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EFFICIENT ESTIMATION WITH MANY
NUISANCE PARAMETERS
(Part I)

By J. BHANJA and J. K. GHOSH
Indian Statistical Institute

SUMMARY. Consider the Neyman-Scott problem where we want to estimate the
common parameter 6 based on the sequence {Xp}n> 1, of independent random variables
with X; having the density f (., 8, &). Depending on the nature of the sequence {£,}n =1,
there are two set-ups, viz., the fixed set up where E¢’s are treated as unknown constants
and the mixed set up or the mixture model where §,’s are i.i.d with common distribution G.
In this paper, we shall define a criterion for efficiency in the first model in terms of that in
the second one and find an efficient estimate in the mixture model. The same problem in the
other model will be discussed in part II.

1. INTRODUCTION

Neyman and Scott (1948) were the first to point out that the method of
maximum likelihood fails to provide efficient estimates when the number of
parameters grows with the sample size n. Consider the following examples
introduced by them :

Example 1.1. Let {Xi} be a sequence of independent random vectors in
R?, components Xy; of X; being independent normal with mean g; and vari-
ance g2, Here o2 is the parameter of interest. It is easy to see that the
maximum likelihood estimate for o2 is not even consistent. It is also known
(see Lindsay, 1980, Pfanzagl, 1982, van der Vaart, 1987) that if p > 2, the
maximum partial likelihood estimate based on Xy—X; is efficient.

Example 1.2. This is similar to Example 1.1 except that the compo-
nents of Xy are independent normal with mean x and variance 7. Here p is
the parameter of interest. It can be shown that the maximum likelihood

A

estimate fi is consistent and asymptotically normal provided p > 3 and

n
n~1 X of is bounded away from zero, but it is not efficient. Bickel and
=1

Klaassen (1986) for p = 1, Bhanja and Ghosh (1987) and van der Vaart (1987)
for general p show how an efficient, asymptotically normal estimate can be
constructed.
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Lindsay (1980) and Bickel and Klaassen (1986) provide an extremely
useful general discussion of such problems. See also van der Vaart (1987).
(After this paper was submitted much of van der Vaart (1987) has appeared
in print, vide van der Vaart (1988).)

A little reflection shows in most problems of this type the m.lLe. of the
parameter of interest (f) will be inconsistent as in Example 1.1. However,
it is not easy to construct examples where this can be demonstrated mathe-
matically. The following is a new class of such examples.

Example 1.3. Let X, X,, ..., X, be independent random variables
with X;~ f(., 6, &) where the function f is given by

f(x’ 0, E_,) C= A(o, f) exp{0 ¢ (x)+& x}

for any real number x and for any (6, £) in Q, where

Q:={6,8): [exp {0 ¥ (x)+Ex} dx < o0}
and the real valued function ¥ is strictly convex or strictly concave.

Here, one can show that the m.le. § is inconsistent. The details of
verification will appear elsewhere.

The construction of efficient estimates in Examples 1.1 and 1.2 follow
quite different routes. In the following pages we develop a general theory
for constructing efficient estimates which is applicable to both these examples.
However the efficient estimate constructed this way for Example 1.2 would
differ from those in Bickel and Klaassen (1986) and van der Vaart (1987).

We first formulate a general model. For this purpose we shall use the
following notations. Let ® be an open subset of R with compact closure

0, E a compaot metric space and & the set of all Borel probability measures
on 8. The requirement of compact closure of ® can be dropped when 8 is a
location parameter, as in Example 1.2, and, more generally, when there is a
uniformly consistent estimate of §. Note that G is weakly compact. Equip

© with the Euclidean metric topology and & with the weak topology. Let
(S, 8) be an arbitrary measurable space. Let Fn denote the empirical
distribution function (e.d.f.) or the empirical probability measure based on
n values of a random variable, In particular, for n elements &;, &, ... £, from
B, denote F,(., £, 8y, ..., E,) by G,.

Model I. Let {Xi} be a sequence of independent random variables taking
values in (8, ) with the distribution of X; given by P"o’ & 0,0, & E.

(The probability measure P, . is assumed to be well defined for O 0, £ B).
The object is to estimate the so-called structural parameter 6,.



ESTIMATION WITH MANY NUISANCE PARAMETERS 3

In Model I, called the fixed set-up model by Bickel and Klaassen,
invariance of the estimation problem under permutations suggests restric-
tion to the symmetric, i.e. permutation invariant sub-o-field of §#. If one

n n
restricts I P,,o & to this sub-o-field, II P(,0 ¢, 0an be replaced by
1 ’ 1 s

n
z Py, /n! and one would expect, heuristically, on the
set of all 1 0t

permutations

mof {1,2, ...,n}

basis of the analogy between simple random sampling with and without replace-
ment, that Model 1 can be approximated by the following :

Model II.  Let {X;} be a sequence of i.i.d. random variables taking values
in (S, 8) with common distribution P’o G where for 4 ¢ S,

Poo,go (4):= fPao’: (4) d G(§).

Model II, which is often called the mixed or mixture set up, was first
proposed in the present context by Kiefer and Wolfowitz (1956). As pointed
out by Bickel and Klaassen, an analogous idea underlies Robbins’s develop-
ment of empirical Bayes methods to solve compound decision problems. A
mathematical justification in the latter context, is provided by Hannan and
Robbins (1955) and Hannan and Huang (1972).

The heuristic argument leading to Model II from Model I can be made

rigorous in our problem if the error of approximation in L;-norm of the
symmetrized measures in Model I and Model II (with G = (¥) tends to zero.

Unfortunately, it is easy to show that this is not trve. However, the
approximation can be verified directly for the special class of estimates which
Bickel and Klaassen call “regular”. The following definition gives the notion
of regularity and efficiency considered by them in a suitably modified
form that ensures uniformity.

Definition 1.1. (i) Regularity : An estimate T, of 6, is called

(a) regular in Model I if there is op : ® X @— R+ continuous s.t.

LT =007 Oy, G)ITT Py, g) = £ (00, 1)

uniformly on compact subsets of @ XE>
and (b) regular in Model II if there is op: ® X @— R* continuous s.t.

LT ,—00)77 400, G)| Py ) = LN, 1))

uniformly on compact subsets of ® X &,
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(i) Efficiency : Among the regular estimates in a particular model
any one for which the asymptotic variance is minimum is called an efficient
estimate in the relevant model.

As pointed out by Bickel and Klaassen (1986) if 7', is regular in Model I
and efficient in Model II, then it is efficient in Model I. Thus it is enough
to discuss efficiency problems in Model II.

In a thesis, van der Vaart (1987, 103-104) has pointed out that this for-
mulation of efficiency in Model I is not wholly satisfactory, see in this connec-
tion our Remark 4.4.

The estimates introduced by Neyman and Scott (1948) which are

analogous to Huber’s M-estimates and referred to as C,-estimates by
Kumon and Amari (1984) are regular both in Model 1 and Model II.

These estimates are defined as a solution of
Y (X, 0)=0 .. (L1)
with the function i satisfying certain regularity conditions. Moro pre-

cisely, to ensure uniform asymptotic normality we strengthen the conditions
given in Amari and Kumon (1985) as follows :

Definition 1.2. Any Borel-measurable map 3 from SX® to R is called
a C-kernel, if

(i) for each z in X, (z,.) is continuously differntiable on @, with
the derivative given by the function ¢¥'(z,.) and both ¥(z,.) and ¥'(z,.)

have continuous extensions on @,

(i) JY(, 0)dPy = 0V (0.6),

(ii) sup__ / ¥¥(.,0) APy —> 0 as a—> ©
(a: f)ea X & {lw (-; 0)' >a}
and

(iv) @) [¥'(.,0)dPy, 0~ (6,

(b) sup _ [ A{sup|¥'(..0')|} dPy, < 00
(6,E)eox & 6'eeo

Given any C;-kernel ¥, any estimate T, which is, simultaneously,
4/n consistent for @, and a solution of (1.1) with probabiliity tending to one,
uniformly on compact subsets of @ X E is called a C,-estimate corresponding to)r.

For a fixed @, according to semiparametric theory, there is a function
v(.,., @,) (vide (2.2)-(2.4)) along with an estimate T, (G,) which solves

Y 7 (X40,6G,) =0 .. (12)
=1
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with probability tending to one and is efficient at (6,, G,), provided certain
regularity condition hold. If G is unknown, a natural thing to do is to solve

2 (X, 0,8,)=0 o (L3)
i=1

where (7, is a consistent estimate of G,.

