Towards Minimizing Memory Requirement for Implementation of
Hyperelliptic Curve Crytosystems

Pradeep Kumar Mishra!, Pinakpani Pal? and Palash Sarkar?
! Centre for Information Security and Cryptography
University of Calgary
Calgary (CANADA)

E-mail: pradeep@math.ucalgary.ca
2 Cryptology Research Group
Indian Statistical Institute
Kolkata (INDIA)

E-mail: {pinak, palash}@isical.ac.in

Abstract

Elliptic (ECC) and hyperelliptic curve cryptosystems (HECC) have emerged as cryptosystems of
choice for small handheld and mobile devices. A lot of research has been devoted to the secure and
efficient implementation on these devices. As such devices come with a very low amount of resources,
efficient memory management is an important issue in all such implementations. HECC arithmetic
is now generally performed using so called explicit formulae. In literature, there is no result which
focuses on the exact memory requirement for implementing these formulae. This is the first work to
report such minimal memory requirement. Also, in the work we have provided a general methodology
for realization of explicit formulae with minimal number of registers. Applying such methodology
this work settles the issue for some important explicit formulae available in the literature. This is
an attempt to experimentally solve a particular instance based on HECC explicit formulae of the so
called “Register Sufficiency Problem”, which is an NP-complete problem.

Key Words: Elliptic and hyperelliptic curve cryptosystems, memory, explicit formula, divisor
addition, divisor doubling, scalar multiplication.

1 Introduction

For about one and half a decade, elliptic and hyperelliptic curve cryptosystems have occupied the
centerstage of public key cryptographic research. The main reason behind it is their versatility. These
are the most ideal cryptosystems to be implemented on small mobile devices with low computing power.
There is no known subexponential algorithm to solve elliptic or hyperelliptic curve discrete logarithm
problem for carefully chosen curves. This ensures a high level of security for smaller key length and
makes these cryptosystems suitable for such small devices.

In these cryptosystems, the most dominant operation is the computation of so called scalar multi-
plication. Unless otherwise stated, in the current work, by a point we will generally mean a point on an
elliptic curve or a point on the Jacobian of a hyperelliptic curve. Note that the points on the Jacobian
are represented by divisor classes of degree zero. Let P be a point and let m be a positive integer. The
operation of computing mP is called the scalar multiplication. It is generally computed by a series of
point doublings and additions. A lot of effort has been put by the researchers to compute the scalar
multiplication efficiently and securely.



The efficiency of scalar multiplication is intimately connected to the efficiency of point addition and
doubling algorithms. The efficiency of these algorithms, on the other hand, depends upon the point
representation. In affine coordinates, both these operations involve inversion of field elements which is
considered a very costly operation. To avoid inversions, various other coordinate systems like projective,
Jacobian, modified Jacobian, Lopez-Dahab coordinate systems have been proposed for elliptic curves.

For hyperelliptic curves, Koblitz in his pioneering work [11], had proposed Cantor’s algorithm to be
used for divisor addition and doubling. Later, it was felt that the computation can be speeded up by
fixing the genus of the curves and computing the parameters of the resultant divisor explicitly. Such an
algorithm is called an explicit formula. Many proposals of explicit formula have come up in literature
and the ones proposed by Lange in [13, 14, 15] are the currently known most efficient ones for general
curves of genus 2.

ECC and HECC are considered to be the ideal cryptosystem for mobile devices. Mobile devices are
generally equipped with very little computing power. Before trying to implement a cryptosystem on
these devices one has to be sure that the resources, particularly memory, available on these devices are
sufficient for the implementation. For ECC, the formulae are smaller involving 7 to 15 multiplications
and squarings in the underlying field in non-affine arithmetic. So it is simple to calculate the numbers
of registers required to store the inputs, outputs and intermediate variables. In many works reported
in literature on ECC, the authors have provided the number of registers required for the computation.
These figures are obtained by checking manually. However, to our knowledge, there is no result stating
that a particular ECC algorithm cannot be implemented in less than a certain amount of memory.

There has been no study of exact memory requirement for an implementation of HECC. In [2] the
authors have briefly touched the topic. Besides that there has been no mention of memory requirement
in any work on HECC so far. The point addition and doubling algorithm for ECC can be found in many
papers as a sequence of three address codes, like, R; = R; op Ry, where R;, R;, R, are register names or
constants and op is an arithmetic operation. In the current work we will refer to this format as Ezplicit
Register Specified Format (ERSF). Looking at a formula in ERSF, one can know exactly how many
registers will be required for its implementation. Unfortunately, no HECC explicit formulae occuring
in the literature has been described in ERSF. All are described as a set of mathematical equations. We
will refer to this format of representing a formula as rew format.

Probably, the reason behind all HECC formulae appearing in raw format only is the fact that HECC
formulae are relatively complex ones compared to those of ECC. An HECC (genus 2) formula involves
around 25 to 50 multiplication with or without an inversion. The first step for expressing such a formulae
in ERSF is to know how many registers will be required. For a long formula it is difficult to manually
find out how many registers will suffice. It is nearly impossible to say what is the minimal requirement.

In fact, finding the minimum number of intermediate variables required for the execution of a formula
is an NP-complete problem. This is called Register Sufficiency Problem and has been studied earlier in a
very general framework. However, the results obtained earlier do not apply straight away in the scenario
we are in nowand, furthermore, we are dealing with clearly describrd algorithms.Hence a brute force
approach is possible but is too time consuming. In the current work, we try to provide an experimental
solution to this particular instance of the problem. We believe that our methodology can be applied to
many similar situations.

The question is: Given an explicit formula what is the minimum number of registers required to
compute it sequentially or in parallel? In the current work, we provide a methodology (in Section 4) to
address this issue. We used this methodology to compute the minimum memory requirement for some
of the well known and widely used formulae. For elliptic curves, we checked for the general addition
formula in Jacobian coordinates, which is mostly used in implementations and found that it can not
be executed with less than 7 registers. It is known that the elliptic curve addition can be done in 7
registers. Our finding ensures that it can not be done in less.



We have used our methodology to find the minimum register requirement for many formulae in
HECC. The formulae proposed by Pelzl et al [20] for a special class of curves are very efficient ones.
Their doubling formulae uses 10 registers and the addition uses 15. Similar formulae are proposed by
Lange in [13]. These set of formulae use 11 and 15 registers for doubling and addition respetively. The
doubling formula in [13] requires 6 curve constants to be stored. Thus, (baring the storage required
for curve constants) for computing the scalar multiplication both set of formulae require 15 registers.
Thus, although the formulae proposed in [20] are cheaper in number of operations, they use the same
amount of memory as the ones in [13]. More recently Lange and Stevens [17] have come out with more
efficient doubling formulae for all isomorphism classes of curves over binary fields. These formulae not
only require very few field operations per group operation but also are very memory efficient. All our
findings have been described in Section 6.

The remainder of the paper is organised as follows. In Section 2, we briefly describe the background
of the work. In Section 3, we briefly describe the theoretical status of the register sufficiency problem.
In Section 4, we describe our methodology. In Section 6, we provide the results we found. Section 7
concludes the paper. The detailed description of the formulae we consider are stated in ERSF in the
appendices.

2 Background

Hyperelliptic curve cryptosystems were proposed by Koblitz [11] in 1987. In this section we provide a
brief overview of hyperelliptic curves. For details, readers can refer to [18]. Let K be a field and let
K be the algebraic closure of K. A hyperelliptic curve C of genus g over K is an equation of the form
C :y? + h(z)y = f(x) where h(z) in K[z] is a polynomial of degree at most g, f(x) in K[z is a monic
polynomial of degree 2g + 1, and there are no singular points (z,y) in K x K.

Elliptic curves are hyperelliptic curves of genus 1.

The elliptic curve group law does not apply to hyperelliptic curves. The groups used in hyperelliptic
curve cryptosystems are the divisor class group, each group element represented by a special kind of
divisor called reduced divisor. The beauty of the hyperelliptic curves is that the group of divisor classes
is isomorphic to the group of ideal classes. That leads to a nice cannonical representation for each group
element. Each group element can be represented by a pair of polynomials of small degree, (u(z),v(x)),
where deg(v) < deg(u) < g and u divides v?> — hv + f. Koblitz in his pioneering work suggested to
perform the group operation using Cantor’s algorithm [3].

Cantor’s algorithm for divisor class addition and doubling were quite complex for an efficient imple-
mentation. Later it was realised that the efficiency of group law algorithms can be enhanced by fixing
the genus of the curve and computing the coefficients of the polynomials representing the resultant
divisor directly from those of the input divisor(s). Thus the group law algrithms become a sequence of
field operation. Such an algorithm is called an explicit formula. Spallek [22] made the first attempt to
compute divisor addition by explicit formula for genus 2 curves over fields of odd characteristic. Gaudry
and Harley [7] observed that one can derive different explicit formula for divisor operations depending
upon the weight of the divisors. Harley [8] improved the running time of the algorithm in [22] by distin-
guishing between the different weights of the input divisors and between addition and doubling. Later
many researchers came out with various explicit formula for various genera of hyperelliptic curves. An
overview of most proposals can be found e.g. in [19].

In the current work we concentrate on curves of genus 2. For most general curves of genus 2, the
explicit formulae proposed by Lange are the currently known most efficient ones. In [13], Lange’s
addition (HCADD) and doubling (HCDBL) involve inversion. Taking the lead from the different pro-
jective coordinates in ECC, Lange in [14], [15] has proposed explicit formulae in various coordinate



Table 1: Complexity of Explicit Formulae

| Name/Proposed in | Characteristic | Cost(HCADD) | Cost(HCDBL) [ Cost (mHCADD) |

Lange [13] All 1[i] + 22[m] + 3[s] | 1[i] + 22[m] + 5][s] -
Lange [15] Odd 47[m] + 7[s] 34[m] + 7[s] 36[m] + 5[s]
Lange [15] Even hg # 0 46[m] + 4[s] 35[m] + 6[s] 35[m] + 6[s]
Lange [15] Even hg =0 44[m] + 6]s] 29[m] + 6][s] 34[m] + 6][s]
Pelzl et al [20] Even 1[e] +9[m] + 6[s] | L[] + 21[m] + 3[s] -
Lange et al [17] Even 1[¢] + 5[m] + 6]s] - -

systems. In [14] she has proposed formulae in “projective” coordinates. Introducing a new variable, a
field element in the structure of a divisor the inversion can be avoided in HCADD and HCDBL as in
ECC. Again taking the lead from Chudonovski Jacobian coordinates in ECC, Lange has proposed her
“new coordinates” in [15], a representation using weighted coordinates. This lead to faster HCADD and
especially HCDBL. The latest version all these formulae with an extensive comparison of coordinate
systems is available in [16]. In the current work we use formulae presented in [13, 15].

More recently, Pelzl et al. [20] and Lange and Stevens [17] have proposed divisor addition and
doubling algorithms for special classes of curves, in which doublings are much cheaper. In Table 1, we
provide the complexity of various formulae we investigated in the current work.

3 Theoretical Status of the Register Sufficiency Problem

The problem of minimizing the number of intermediate variables required for executing a set of arith-
metic formulae has been studied earlier. The problem is called the register sufficiency problem and the
decision version is known to be NP-complete [21]. See [6, page 272] for further details.

The minimization version has also been studied in the literature. According to the compendium of
NP-optimization problems [4], there is an O(log? n) (where n is the number of operations) approximation
algorithm for this problem [10]. This result is obtained in [10] using general results on flow problems
and does not lead to a practical algorithm to solve the problem. Another issue is that one does not
obtain any idea about the constant in the O(log2 n) expression. Moreover, for the cases in which we
are interested n is at most around 200. For such n, a performance guarantee of O(log? n) is not really
useful.

In fact, in our implementation, in many cases we are able to obtain the minimum number of registers
and in other cases we are able to show that the minimum is at most one or two less than the result we
obtain. Thus, on the one hand, the theoretical status of the problem is not really useful for obtaining
a practical algorithm and on the other hand, for the concrete situations in which we are interested, we
obtain better performance guarantee than the known theoretical bound.

4 Our Methodology

Our primary aim in this work is to answer the question:
Problem: Given an explicit formula F, what is the minimum number of intermediate variables required
to be stored to execute F7?

Let F be an explicit formula. Let pi,...,pr be the inputs to F. We can look at F as a sequence
of arithmetic operations, each having a unique id, like; Id; : p; = ¢; op; i,k < i < n, where op; is



one of the binary operations {+, —,*, /} and ¢;,r; are among the p;’s j < i. In fact, explicit formula
in literature generally occur in raw format. We can convert them into this form by a simple parser
program.

We will call a sequence S = {Id;,, Id;,,...,Id;,_,., } or simply S = {i1,d3,...,49, g1} of operation
id’s of F a walid sequence if F can be computed by executing its operations in the order as dictated
by the sequence S. For example if F = {Idy, Ids, Ids,Ids}, where Idy : py = x xy, Ids : p5 = p4 * 2,
Ids : pg = y x z and Idy : p7 = ps * pg, then there are only three valid sequences, namely, {1,2, 3,4},
{1,3,2,4} and {3,1,2,4}. F can not be executed in any other order.

Further, one may be interested in knowing which valid sequence needs the minimum number of
intermediate variables for executing the explicit formula F.

Let F be an explicit formula and let Ag be the set of inputs to it. In F, there are certain computations
which can be computed from the set Ay of inputs to F. After one or more of them are executed we
get some intermediate values which can trigger some more operations of F. Let V be the set of
computations in F, which can be computed directly from the set 4 of inputs to F. Let |Vy| = ag be
the size of the set V. So one can begin the execution of F starting from any one of these ag operations.
Suppose we choose the operation

Id;, : piy = 4, opi, T3,
in Vj to be executed first. After this operation we have the value of p;, available to us. So an operation
involving p;, and some other known value in A in its right hand side can also now be executed. Let
Ai, = Ao U{pi,}- Let V;"* be the set of operations in F; = F — {Id;, }, which can be executed from the
the values available in A;,. Let |V/*| = a;,. Note that the set V;* and the value of a;, depend upon
the choice of Id;,. Thus, we have «;, options for executing the next operation of 7. Suppose we choose

Id;, : pi, = qi, 0Py Tiy

We update the set of available values as A; ;, = Ai, U{pi,} and look for the set of operations in
Fo = F1 — {Id;,} which can be computed from the set of values available in A; ;, and proceed like
this. In general, if k operations Id;,,...,Id; are already computed and p;, is the output of the last
computation, then we update the set of available values as A;, i,....ip. = Aiyio,....ir, U{Pi,, b and set
V,;_li_"l"’lk“ to be the set of computations in Fjy, = F, — {Id;, }, which can be computed from Ajy;.
Note that Id;_ is the Id of the last operation. Let |VkZ°Z’“| = wy,...i,- We choose one of the operations
Qio.,...i,, Operations in V,;O""’““ to continue.

The sets A; contain the set of live variables at each step. To minimise the number of intermediate
variables we can not afford to keep redundant values in this set. At each step before inserting a new
value into A;, i, we check if it contains any value which is not required in further computations in
F;. All such redundant values are discarded from A;; ;. .

We stop the procedure when for some k, V]—;O"“’Z’fc becomes empty. If k is n — k + 1, i.e. the total
number of operations in F, then the sequence of operations {Id;,,...,Id}}, is a valid sequence for F.

After choosing a valid sequence, we check the sets

Aiy,..i; — Ao, 0<j<n—k+1

If maxo<j<p—k+1 |Ai — Ao| = B, then for executing F by the obtained valid sequence the storage for
intermediate variables is necessary and also sufficient.

After obtaining one valid sequence, we backtrack to the last step where we had more choices for the
next operation than the ones already undertaken. We choose a different operation from the correspond-
ing set V; there and proceed in a new path of computation. Following this method we obtain all valid



sequences for F and find the one which requires the minimum number of intermediate variables. That
valid sequence gives us the execution sequence of F, which is the most memory efficient one.

Obviously, the method described above is an exhaustive search type. It looks for all possible paths
from a possible starting point (which may not be unique) for execution of F to the end. To find the
minimum number of intermediate variables it looks for all possible paths from the beginning to end of
F. To bring down the running time we adopt the following four strategies:

1. Neglecting the paths which requires same number of intermediate variables as the
known one: We use early abort strategy for improving the running time of the algorithm. As we
get the first valid sequence we count the number of intermediate variables required to be stored to
execute F by that sequence and store it in a variable, say 5. While looking for another path by
backtracking, we check the size of the set of intermediate variables after each step. If the current
size is equal to the value stored in 3, then we need not proceed along this path further. It is not
going to yield a more economical path. So we abandon this path and look for another one. If a
particular valid sequence needs less than £ intermediate values, then we replace the value of 8 by
this new value.

2. Avoiding the count of the number of intermediate variables at each step: Counting the
number of variables at each step of the algorithm is a time consuming operation. Suppose the
value stored currently in £ is . While looking for a new path, we save time by not counting the
number of minimum variables till the path is ¢ operations long. Because, if less than ¢ operations
have been executed then the number of intermediate variables can not be more than t.

3. Backtracking several steps at a time: After finding a valid sequence, instead of backtracking
one step (to the last step) at a time, we can go back until a step b such that maxo<;<p [A; — Ao| =
B — 1. This will reduce the task of going to each level and hence will aid to efficiency. Note that
this does not affect the optimality of the final result. That is because the paths which we are
skipping need at least 3 intermediate variables.

4. Using ordered sets in place of V’s: Before starting the first step, we scan the explicit formula
and make a frequency table of all the inputs and intermediate variables. Against name of each
variable it contains the number of times it has been used in the formula, i.e the number of times
it appears in the right hand side of some equation in F;. We treat the sets V’s as ordered sets
and ordered according as priorities assignined to these equations. The highest priority (see below)
is assigned to those, in which the inputs variables have lower frequency. Each time we choose
an equation for computation, we update the frequency table by reducing the frequencies of the
involved input variables by 1.

Here we describe how we assign priorities to the operations in V;. Observe that any equation
r = p op q takes two inputs and computes an intermediate value. If the variables p and ¢ are used
again later i.e. their frequencies are greater than 1 before this operation, then we have to store
all three variables. But if frequencies of p and ¢ are one then we are required to store the result
only. Thus, we can reduce the width of the set of live variables by 1. We assign highest priorities
to such computations and put them at the beginning of the sets V;’s. If the frequency of one of p
and ¢ is 1, then we need not save that variable. We are required to store the other variable and
the computed value and the thus the number of live variables does not increase. So we assign
second highest priority to such equations and put them next in the set V;. So are the equations
which have a constant and a variable of frequency 1. Thirdly, squarings and doublings involve one
variable only and produce a new variable. So a squaring or a doubling of a variable of frequency 1
also does not increase the number of live variables. We keep such type of operations next. Other



equations of F; are kept in such an order that the ones involving a variable of minimum frequency
preceeds the others.

These optimisation techniques for running time of the algorithm have paid high dividends. It is
observed that an implementation using these techniques runs much faster than one without them. These
techniques however, do not guarantee that an implementation of this search strategy will terminate in
reasonable time for any large explicit formula. An explicit formula may contain a huge number of
equations. In that case the program may run for a considerable duration of time and the last value of
B may be accepted as the good minimal value. The actual minimum may be lesser.

Let us put the above discussion in the form of an algorithm. In fact, we present two algorithms
below, the first one only initialises and calls the second one. The second is a recursive one implementing
the techniques described above.

Algorithm MinVar.

Input : The number of inputs to F and all the operations in F.

Output : Minimum number of intermediate variables required to be stored if F is executed sequentially.
1. (Initialisation) Read the number of inputs & to F;

2. Read all computations in F and store them in an array indexed by their Id’s. Let their number be
N;

3. Let k = 0, minvar = the number of equations in F;

4. Call Algorithm ProcVar(k, minvar);

5. Output minVar;

Algorithm ProcVar(k, minvar).

Input : The number of computations (k) of already carried out.

Output : Recursively computes the number of intermediate variables and outputs their minimum.

1. Let Count = N — k;

2. If £ > minVar

2.1 Count the number of intermediate variables in the current path;

2.2 If the number of variables in the current path = minVar then return; /* There is no need to
consider this path */

3. If Count # 0
3.1 Find the corresponding ordered set Vj and ay;
3.2 for i =1 to ay;
3.2.1 Process the ith computation in Vj;
3.2.2 Update the data structures for Ay, ;
3.2.3 Call Algorithm ProcVar(k + 1);
4. minvar = the number of variables in the current path;
5. end

Here is an important observation about running of the algorithm.

e Observation At any point of time during the execution of the algorithm in the search of a valid

sequence, suppose the operations S; = {i1,12,...,i;} have been chosen. Also suppose that at the
end of this last step the number of live variables is ¢. Let So = {j1, jo,...,jr} be any permutation
of {i1,49,...,ix}. If Sg is a valid order in which the operations in S; can also be performed, then

at the end of last step of S5 one will have ¢ number of intermediate variables as well. An important
application of this observation is that if we have two valid sequences of an explicit formula, which
have the same k operations at the beginning, maybe in a different order and if we know that the
first requires ¢ intermediate variables till the kth step, then we need not count the number of
intermediate variables for first k steps of the second. It is ¢ at the end of kth step.



4.1 The Forward and Reverse Programs

As said earlier, each explicit formula in raw format was modified to be a sequence of binary operations.
This is the preprocessing done to each of the raw formulae under consideration. This preprocessed
formula was given as input to a program embodying the methodlogy described in the last section,
which calculated the minimum number of intermediate variables required for sequential execution of
the explicit formula. When the program terminates it outputs exactly how many intermediate variables
are required for an execution of the formula and the corresponding valid sequence. As our methodlogy
is a kind of exhaustive search with some running time optimization measures, for a long input file it may
take substantial amount of time to run. In order to get the results within a reasonable time, another
program was employed. We will refer to this later program as the reverse program and the former as
forward program. The reverse program initially takes £ = 1 and using the same logic as forward checks
if the explicit formula can be executed with k& temporary locations. If not it reports this fact and tries
again with £ replaced by £+ 1. When it gets an affirmative answer it outputs the corresponding value of
k and the corresponding valid sequence. After obtaining a path requiring / intermediate variables, the
forward program looks for path needing less than [ intermediate locations. If during the search process
it comes across a path which also requires / locations, then forward abandons this path and look for a
newer one. The reverse program uses the same logic, taking £ = 1,2.... We run both the programs
with the same input file on two different machines. If either of forward or reverse terminates we get
the result. Otherwise, if at some point of time forward reports the formulae can be executed with k
variables and at the same time reverse reports it can not be done with less than k£ — 1 intermediate
locations, then also the conclusion follows.

The employment of reverse helped us to get to the conclusions quite early. Some of the explicit
formula under consideration have more that 100 lines of three address codes (i.e. total number of
arithmetic operations is more than 100). In spite of the speed-up measures described above, there is no
guarantee that forward will terminate. In fact, we ran forward program without any speed up measure on
some longer inputs and found that it did not terminate in a week. Even after the optimisation methods
described above are employed, for some of the formulae given in [15] it did not terminate for three
days, though it ran much faster. