and choice of {dn}n91, 

dn( i f (x, 0O, G0)f(x, 0O, G0)d/i(x))-> oo as ?-> oo ... (B.9) 

[assuming, without loss of generality, 

f f{x, 0O, G0)f'(x, 0O, G0)dfi(*) > 0]. 
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From (B.8) and (B.9), 

-4- S 
ft(Xi,0o?^,G*)+^ ft(x{,0o+^,G?) Vn * odd v Vn ' * even \ Vn ' 

te 
=> Point mass at ^ oo, 

tev&n 

+ ,JL 4^+^)] <-*))"> * - (B.10) 
!<*<* 

4nd 
*U({:7i[?. *(**-& *) 

l<i<n 

+ 
<L?ir(x"oo-^'??)]>z})->1' 

for any JiT > 0. 

Define, ^?iK({aJ) 

l?f?n 

+ 
,,? ?(* *+-&.*)!<-*} Ki<? 

nfor[ ,5. *(T^-^h*) 

then by (B.10), PJ Gq, (An,K({dn}))-> 1 as tt-*oo and by condition (iv) (a) on 

(a 

/j \ 
0o-7->#o+-7=) \f n \/n' 

Since {?n} was arbitrary, this proves (B.7). 

(II) (B) Suppose not. Then there is a sequence {dn} of nonnegative real 

numbers increasing to infinity s.t. dn < cn for all n and Pg G ({\/n 12^?0O| 

> dn}) J* 0, where {cn} is the sequence considered in (B. 6). [Note that, 
without loss of generality, we can assume ct > 0, dt > 0]. 
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Choose and fix a sequence of positive real numbers 

{??} * a- <"n < 
#L-- 

for all n > 1. 

Then, by y'w-consisteney of Un, 

Pn0oGo(W?\Tn-0o\ 
> dn, V?\ V?-8o\ 

< min {dn-ajn_v jlogn)}) J* 0. 

Consider B^k^ An,K({min(2andn_1-dn, -j log n)}). 

Note that in (B.7) one can easily drop ihe assumption of increasingness 

of{d?} 

By von-Neumann selection theorem choose a measurable function Sn 
which solves (3.1) on 

J3W)#. 

Define Cn = 
[\/?\Tn-6Q\ 

> dn, 

<\/?\Un-d0\ < min {dn-ccn dn_?, -j log 
wj J. 

Then on 
BntKPlCn> Sn solve8 0.1), \/n \ Sn? Un \ < min (dn-(xndn^, logn) 

whereas y/n \Tn-Un\ > anrfw-1 and 
Pjo^ (B^kO0?) ~r* ? contradicting 

the definition of Tn. 

(Ill) (A) Fix c > 0, 6 > 0 and r? > 0. To show that there is n0 > 1 

s.t. n > w0 implies 

PS ({ sup |DJ0)|>e})<7 
... (B.ll) 

Fix a positive number a which divides c. For 0 e 
j 0O-y=-i #0+ ?j=-1, 

define 
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%o0 (I ; >8?P , 
\Dje)\>e\) 

< P?o Oo( i SUP I Dn(6)~D^\0) | > 
e/2l) ?' ?\ l{0 = |0-0O| <c/n/?} .? " 

0. 
O\l{6r:|0-oo|<c/N/?} 

il 

m: 

<p??.??((?.. 
sup 

s p; 

{(c',c",G):\c'\, \c"\^c, \c"?c'\<*,G6B(GQ,dQ)} 

?'u? M i?{0, ? 1, ?2,...,?c/a} 
N VTC 'I J/ 

<7?P5 ( sup 

|/>.(*+w)-I>'(*+-w)l)+ 

v0?(l|B.(".+ ^)l>?/2!) 

< ? 
fi. ( sup e L <V<?0 \ 

{(e',o",G):|o'|, |o"|<|e"?o'| < a, 
0?B(<?o,*o)} 

+a| 
i^(..?0,?0)/'(.,?0)?0)^(.)|] 

+ 
?laA^(fl^(^^)!>e/2}) 

< 
-^ { f ?(. , 0O, G0) /(., 0O> ?0)^i )+J ^(., <?0, G0) /'(., 0O, ?0W )} 
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Let us choose a > 0 s.t. a|e and J < r??2. 
... (B. 12) 

Using (I) choose n0 > 1 s.t. n > n0 implies II < r??2. 
.,. (B. 13) 

Then (B. 11) follows from (B. 12) and (B. 13). 

(III)(B) Easy. 

(IV) An easy consequence of Proposition 2.2. 
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