Using a heuristic Taylor series expansion of the L.H.S. of (1.3) w.r.t. 8
and G, one can show that (1.3) provides an efficient estimate if @, is n% con-
sistent, for a suitable & > 0 or @, is a consistent estimate independent of
the Xs ¢ is a “nice” function of (6, &) and

§U(,0,6)d Pyt =0 (6, G, @) o (14)

holds, which is very similar to condition (ii) of Definition 1.2 and plays a
similar role.

For mixture models (1.4) always holds but unfortunately, in general,
it is very difficult to prove the existence of an n° consistent estimate of G,.

In our original unpublished work done before the publication of Schick
(1986), we were able to resolve the problem only for the examples of Section
5 and Section 6, with stronger regularity condition than in the present version.

However, the requiremeht of n® consistency of Gy, can be dropped using
the following idea of Bickel (1982) and Schick (1986), who show how, in effect,
one can use an 1dnependent estimate of G,. Thus instead of (1.3) one solves

z w(x‘,e G+, 3 ¢(X,,e Gp) = 0 .. (15)

a”l +1

where G,,;, G, are consistent estimates, @,; is independent of X, ..., X -

and @,, is independent of Xy sy o X, and N3—> 00, B—N;—> OO,

It is clear that such a method will also provide an efficient estimate in
a general semiparametric problem if a condition like (1.4) holds. The equa-
tion can be shown to hold quite generally in models satisfying Bickel’s condi-
tion C' (vide Remark 2.3) or models considered in Hasminskii and Ibragimov
(1983, § 3). It seems that our construction of this sort is a part of the folklore
of the subject. Certainly a streamlined version of it, using one step discretized
Newton-Raphson method, seems implicit in Bickel’s. construction of adaptive
estimates in orthogonal cases and has appeared recently in an explicit form in
Schick (1986, 1142-1144) who also points out the importance of (1.4).
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See also van der Vaart (1987), who introduces (1.3) but abandons it in favour
of the alternative one-step discretized method. We have given in Section 3
both our original version, in which one solves (1.5) leading to an intuitively
plausib’e estimate but requiring stronger conditions, as well as the streamlined
discretized version of Schick (1986).

Section 3 consists of a uniform version of Schick’s results under stronger
conditions. Under same conditions we get analogous results for Model I,
i.e., the original Neyman-Scott formulation, in Section 4. Unlike the earlier
treatments, e.g., van der Vaart (1987, 1988), we do not assume that the
empirical d.f. of the nuisance parameters converges weakly. It is the relaxa-
tion of this assumption which requires that we have a aniform version of
of Schick’s results. As to the proof, the main new feature is that a preli-
minary randomization over indices is needed before applying the techniques
of Section 3.

In Section 4* we also indicate briefly (vide Remark 4.6) how the results
of Section 3 and 4 can be modified when the dimension of Xy changes with 4.
Such problems were also first posed by Neyman and Scott (1948). Recent
references are Lindsay (1982), Kumon and Amari (1984) and Amari and
Kumon (1985).

It must be admitted that our conditions are somewhat ugly. Technically
speaking, they ensure uniform continuity or uniform integrability of f'/f!/2

or the optimal score function 3. The main conditions that are hard o check

are those imposed on . In the discretized version, ¥ must be continuous
in 8 & @ and in the other version, one needs also something like differentiability
in 6. In our problem, as well as, other semiparametric problems, it is not
clear how to check this or even whether such conditions are expected to hold
in general. For our problem this can be checked in two special cases illus-
trated by Examples 1.1 and 1.2, where one either has a special factorization,
of the density or 0 and @ are orthogonal in, the sense of semiparametric theory.
These two cases are discussed in Section, 5.

It turns out that the conditions of ¥, can also be checked (via results on,
compact operators acting on a Banach space) if one has in addition indepen-
dent observations with distribution G. This allows us to provide a direct
application of the results in Section 3 to the following problem solved in a
different way in Hasminskii and Ibragimov (1983, § 3). Suppose one has
a channel in which 6 is the input, £ i3 the noise and X is the observable output.

* to appear in the next issue of Sankhya.
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In such a case X will have the distribution in Model II. But while the £
associated with a particular X will be unknown, one can get independent
observartions to study directly the distribution of noise. In other words
one has in addition to Xy’s, independent observations ¥;’s which are iid.

with distribution G%. The problem of estimating 6 is solved in Section 6.

A preliminary announcement of these results appeared in Bhanja and
Ghosh (1987).

In subsequent communications we hope to study the problem of esti-
mation, of &;’s and tio report some simulation studies to evaluate the behaviour
of our estimate of §. The simulation studies, made for Example 1.2 with
p > 3, are quite promising and indicate the asymptotics works well
for n = 100.

Let us summarise the major new contributions in this paper. We pro-
vide, a uniform version of Schick’s results and then, apply them to the original
formulation of Neyman-Scott problem where the convergence of empirical
distribution of £;’s is not assumed. For Example 1.2 we get new asymptoti-
cally efficient estimates for all p. Using new techniques, a new solution is
proposed for an ingeresting problem of Hasminskii and Ibragimov.

2. NOTATIONS AND PRELIMINARIES

In this section, we shall introduce some notations and give some preli-
minary assumptions, definitions and results most of them in a form applicable
to any semiparametric family involving (4, &). See in this connection Remark
3.5 in next section. From Section 3 onwards @ is usually a compact subset of
a Euclidean space and & is in the space of distribution functions equipped
with the weak topology.

To start with. let us introduce some notations which will be used later in
appropriate situations :

(1) Let (X, d) be a metric space. For any z in X and for any positive
number &, we shall use the symbol B(z, §) to denote the open ball of radius
0 around the point . In symbols,

B(x,8): ={yeX :dz,y) <0} ¥xeX, V>0

(2) If X is a Banach space, we shall denote the unit sphere around the
point zero by S(X). In symbols,

8X):={weX :|x| =1}
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(3) For any real valued function ¢ on X X Y, we shall denote the ex-
tended real valued functions sup é(. ,y) and mf é(.,y) by (., Y) and ¢(., ¥),
respectlvelv In symbols, '

b, ¥): = sup $(z,y) and g(z, Y) = inf ¢(z,y) for all zeX.
yeY
Similar notations aro used for the functions sup @(x, .), inf ¢(z, .) ete.
zeX zeX

(4) For any fun.ctlon ¢ : 0 > R which is differentiable on §, we shall
denote the function 3 ¢ by ¢’. In symbols,

') : = = 50 ¢(6) for all 4 in @.
(6) Let X,, X,, ..., Xj be topological spaces one of which, say X 0 is a

n
closed subset of the real line. Let X = Il X;. Let r, be a positive integer.
i1

8 = ) )
0 otherwise

Let Csl, s5yenerty, (X) D the set of all continuous functions ¢ from X to R

o .o
such that for any 1 <j <7, 77 ¢ exists onint (X) with a continuous
iO . . .

Define {si};<s<m PY

fori=1,2,....,m

extension on X.

Remark 2.1. For the special case where X, ..., X,, are compact, define
from C, (X) to Rt by
m 1:82: 0418

I ”81.82.-. '8

16 Uy, 0.6 ‘ o, ¢ H forallginC, , ., (X).
Then one can easily show that
@ | ||81’82, ooty is & norm on C'a1 o5 (X) and
() (Cysgcrtm, | lay.sg..0.s, ) 18 & Banach space.

In practice, we shall take X to be ® or OX& or Sy X OX G

or 8,x 8, Xx@X & where S, is a compact metric space (vide Model ITI of
Section 6), with obvious choice of 7, and r, = 1, 2.
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(6) For any probability space (Q, A, P) we shall denote the space of all
square integrable functions whose expectations are zero by LY(P). In symbols,

LYP) : = {¢ € Ly(P) : Ep(¢) = 0}.

Convention If P < < Q, Ly(P) =L )and LYP) = LY ( ap )
not aQ

(g

not

We shall need the following useful definition.

Definition 2.1. Let (Y, p) be a metric space. Let ¢ be a continucus
map from OX & to Y. Call a ¥ valued statistic Ty a uniformly consistent
estimate of P(6y, @) in Model I (¢(0y, G) in Model 1I) if for any compact

subset @, of @, for any ¢ > 0 and for any 0 < & < 1, there is Ny > 1 such
that for all n > N,

n
gy ( n P, ) ({p(T, (00, Gn)) > €}) < 8
(00s&1}y ¢ y < ) 8O0 X 8™ ' i=1 0s &4 el

foo, Gsligox g Pgo, e PTn B0y, Go)) > €}) < 9).

As a special case of the above definition, we can, define the notions of uni-
formly congistent estimates of 8,, G, or (6,, G,,) in Model I and 6,, G, or (6, G)
in Model II.

Convention. Throughout the following discussion we shall abbreviate
the phrase “in Model I”(II) by (I)((II).

Congider the following generalisation of the Glivenko-Cantelli Lemma.
Proposition 2.1. Let X,, ..., X,, ... be a sequence of independent random
vectors in R?, with X; having the distribution function Fy, then, for any € > 0,

. 1 » {
Su P F(,X,..X)——2XF
{Fk}z-lpec'}” Fipeees P ({ W L o

where F denotes the set of all (probability) distribution functions on RP.

>e}) — 0 asn—0
sUPp

One can prove this by an easy modification of the argument in Loéve
(1963, p. 20).

As a corollary to Proposition 2.1, we shall now prove, using a méthod
of Robbins (1964), the existence of a uniformly consistent estimate of (6,, G,)
in Model I and (6,, G,,) in Model II.

For this purpose, we shall need the following 1den.1nﬁab1hﬁy assumption.
A 1-2
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(Al) For each n > 1, P and P% are identifiable families in (6, @) and
(6, G,,) respectively, where

Pi:={Ply:(0,0)ecOxg)
” ~ —
and Pj:= {1'1[ Py, 10, i < 15,,)6@)(.5”}.

Let us now state the corollary.
Corollary 2.1.1. If (i) (S, 8) = (R?, 8(R?)) (it) Py,¢’s are dominated
by the Lebesgue measure and (1i3) (6, )— F(. , 6,G) is continuous, where for any

6,8 e®xg, F(.,0,Q) denote the distribution function corresponding to Py
and the topology on &, as considered in Proposition 2.1, is generated by the sup-
norm, then under assumption (Al) the following holds. There is a statistic

@.. @‘n) which is uniformly consistent estimate of (6, @,) tn Model I and (6,, G,)
in Model II.

The proof is given in Appendix A.

The following result shows that we can drop the condition of compactness
of @ at the cost of the condition of existence of a uniformly consistent esti-

mate of §,.

Corollary 2.1.2. Consider Model I and Model 11, as defined in Section 1
with the only exception that © is allowed to be unbounded. Assume (Al). If
conditions (i)—(iis) of Corollary 2.1.1 hold and there is an estimate T of G, which
18 uniformly consistent in Model I (II), then there is a uniformly consistent esti-

mate (8,,, @n) of (6, G,) in Model I ((6,, Gy) in Model II).
The proof is given in Appendix A.
We shall also need the following definitions.
Definition 2.2. Call an estimate 7', of 6, a uniformly +/n-consistent esti-
mate of 6, in Model I(II) if for any compact subset @, of @ the family of laws
{ (valT.—001 T Payg): 0o fidraisn e @0 > 1)

({L(v/n(T,—6,) |P30’Go) : (0, Gy) € Oy X G, m > 1})
is tight.
Definition 2.3. Let T', be an estimate of 6, and let ¥ be a Borel measur-
able map from S#Xx @ to R. Consider the equainon
W(X,, Xy, ..., X,), 0) = 0. e (20)
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(a) Call T, a y/n-consistent solution of (2.1) in Model I (II) if for any
(Ops {Ei}1< i n) € OXEn (for any (,, G,) in @X Q) the following hold.

(i) ( ﬁ Py g.) (7", solves (2.1)) = 14-0(1)
g=1 O

(on, G’ (T',, solves (2.1)) = 14-0(1))
(ii) T, is a 4/n-consistent estimate of 6, in Model I(II)

and (b) call T, a uniformly +/n consistent solution of (2.1) in Model I (II) if
for any compact subset ©, of @, condition (a) holds uniformly on @yx E*
(X Q).

Definition 2.4. Call an estimate 7T, of 6, regular (I) ((II)), or more
accurately wniformly asymptotically mormal in Model I (II) with asymptotic
variance 0% [in short, UAN (I)((II)) with AV ¢%], where op is a continuous
function from © X & to R, if

(Ft Py &) (Cv/nlTu—00) <o) —0(e 770y, &)

i=1

sup
(00 {€8}) ¢ 5 n)® 0% E"

S sup | Py T,—06, 2})—O(x 0516, Gy))| = 0
0 rix g o 1Pl aVelTw=t) < D—®(z o7 (60 Go)) |

sup
ze R

as n— oo, for any compact subset ®, of @.
We note the following.

(I) As expected, for any concept defined through Definitions 2.1—2.4,
the Model I-version is stronger than the Model II-version.

Let us now state a generalized version of the Lindeberg-Lévy central
limit theorem where the convergence is uniform in sup-norm. We shall
need this result in the proof of our basic result Lemma 3.1 in Appendix B.

Proposition 2.2. Let A be a non-empty set. For each o in A, let {X,(0)}n=1
be a sequence of independent random variables with mean zero and finite variance.
For each o in A, for each n 2> 1, define 8,(x) and s, () by

8,@): = % Xi(e) and s,(@) : = +/Var(Sa(@)} = é Var({Xi(e))

i=1

and denote the probability distribution functions induced by X () and S, ()/s,()
by G,(. , &) and F (. , @), respectively. If
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(i) inf Uminf[ | 22dG,(x, @)] >0

a€d 1w
and
(i¢) sup limsup [ [ 22dG,le, oc)]-—)O as K— o
€A B> 1zl 2K
-— l n
where G,: == Z Gy for all n2> 1,
n =1
then sup sup |Fp(x, x)—®(x)]— 0 asn—> oo
acd zeR

The proof is given in Appendix A.

(IT) Instead of assuming the obvious uniform version of Lindeberg’s
condition, we are assuming a stronger but more easily verifiable pair of condi-
tions, viz., conditions (i) and (ii).

Definition 2.5. We shall call a function ¥ : X ® X &— R a kernel if
Y(., 0, G)e LY(Py,q) for all (9, @) in ©®% .8, and denote the set of all kernels
by K.

Convention. Given any two kernels i, ¢’ such that

Y(.,0,6) = Y., 0, @) ae. [P(-), a ¥ (6, 8),
we shall call each a version of the other one.

Consider the following assumption :

(A2) There is a o-finite measure g on (S, 8) such that

Poog< <p¥(0,6)e0xg

(ITI) In available semiparametric literatures, (A2) is always assumed.
So, we shall assume it for the remaining part of this section and the next three
sections. However, this condition will be dropped in Section 6.

(IV) TFor the special case of the mixture models, (A2) is equivalent to

Py < < n¥(6,€) e OXE.

Define f:0x8— L} (u) by
F,0,0): = ‘%ﬁ X (0, eOx Q.

Convention. For £e¢E, we shall use the notations f{(.,6, d;) and
f(. , 6,€) interchangably, where d; denote the point mass at {E}.
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From the general semiparametric theory, the -score sg : §X Oxg—>R
should be defined by -

so(x, 0, G) L= % 1{f(-,0,@)>0} (x) ees (2.2)

for all (z,0, ) e Sx OXQ.
Under the following assumption s, is well-defined and belongs to K.
(A3) (a) For each (x, @) eSX&, f, .,4H eC, (d),

(., 6,6)
(b) I f(. s 0’ G)

In passing, we remark that, (A3) will be assumed to hold throughout the
remaining portion of this paper.

dp()<oo¥(0,0)eOx8.

Let us now observe that f has an obvious linear extension on Ox A,
where A : = set of all signed measures on E. Let us denote this extension
also by f.

(7) From now on, we shall denote by A the extension of the likelihood
ratio defined by

flx, 0', M)

A, 0,G,0', M) : = 1@ 0,0) Lisc, 0,6 >0 (%)

for all (z,0, G, 6, M) e SX OX GX OX M.
Consider A, : = {M e M | M(E) = 0},

For any (0, G) e ®X g, define
Mye={Me M, :A,0,G, 0, M)eLy(Py,¢q) and

I l{f(u 0, G)=0} f(‘ ’ 0, M) dﬂ(.) — O}
and
7lgo: = {§ € LYPy ) : 3 M € My qsuch that

$=A(,06,G,0, M) ae.[Pyl . (23)

The elements of the space 77, , may be thought of as the ‘directional
scores’ with respect to small variations in ¢. However by no means it is the
set of all directional scores with respect to G.

Remark 2.2. Under assumptions (A2)—(A3), for each (§,G)e®x g,
the closed linear subspace of L3(f(., 6, G)) obtained by taking the closure of
the linear span of sy(. , 6, G) and Ny g gives our tangent space Z,, at (6, G),
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which is isometric to that considered in Scbick (1986) and is the same as that
congsidered in Lindsay (1980), Bickel (1982), Bickel and Klaasssen (1986) or
van der Vaart. (1987)

Following the above authors, let us now define an optimal kernel (1/7)
and the information (I) by

U(.,0,6): = Proj, {s(.,6, &)
0.q
¥ (0, G) . (24)
16,8 : = 9., 6, ANy o, e
We shall now establish (1.4) for the general semiparametric models as

well as the mixture models under different regularity conditions. Let us now
write down these conditions in the form of two assumptions.

(GA4) | f;ﬁ z él)) du() < ooforall 6,6, M)e® x Ex A,

(A4) For a.ny 6e®, (@A) [9(.,0,Df(.,0, &) du.) is a continuous
map from @x & to R.

We are now in a position to state the following result.

Lemma 2.1. Consider (a) an arbitrary semiparametric model where (A2),
(A3) and (GA4) hold or (b) a mixture model where (A2)—(A4) hold. In either
case,

[0, 0,Nf(.0,@) dp()=0%6,6a) . (2.5)

Proof. Let us start with the following observation which is an obvious

consequence of the fact that 37; is & kernel

[P 0,0f.,6,6)du.) =06, .. (26)
So, it remains to show
FC0,0f.,0,F—@du) =066 ¢) e (227)

For the general semiparametric models use (GA4) to conclude that
A.,0,G,0,F—G)e Nog (0,3, G). Then (2.7) follows from that fact

that Y(., 6, @) e N} ¢ ¥ (0, Q).
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For the mixture models, let us observe that, for any (6, G,¢) with
0, e®xg and ¢eLYP), A(.,0,G,0,0dG)eNyq proving

[P, 0,0f(,0,d@)du() =0 . (28)
for all (9, @, ¢) with (6, @) e ®x.Q and ¢ ¢ LYG).

Now for any o-finite measure v on (£, & (E)), let g, denote the set of all
probability density functions with respect to » those are bounded and bounded
away from zero. For any geg,, let G denote the corresponding probability
measure and denote the set of all such G’s by &, , i.e.

8, :={G:g9eg,}.

G+
2

.

Let us consider (0, G, ') e®x 8% G. Define v =

Casel. G,G,e8, Letg,g be versions of %G;-,%—Which belong to g,.

Put ¢ = g_;g in (2.8). By an easy algebra one can show that f(. , 6, ¢ d@) =
f(., 0,3 —@), so that (2.7) holds for the given point (0, @, &).
Case II. @, G’ arbitrary. Let g, g’ be any two versions of e a.nd% ,

respectively. One can get two sequences {g,}, »1 and {g,}s =1 of functionsi n
g, such that |jg,—g llgm =0 and |lg,—¢'|| Lym = 0. Clearly this implies

@
that G, == @ and G, == G. Again by Case 1, (2.7) holds for (6, &,, &),
for any » > 1. Hence by assumption (A4), (2.7) holds for (6, G, ).
Remark 2.3. Note that Lemma 2.1 (a) holds for general semiparametric
models satisfying Bickel’s condition C, i.e. models with the space @ of nuisance

parameters convex and for any z, 8¢ S X O, f(z, 0, .) an affine function, with
the additional condition that & is compact, The corresponding result for the
orthogonal case was noted by Bickel (1982), vide his remark before Condi-

tions C and S*.

In order that (1.2) makes sense, let us make the following assumption
which is a local version of (Al). :

(A5). I(6, G) > 0 for all (6, G) in OX Q.

For the next two sections, we recall Definition 2.5 and introduce the
following notations.

(8) Let k*:= (e : Py al{|¥(..6,6)] > 0) > 0%, 6.
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We shall denote by J the function from ® x @ X #* to R defined by,

_ V0,0 (06 dp)P
JO.69) = 750,07 6, 6) a0]

for all (0, G, ¥) e @ X @ X R*.
(9) Let o™ :={fesk”: JO G ¥)> 0% (4, G) We shall denote
by V the function from ® X @ X #** to R defined by
V@, G, ¥) . =1/J0, G, )
for all (0, @, ) € OX @ X K*.
Note that

(V) Obviously, (A5) implies {5 € AK* and J(6, G,@) =10, G) ¥ (0, Q).

(10) We shall denote the Prohorov metric on & by d. In other words,
the metric d is defined as follows :

Let p denote the metric on E. For any € > 0, for any AC E, let 4,
denote the set {£€ A4 :p(E, 4) < ¢e}. We can now define d by the formula
d(Gq, @y) = inf {& > 0 : Gy(4) < Gy(4%)+e and Gy(4) < Gy(4?%)+e, for all

4 in 8 (B)} for all G,, G, ¢ G.

Later we shall need an estimate of distribution function based, say, only
on X¢’s, ¢ odd, or only on Xy’s, ¢ even. This is formalised below.

(11) Let (4, A), (B, 8) be two measurable spaces. For each n > 1,
let ¢y be a measurable map from (4, A)* to (B, 8). For each n > 1, we
shall define two more measurable maps from (4, A)* to (B, 8) by the relation

P {athsicn) = Pn—in2({2thgica, ¢ 0dd)
and
Pi{athigicn) = Pimp({athcicn, @ even),
for all {aghicicgn € 4.

3. MIXTURE MODELS

In this section, we shall state one auxiliary result and prove two main
results in, the mixture model. The auxiliary result will give conditions on
the density function f and & kernel r (vide Definition 2.5) so that there exists
an estimate T'n(y) of 6,, which is a uniformly +/n-consistent solution (II) of

2 (X0, 085+ = (X0, §) =0 . (30)
15, e,
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(vide Definition, 2.3), where d,, is a uniformly consistent (II) estimate of G,
(vide Definition 2.1) and GZ and G2 are obtained from dn using even and odd
numbered observations, respectively (formal definition is given in (11) of
Section, 2). Further conditions on 3, guaranteeing uniform asymptotic
normality (II) (vide Definition 2.4) of such estimate 7',(})’s are also given.
The two main results will prove optimality of, respectively, Schick’s
and our estimate under the assumption that a simpler version of the codi-

tions mentioned in the last paragraph hold for f and the optlmal kernel ¥
(vide relations (2.2)—(2.4)).

Before stating the auxiliary result, let us note the following assumption
(B1) (a) There is a uniformly 4/n-congistent (II) estimate U, of 6, (vide

Definition 2.2) and (b) there is a uniformly consistent (II) estimate @‘n of @G,
(vide Definition 2.1).

Let us now give a rigorous definition of our estimate T,.W).

Definition 3.1. For any kernel ¢, we shall define the estimate T',(y) as
a solution of (3.1) which is nearest to U, if there is a solution, of (3.1) lying in
(U,—log n/+/n, U,+log n[4/n) and equal to U, otherwise. This can be done
in a way that ensures measurability. '

Let ¢ be a kernel. Fix (6, G,) in ®X g. Define a stochastic process D,
indexed by 6 as follows. :

D,(0) = 7 2{¢(X¢,9 GE)—-;&()Q, 60.G)+(O—80) /(.0 Golf'(-.00.Goldul.)}

1odd

+7— = X+, 6, G)—y(Xs, 0, Go)+(0 60) 1/ (.00 GO)f (-, O, Gy d.u( )}

icvun
for all 4 in @.
Consider the following conditions :

(Al Oy Gy 0, G)— 2
&) I{ ( °(0‘j_ 00)G°) _1 —385(. B, Go)} F(., 0y, Go)d p(.)—> 0 a3 6> 6,

where s, is the kernel defined by equation (2.2).
(ii) There is 8},:)” @, > 0 such that

@) TH5 0,6 O Go) ) < 0o 3410, @) ¢ BlOo 03 )% Bl6od) g,

60: Go,

and (b)(o, o)l_i.n(loo, &) (. 0, &) =Y., 6y, Go)}* f(., 0o, Go) dp(.) = 0.

Al-3
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(iii) Assumption (B1)(b) holds with a choice of fr*n 80 that for any ¢ > 0
and € > 0,

sup Py n .,0,@‘ ., 0,Gy) du(.)] > e})— 0 as n— co.
0r 10 Pl {IVn (.0, 010 6, G) dut)| > &) ,

(iv) (a) Thereis 6® > 0, such thatfor allzin S and G in B(G,, 6® ),
90-00 00'00
Y(x, ., G)eC (B(6y 6@ ),
008y

(b) [ ¥ (., B, Go) f(- .00, Go) dpi(.) < 0o0.

(This condition follows from (ii) (a) but is given separately for ease in
later references.)

(c) I'ﬁ (-5 60, Go) f'(. s 0y, Gy) du(.) # 0.

(v) There is 8;3)6, >0 and A(., 60, Gy) e Ly(f(., 6, G,)) such that
0%

(.0, A—y(.,0,6)|<|0—0|A(, 6, G,)
for all 6,0’ in B (6, 8® ) and G in B(G,, §® ).
006y 05'G,

Clearly, one can, without loss of generality, assume

oW =B =40 =4 (say).
000y  0pG, 058,

Let 8, be as above. For any condition C among (i)—(v), let UC denote
the condition that C, with 6,, 6, 6’ replaced by 6, ¢', 6” and G, G replaced by
G, @&, holds uniformly with respect to 6, §’, 8” in B(8,, &,) and G, G’ in B(G,, 8,).

In addition to U(i)—U(v), we shall need the following condition.
U(vi)(a) sup {w.0.0 > &)y ¥, 0, )f (.0, Q)du(.)}/J (6, G, ¥)]
(6,@)€ B(6,,8,) X B(Gy,8,) —0as Koo

and (b) (0, @)> J(0, G, ) is continuous, where J is the function defined in
(8) of Section 2.

Note thati, because of compactness of .2, one can without loss of generality
assume that the number d, considered in U(i)—(vi) depends only on 6,.

We can now state the auxiliary resuls.

Lemma 3.1. Assume (Bl). Fix (6, G,) in ®X.Q. Let y be a kernel.
Let D, be as defined in the relation (3.2). Also, whenever it makes sense, let
T (¥) be the estimate defined in Definition 3.1. We can draw the following
conclusions.
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(I) If conditions (v)—(i43) hold, then for all ¢ > 0 and € > 0

sup P ({|D,0)] > €})> 0as n— .
{6:160) < o/yn) %0

(II) If conditions (i)—(iw) hold, then
(A) for any sequence {c,} increasing to infinity,
P:o"’o ({There is a solution of k3.1) lying inside the interval (Gy—cn/v/n,
OyFcp/v/n)})—> 1 as n— oo

and (B) under assumption (B1) (a), T, (¥) is a +/n-consistent solution (II)
of (3.1)

(III) If conditions (i)—(v) hold then
(A) foranyc >0and € > 0,

( sup |D,(0)] > €})—> 0as n—>
%G " {0: 16— 6 < ofy/ 1}

and (B) wunder assumption (Bl)(a)

sup| Pt ({v/m(T,(§)—00) < &})—® (x/V (6, Gy, ¥))| = 0 as n—> oo,
zeR 070

where V is the function defined in (9) of Section 2.

(IV) For any conclusion C among (I)—(IT1) let UC denote the conclusion
that C holds uniformly with respect to (0, G,) in compact subsets of @ X G. Then
U(1), UII) and U(IIL) (A) hold if the relevant conditions among U(i)—U(v)
hold whereas U(III) (B) holds if U(i)—U(vi) hold.

The proof is given in Appendix B.

Remark 3.1. Condition U(iii) is a uniforn'lv version of condition (2.8)
Schick (1986, p. 1144). For C;-kernels this condition holds by definition.

For the optimal kernel ¢, in view of Lemma 2.1, this condition holds even for
the general semiparametric families satisfying Bickel’s Condition C, provided
suitable regularity conditions hold (cf. Remark 2.3).

Remark 3.2. Note that for any kernel i,

]
7 [J¥(.,0,0)f(.,0,G)du(.)] =0 4 (6,Q)
under suitable regularity conditions, which, in turn, implies

W, 0,0, 0,G)dpu() = —[¥(.0.G)f(., 6.G)du() ¥ (6, G)
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This will help in putting the Taylor’s expansion used in the proof of the above
result in the usual form This idea goes ba.ck to Bickel (1975, vide relation
(2.8) of page 429).

Let us now consider the following

Definition 3.2. Any kernel  satisfying the conditions U(ii)— U(vi) will
be called an estimable kernel in Model II (or in short, an EK (II)) and any
uniformly +/n-consistent solution (II) of (3.1) (vide Definition 2.3) will be
called a generalised C,-estimate in Model 11 correspondmg to 1,0 (or in short
a GC(II) estimate). :

In view of Definition 3.2, conclusion U(III) (B) of Lemma 3.1 can be
restated as

Lemma 3.1a. Assume (Bl). If f satisfies U(i) and ¢ is an EK (II),
then T,(¥) is a GO, (II) estimate (corresponding to ) as well as a UAN(II)
estimate with AV V(. ,.,¢¥).

Ezxample 3.1.  All C,-kernels are EK(II) and all C,-estimates correspond-
ing to it are GC,(II) estimates.

Example 3.2. 1t can be verified in several cases that y = f’/f is an EK(II)
and 7",(¥) is a GCy(II) estimate.

The following is the construction of an efficient estimate as given in
Schick (1986, 1140-1144). '

Let I*: SXBXQ—-)RandQ Bxgx£—>R be defined by
l'(x, 6, Q) : =y, 6, G)/I(0 G) for (z, 6; G)eSX@XQ

and Q(0, &, @) : = [ I(, 6, G)f(., 6, ) u(:) for (6, G, G)e OX Ox &

(3.3)
Congider the estimate '
L= = Z * - X * 0
Z, U,+ P s g I (X¢, U,, GE)+ W igign "Xy, U,,GY ... (3.4)
even

where U, is a discretized version of U,, ie. U, = (nearest integer to

Vvn U,)/4/n.
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Assume that

(B2) (a) For any @ in 8, f(#, ..., ) € C1,0 (O X Q)

and (b) for any compact subset @0 of @, there is §p > 0 such that the family
of functions

F.0.6) 4 o Y
{ AR 006®0W1th|0‘0|<80,(¥eg}
is uniformly integrable with respect to u.

Remark 3.3. If (8, 8) = (R?, 4?) and assumption (B2)(a) holds, then,
in view of Corollaries 2.1.1. and 2.1.2, one can easily drop assumption (B1)(b)
even if ® is unbounded.

Remark 3.4. Let ¥ be a Borel-measurable function from R? to Rt.
Let sy, 8, ..., 8 be k Borel-measurable functions from R? to R. Define

k
Q= {weR" : [ y(®) exp { X sj(m)w,}dw < oo}.
j=1
Assume that
(a) @ +# 4.
Consider the exponential family of densities defined by

k
Maw=mmwwmmﬂgmmw}vM

for all ® in R? and w in &, where the function d,, is given by the formula

k
dyw) = [ Y@ exp{ % s,(w)m,}dw ¥ w.

Cons1der the famlly of ma.rglna.l dlstrlbutlons of s
@, wef}
Assume that '

(b) The above fé,iﬁily is dominated by the k-dimensional Lebesgue measure.

(c) There is k-dimensional rectangle J contained in the support of all the
Qu's.

Let my, @y, ..., m e k functions in C, (@ X E).
Assume that
(d) ®: = (my, 7y, .., M) I8 one-one and bimeasurable.

(e) Range of 7 is contained in the interior of .



22 J. BHANJA AND J. K. GHOSH
Finally, let us assume that

) (S, 8) = (R?, 8?) and the density f is given by the formula

. k
1,6,6) = ggr V@) exp { 2 ate) w0, O}

for all zin S, fin @ and £ in E, where d stands for the function dyo 7.

Assumptions (a)~(d) and (f) are needed to prove assumption (Al) whereas
assumptions (a), (¢) and (f) are needed to prove assumption (B2). We shall
now prove the first assertion. The proof of the other one is simple and hence
omitted.

In view of assumption (d), it is enough to prove the identifiability of
{f H{., w)d H(w) : He A}
where A denote the set of all probability measures on € with compact support.
Consider any two probability measures H, and H, in 4. By assum-

ption (b), for ¢ =1, 2

k
Aqs) : = [ exp {jg_sl wsey} dy (@) dHy(w) < oo

for almost all s and hence, by assumption (c), for all s in J.

Moreover, if H,, H, give rise to the same marginal of X then 4,(s) = Ay(s)
for almost all s and hence, by continuity of 4¢’s, for all s in J.
Therefore
(do(w)) 1 dH, (@) = (dy(w))* dH 2(_“’)
by a well known result on moment generating functions. Hence by continuity
of d, and choice of A, H, = H,. (At thisstage, note that in the case of Lindsay

(1980), to be discussed in Section 5(b), we don’t need the identifiability of &
so that one can easily replace assumptions (b) and (c¢) by

(b) The family {A(., w) : w ¢ &} is identifiable.)

Next, observe that, assumptions (b)—(c) imply that the family {Q o W€ )} of

probability measures is identifiable. The assertion follows by Theorem 10.0.3
of Prakasa Rao (1983, p. 440) and the definition of @ ’s.

In order to prove the efficiency of Z,, we need one more assumption,
namely,
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(B3) There is a version of the optimal kernel ¢ such that
(a) For all z in 8, Y(x,.,.) e C(Ox Q)
and (b) for any compact subset ®, of ® the following statements hold
(i) there is &, > 0 such that the family of functions
{2, 0, A)f(.0, @) : (0", @) € Oy x & with |6—6'| +d(G,G") < o}
is uniformly integrable with respect to 4 and

(i) | 7., 6, O)f(., 6, Adu(.) }/1(6, @
W s [{&m"o’tfm , 0.0 Yiu()} 116, @)

— 0as K— o0.
Observe that

(1) Assumption (B2) is a stronger version of assumption (A3) and it
implies condition U(i).

(2) I* (and hence Z,) is well defined only under assumption (A5). More-
over if (6, G)— I(6, G) is continuous, then any condition among (ii)—(v) and

U(ii)—U(vi) holds for the kernel I*, if and only if it holds for the kernel V.

(38) Assumptions (B2)(a), (B3)(®) and (B3)(b)(i) imply that (6, G)—
I(6, @) is continuous. They also imply a local version of assumption (A4)

with © and @ replaced by B (4,, 8;) and B(G,, &), respectively, where dg = &,/2.
(4) Assumption (B3)(b)(ii) implies assumption (A5).

The relation between assumption (B3) and the relevant conditions of the
lemma will become apparent from the proof of the following result which
establishes the efficiency of Z,.

Theorem 3.2. Assume (Bl)—(B3). The estimate Z, of 6, as defined
through (3.3)—(3.4), is UAN (II) with A V (1/I) (vide Definition 2.4).

Proof. Let us start with the following simple observation.
JI.6,0) f(.,0,G)dul)=1 W6, 0G). .. (3.8)
Next, we shall show that

sup lPoo o ({o= 2 I(Xs, O, G) < @} ) =0 %0y, Go)) |=> 0

. (3.6)
as n— oo, uniformly with respect to (6,, G,) in compact subsets of @ X &.
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We shall proceed as follows.

First observe that, § being a kernel, I*(., 6, @) has zero expectation under
Py ¢, Fix any compact subset, 4 of ®X&. By assumption (B3), conditions
(i)—-(ii) of Proposition 2.2 holds with X, (¢) = I*(X,, ), for all « in A and for
all n» > 1. Hence by Proposition 2.2, L. H. S. of (3.6) goes to zero uniformly
with respect to « in A. Since 4 is arbitrary this proves (3.6).

In view of (3.4)-(3.6), it is enough to show that
b 6o {1 Dn(T,)| > €)) > 0asn > o0, e (3.7)
uniformly with respect to (6,, G,) in compact subsets of @ X &.

Again as U, (and hence ﬁ,,) is a uniformly 4/n-consistent (II) estimate of
6y, it is enough to show that for any ¢ > 0 and ¢ > 0,

30.00(“1) ,,)I >e}ﬂ{\/n|U —0,] <¢}) >0asn—>00 ... (3.8)

uniformly with respect to (6,, G,) in compact subsets of @ X G.

Now +/n|U,—0,| < ¢ if and only if /n0,—c < v/nU, <1/nb,+c
and by definition of \/n T, is an mteger, Therefore U, can only assume

values of the form 7* where V1 Gp—¢ < i < 4/n6y+c and there can be at
most [2¢]+1 such values. (This is so because gi\;en any fwo real numbers
@ < b, there can at most [b—al-1 integers in [a, b].) Thus (3.8) (and hence (3.7))
holds if U(I) of Lemma 3.1 holds with ¢ ==I*. 8o, in view of observation
(1), it remains to check conditions U(ii) and U(iii) with ¢ = I*.

In view of observations (2) and (3), assumptions (B2)(a), (B3)(a) and
(B3)(b)(i) imply condition U(ii) for the kernel I*.

In view of observation (3) and a local version of Lemma, 2.1, with @ X & X &
replaced by B(6,, &5) X B(G,, 8;) X B(G,, 83), one can easily conclude that @ = 0
on B(6,, 85) X B(G,, 63) X B(Gy, 8;) guaranteeing Uliii).

Remark 3.5. The proof of Theorem 3.2 is similar to that of Bickel (1982)
or Schick (1986) but differs in many details. In particular, we need uniformity
unlike them.

For the next result, we need the following stronger version of
assumption (B3).
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(B3s) There is a version of the optimal kernel ¥ such that

(a) for all = in 8, ¥(=,.,.) € Cpo(@% Q)
(b) for any compact subset @, of ©, there is , > 0 such that

(i) (B3)(b) holds and

@ ~swp [({  sup | FE S0 0 M) <.
(6, Ge@o x g (¢, @)e B((6, @), &)

We can now state the final result of this section.

Theorem 3.3. Assume (Bl), (B2) and (B3). The estimate T,,(zf) of 6,
as defined in Definition 3.1, 4s UAN(II) with AV(1/I).

Proof. 1In view of Lemma 3.1a and observation (1), we have to check

conditions U(ii) —U(vi) for the kernel 1/7 In the proof of the last theorem,
we have checked conditions U(ii)—U(iii) for the kernel I*. Also, observation
(3) guarantees the continuity of (6, @)— I(6, (). Hence, in view of observa-

tion (2), the conditions U(ii)—U(iii) hold for the kernel ¥ also. So, it remains
to check conditions U(iv)—U(vi).

Uliv) (a) follows from assumption (B3)(a), U(iv)(b) from assumption
(B3)(b)(i) and U(iv)(c) from assumption (B3)(b)(ii) and the definition of %

U(v) follows from assumptions (B3s)(a) and (B3s)(b)(ii).
U(vi) is a consequence of assumption (BS)(b)(ii) and observations (3)—(4).

Remark 3.6. In view of observations (3)—(4), assumptions (Bl1), (B2)
and (B3s) imply *is an EK (II) and for any compact subset ®,of ® and ¢ > 0
sup Py o ({vnlZ,—T,0*)| > €})—> 0 as n— oo.
0, Qexg 0
Remark 3.7. As indicated in Remark 2.3, all the results stated in this

section hold for the general semiparametric families satisfying Bickel’s Condi-
tion C also.

Remark 3.8. In view of Remarks 3.3 and 3.4, for Euclidian S and ex-
ponential f it is enough to check assumption (Bl)(a), i.e. the existence of a
uniformly +/n-consistent (II) estimate of §,, and assumption (B3) or (B3s),
i.e. smoothness properties of the optimal kernel.

Al-4
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Appendix A

Proof of Corollary 2.1.1. One uses an idea implicit in Robbins (1964).
Fix n > 1. Define
a‘n(a’anl, 0’ G) = 8up an(!I: w)_F(y, 03 G)l
yeR?

for ® ¢ R?,(0,3) e @X &.

then (i) a, : (RP#X 0 x g, B (RPn x @xg))—» (R, 8(R)) is measurable and
(ii) for each @ ¢ R, a,(x, .,.) e C(OX Q).
Therefore, the set

D:={0G) :a,(x 6,G) = sup_ a,® 0,6 G)}
(¢, @6 X g

is meagsurable.

So, by the von-Neumann selection theorem [vide Theorem 7.2 of
Parthasarathi (1972, p. 69)], there is a Borel-measurable map (8, én) from
R?® to @ g satisfying

a,(® 0, (@), G (@) = inf_ a,(x 0,Q),
6,Gco x @

outside a Lebesgue null set.

Therefore, a,(Xy, ..., X, 0,(Xy, ..., X,), Go(Xy, ..., X,))

a,(Xy, ..., X,,), 6y, @) in Model I
- (A.1)
a,((Xy, ..., X,), 0y, Gy) in Model 1T
outside a Lebesgue-null set.
But, by Proposition 2.1
I Py, ; i )
a, (X, ..., X,), 0,, G,) ————— O uniformly on ® X En
- " in Model I ... (A.2)
nd Py 0. Co
a,(Xs, .., X,), O @) —— 0 uniformly on © X g
in Model II J

From (A.1), (A.2) and condition (iii),
IF( , 8, G)—F(., 6, Gp)llsup— O uniformly on ®xEn in Model.T.

and"
IF(., 8., G)—FC(., 6y, Gy)llsup—> O uniformly on ® x @ in Model II.
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Let us now observe that assumption (Al) and condition (iii) together

imply that the inverse map F(., 0, G)—> (0, G) is well-defined and compactness
of ®x & implies that it is continuous. The rest is easy.

Remark A.1. Note that the boundedness of @ is needed only to ensure
the continuity of the inverse map F(., 0, G)> (0, Q).

Remark A.2. Tt is interesting to note that the null set of Corollary 2.1.1
can be dropped in the following manner. First note that the compacntness of

O x & and the continuity of a,(a,.,.) for all @ together imply that the
x-sections of D are compact. Next apply Corollary 3 of Maitra and Rao
(1975) to get the required selection. See also Theorem 4.4.3 of Srivastava
(1982, p. 106).

Convention. For any k>1 such that O := @ () [k, k+1] # 9,

we shall use the notation, @n(k), an(k)) to denote the minimum distance esti-
mates congidered in Corollary 2.1.1 for the models

n
Pyt = { {l=]1 Pﬂo’ & t(Oo{Etheicn) € @kXE”}

and
P = {Pgo,ao (8, Gy) € @kxg}-

Proof of Corollary 2.1.2. Let ®, be a given compact subset of ®. Let
0<d<1ande >0 begiven. We want to show that thereis N > 1 such
that for all » > N,

sup (ﬁ Po,ei)({l9n—0|+d(@,,, G,)>e)<é ... (A3)
RGO FPYPISLLILE -

sup P ({|0,—0] +d(G, 0 > &) < 9)

(O,G)e 6, X @
where @, G,) : = @,(T,D), Co[T,))-

Fix an 7 in the open interval (0, 0.5). Using uniform consistency of T,
choose and fix N, > 1 such that for any » > N,,

sup ( it PO’C;)({lTn—el> m<é2 .. (A4
(0:{8t}) < s n)€C0 X E =1

sup  Pao({ITh—01>17}) < 6/2)
(6N exg,
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Let us observe that by compactness of ®,, there are integers k and !
with I > 1, such that ®, C Q Or_141

Define j

I
z(,=nc.in{z,>,1:15106256)0(;}:)1 @,+,_1} .. (AB)

: ;
Then, there is a unique integer k, such that ®, C 0 Okyts-1
=1 ~
Using Orollary 2.1.1 choose and fix N; > 1 such that for any n > N,

sup sup
1<i<i (0’{Ei}l“-‘”) € @, X% En

( "{'11 Py, ¢, ) ({16nko—i+ 1) =01 +d(@lb—j+1), G) > ¢}) < 8/8 ... (A.6)

( sp sup 3, ol (ulbo—j+1)—0] +
1<ji<lh (6, ec6oxQ

A(@yky—+1), 6) > &) < 38 )
Let N =N,V N;. Then, for all n > N,

L.H.S. of (A.3)
n A
= sup (I Ppy) (18,—01+d@, &) > &)
CALY PP LRI

n
< sup (I Pog,) (T #(001—1—n, [61+1+m)
(O Bligign) € Qo x& 1=l '
5 i P
+ sup ( Par} 0’ C;)

1=0 (0, Bil1g i) © Q0 X ="

X ({| 6(61—2-+4)— 0] +d(@,[61—2-+)), &) > &})

n
su I Py, |{IT,—0] > 7})+4.8/8
(6, {&} 1“5”)690(5” ( =1 0,‘;) Ty 7} /

(= sup  PpoI8,—0]+d(@, &) > &)
0, €e0, X G

< sup 0.6 (T, ¢ ((6]—1—7, [0]14-149)})
(6,9 e0,x Qg

+ 3 sup  Phol]8.(01—2-H))—0] +d@.([61—2+5), &) > &))
1=0 (6, Q)b X @
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< sup Py a({|T,—0] > 7})+4.38/8) by (A.5) and (A.6))
(03 G)Geo X g
< 6/2+6/2 = 0 by (A.6) proving (A.3).
Remark A.3. In view of Remark A.2, we can drop condition (ii) from
Corollaries 2.1.1 and 2.1.2.
For the proof of Propcsition 2.2, we shall need the following two auxiliary
results

Lemma A.1. Let A be a nonempty set. Consider the following two families
of probability measures on (R, 8 (R)).

Py:={P,(,a):aed,n>1}
and
P:={P(,a):ad}

Assume that the following conditons hold.

(8) Py, 1s tight,

(1) P is tight as well as unifomly absolutely continuous with respect to the
Lebesgue measure and

(4%3) for any bounded continuous function g from Rto R

fzp | f9(.)dP,(., x)— [ g(.)dP(., a)| > 0 as n—> co.
Then,
: sup sup |F,(x,x)—F(x, )| > 0 as n— oo. .. (A7)
7z .

asd ze
where F,(.,a) and F(., o) denote the distribution functions corresponding to
P,(.,a) and P(.,c), respectively.

Proof. Let us first show that for any  in R.
E?E | F(x, a)—F(z, @)| = 0 as n— ... (A.8)

Let €> 0 be giiren. Using uniform absolute continuity of # choose
and fix & > 0 such that

sup |F(z+96, a)—F(x—6, a)| < €4 .. (A.9)
ag 4
Define g : R— R by : \
1 if y < x—4¢
o— . .
o) = { Y if 28 <y < 2+

Lo ~ otherwise
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Clearly, g is a bounded continuous function from R to R. Therefore by
condition (iii), there is n; > 1 such that for all n > n,,

sup [ [9()aP,(., 2)— [g()aP(., a)| < €[4 - (A.10)
Therefore, for n > n,,
LHS of (A.8) = sup | ¥y, &) —F(, )|
= sup | [l Py (> )= [lie, dP(, )|
= sup | [{li—w, a()—g(NdP(, @)

— [ {1~ w, zi(*)—9(*)} dPn(., @)
+ [ 9(-)dP,(., &)—Jg(")dP(. @) |
(A. 10)

< sup [f | L(-w,21(*)—9(*) | dP,(., @)]

+ 8up [f |1=e, ()9 ] dP(, @] +4
a€d

(A.9)
< sup [, P, A+ 5+ . (AlD)
here acd
0 if |y—zx| >6
My) = 0—ly—=| .
3 otherwise

Clearly % is also a bounded continuous function from Rto R. Hence, by
condition (iii), let us choose and fix an n, > 1 such that for all » > n,

su}‘) | [ B()AP (., &)—f h(.)AP(., )| < €[4 ... (A.12)

Let my =n; V ny. Then for any n >n,

LHS of (A.8)and(A.11) < sup | JR(+)dP (-, &) — [h(*)dP(.), () |
+ sup [Jr(-)aP(., a)]+e/2

(A.9) and (A.12) < e/4-+e/4-+¢/2 = ¢ proving (A.8).
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Let us now prove relation (A.7) from (A.8).
Using tightness of #, and #, choose and fix ‘K > 0 such that

sup sup F(—K,a) <el4 sup F(—K, o) < €/4, o (A3)

n21 a€d
( inf inf F (K,a) > 1—e/4 and lnf F(K,a) > 1—6/4)
n=21 acd

Then,

sup sup |F,(xr ¢)—F(z a)]
a€d IzI=K

 sup sup |F(z, o) —Fp(z, a)] + sup sup |F,(z, d)'—F(x, a)|
a€d z28—-K a€d 22K

< max isup sup F(—K,a), sup, F(—K, ac)}
nz=

a€ 4

+max [sup sup {1—F (K, a)}, sup {1—F(K, oc)}]

a€d n21

< el4te[4 =¢/2 by (A.13) v oo (Ad4)

Using uniform absolute continuity of # and compactness of [—K, K]
choose and fix m > 1 such that

sup sup | Fxgyq, 2)—F(g, a) | < €/4 ... (A.15)
aed 1=0,1,..,2m~1

where @ = —K+’m—K = (’:ﬁ@) K for i=0,1, .., 2m.

Using (A.8) choose and fix N > 1 such that » > N implies

sup sup |Fxsa)—Flzsa)| <e/4 ... (A.16)
aed 1=0,1,2, 2m

Then, for n > N

sup sup |F (x,0)—F(z,a)]
aed |z|< K

< sup sup IFn(xf’ a) —F(x" a) |
acAd 1=0,1,...,2m

+sup  sup | F@ey, 0)—Flay )|

aed =0,1,..,2m—1

< e/4-+e/4 = ¢/2 by (A.15) and (A.18). . (A7)
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From (A.14) and (A.17) it follows that, for any n > N,

sup sup |F,(z, a)—F(z, a)| <e,
acd xzcR

proving (A. 7).
Lemma A.2 (Theorem 7 of Ibragimov and Hasminskii, 1981, 365).
Let A, Py and P be as in Lemma A.l. Assume that the following conditions
hold.
(2) Mo 18 tight,
(#8) sup | etz dP (x, a)— [et® dP(z, 2)| = 0 as n—> o0.
ac4d .

Thus, for any bounded continuous function g trom R to R

suIA) | J g(@)dP (x, x)— [ g(x)dP(., 2)| > 0 as n—> co.

A proof of this result is given in Ibragimov and Hasminskii (365-366).

Proof of Proposition 2.2. For any a in 4, let P,(., a) stand for the pro-
bability measure corresponding to the distribution function F,(., ). Then
condition (i), which is common to both Lemmas A.l and A.2, follows from
the definition of F (., a)’s. Next, condjtion-(ii) of Lemma A.2 follows from
conditions (i)—(ii) of the proposition and the definition of F,(., «)’s by an
application of a uniform version of the proof of Theorem 2.7.2 of Billingsley
(1979, 310-312). Again, # being a singleton containing the standard normal
probability measure, condition (iii) of Lemma A.1 holds for it. The proposi-
tion follows by an application of Lemma A.2 followed by Lemma A.l.

Appendix B
Proof of Lemma 3.1. (I) For 0 e @, define,

Dyy(6) = (X, 0, B —Y(Xy, 6, Gy)

L 3
Ve ie{l, 3, ...,2[12“——1]-;-1}

+(O—00)[Y(., b, Go)f (., Oy, Go)du(.)}
and Dn2(0) = D,,(ﬂ)——Dm(O).
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Fix ¢ > 0,e > 0.
It is enough to show that,

sup Py o ({1Dn(0)] > €20 ... (B.1)
{6:16— 651 Kcf )
and sup Py o (| Df0)] > €/2})>

{6:10— 6,1 < cf A}
We shall only show that

sip Py o ({1 Dml®)] > €/2})—> 0. . (B2)
{6:10—6,) c/ i} ’

The other statement will follow by a symmetrical argument.
Now, for any sequence {0,}s.t. |0,—0,| < ¢c/[\/7 ¥ n,

& (Dm(e,,nxz, X‘)[E]) '
n
= (n_\/[ﬁzJ ([ ¥(x, 0,, GE)f(x, 0, Go)dp(x)+0

+(On—0y) [ Yl=, Oy, Go)f'(x, O, Gy)du(x)} [since yr is a kernel]

(- 13])

= )
[$0t2, 0. 8 —pta, 0, Gy L8 D B0 S0 P ) g
e, 0y, g { 00 0 0 G0 i, g, 6} duto)]
+0P30,a0 (1) by (iii).

Therefore, by conditions (i), (ii) and assurmption (B1l) for any 3 > 0

[n/2] ; .
s ({ . w_?‘.‘p< iy iy P15 Xy X)) > 1}) -0

(B.3)
Let us also observe that for any sequence {0, s.t. 10,—6,] < c[\/n ¥ n,

Vargo,aQ (Pm(?n)rlxz_’ Xy . Xz[%])

n
n—i\z ~
< (_-"ZLE]—) I{W(x: 01;) Gﬁ) —w(xi 00’ GO)}af(x’ 00’ Go)dﬂ(x).

Al-5
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Therefore, by uniform continuity of i and uniform consistency of G

(and hence GE), we get for any 7 >0

Pinj2) su Var D_,(0)| X,, X, ..., X > -0
50"’0({@: |e—eo|p< oNmy O G"( w0 % %o 2[%]) ﬂ})
(B.4)
From (B.3) and (B.4), we get, for any > 0
plni2l
090
sup on, Go({an1(0)| > 9} Xg, Xy, ooy Xopmg)) ——— 0. ... (B.5)

{0:16—6,1 L e//n}
Then (B.2) follows by D.C.T. from (B.5) with 5 = ¢/2.

(IT) (A) TFirst observe that, because of (B.1), there is a sequence {c,}
of nonnegative real numbers increasing to infinity such that for any ¢ > 0

sup Py {1 Dy(0)] > €})— 0 as n— 0. .. (B.6)
{6:16—651 < en/ Jn}

Claim : Given any sequence {d,} of non-negative real numbers s.t.
dn < ¢, % n and d,1 oo,

on Go({ There is a solution of (3.1) lying inside

(6 — \/_,0(,+\/_ )})—n a3 1—> 0. . (B)

Then (II) (A) will follow because given any arbitrary sequence {dg}
increasing to infinity, one can always work with the sequence {d,} defined by

d, = min {d,, c¢,} ¥ n.
Proof of the Claim Fix any sequence {d,}s.t. d, < cs, for all n and
d, 1 . By (B.6)

d on,Go
\/n) — 0. ... (B.8)

Again, by condition (iv)(b),

(o 25 EvEna

and by condition (iv) (c) and choice of {d,},e1,
d'n( .r 'ﬁ (x’ 00’ Go)f'(x, 60’ Go)d,“(x))—') 0o a8 n—» o ces (B.g)

D (00

P,0 )} 4oy 5 tight

[assuming, without loss of generality,

[ Yr(z, By, Go)f (x, 65, Gy)dp(z) > 0].
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From (B.8) and (B.9),

—\—/_n— .2’ ¥ (Xb b + —= \/-— GE)‘}‘{“;”” '/’( \/— )
=> Point mass at F oo,
Le, Psooo ({ V3 [1‘<§ikdn¢(x‘, 00“’%}%‘: @ﬂ)
+ 1“?23 (X, 6+ f/_ @) <-k})»1 .. (B0
and 3,00l { = 2 [ 5 %, (%06, f;n )

+ g&’&"f (X,,a,, = )] > k})-1
for any K > 0.

Define, A4k ({d,})

= {T}g[lgz%d ¥ (x O+ o, %)
+1‘,§”’”(X‘ 0ot f/”ﬁ,az)] < —K}
Nl 2 (e )
+ 2 (X Je. )] > &),

then by (B.10), P§ ¢y (Ap,g({d,}))> 1 a8 n—> o and by condition (iv) (a) on

Ag x ({d,)} there is a solution of (3.1) laying inside ( 0o — 0o+

v )

Since {d,} was arbitrary, this proves (B.7).
(IT) (B) Suppose not. Then there is a sequence {d,} of nonnegative real
numbers increasing to infinity s.t. d, < ¢, for all » and P30 Go({\/r_a |T,—6,|

>d,}) 4 0, where {c,} is the sequence considered in (B.6). [Note that,
without loss of generality, we can assume ¢, > 0, d, > 0].
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Chooge and fix a sequence of positive real numbers

7 2dn 3d,
{er,} 8.5 3. <, < 4dn—1 , for all n > 1

Then, by \/’ri-conswtency of U,
PQO,GO({\/WIT,”——O{)] > dy, VB Uy—06,]

) T - . >__ 1 . B : B
< min (d,—o,d,_4, ~2*10g n)}) 4> 0.

Consider By g= Ay, K({min(2a,L d,_1—d,, —21— log n)}).

Note that in (B.7) one can easily drop the assumption of increasingness
of {d,} |

By von-Neumann selection theorem choose a measurable function S,
which solves (3.1) on By .

Define C, = {vﬁlTn—Hol > d,,

V| Uy=by| < min (dy—a, dyy, : log n)}.

Then on By x(\C,,, S, solves (3.1), 4/n|8,—U, | <min (d,—a,d,_;, logn)
whereas v/» |T,—U,| > a,d,_, and Pgo G (Bu, k() C,) 4 0 contradicting
the definition of T',.

(IIT) (A) Fix ¢ >0, € >0 and 7 > 0. To show that there is ny > 1
s.t. n 2> n, implies

py su D,0)] >e}) < .. (B.11
%060 ({’{a £ 16—6,| ovm | DO }) 7 (B.11)

Fix a positive number « which divides c. For fe¢ [00 T Os+ \/n ] ,
define

D@ (6) : = \/” Sk [(9__00__’.;‘;) D, (00+M)

l=~c/¢

{‘“:/‘l —0+6,) D, 6+ «/')]

e e e

1
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Now,

Pgo' Go ({ io} IK;’E%B; ;I.Jﬁf IDn(é)I > 6})

< Ps"’G"( {(e 16— %ufo< ¢l N7} |D,,(0 D<°>}(0)| >e/2}')
+Pf’0 G0<{{0 1= ;u'p< o A ID‘f) o= 8/2}')
| < L ({ . sup

{(¢,¢”, @):]e’], [e”I<e, |e"—c'| <a, G 6 B(Go, &)}

IDn(00+f/” )-D (0+ «/‘)' > oj2})

su | D, > ¢f2
P ({075 s |2 (00 5 ) > )
<—2— Eon ( sup

C € 80,60 * {(c', " G) le'] 16”1 < le'"—¢') <a, @ 6 B(Gq. &)}

(0+ \/‘)— (6+ v")l)'+

EP ({2 (o Fll>en))
2 :
< 3 [EP "0‘00 ( {0 @ 1ol |c~|sgﬁ"_c'| < a, G ¢ B(Go, 8,)}

\/n’glr X Gyt \/- ) ¢(X1 G0+ \/n G)l)

el 19, 00 6 f(- . 00 Go) dpe (- )I]

Cla

+ 3 P} 4, (HD,,(&O-{- \/_)l>e/2}>

i=—c/a

<0540, 0, @, 00 oMl )+ . 0oy G £ O Gl )}

+,5 P ({12 (300 )2 }) = o1y o100

t=—¢/a
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Let us choose @ > 0 8.t. a|c and I < 9/2. o (B.12)
Using (I) choose ny > 1 s.t. n » n, implies II < 7/2. ... (B.13)

Then (B.11) follows from (B.12) and (B.13).
(III) (B) Easy.
(IV) An easy consequeunce of Proposition 2.2.
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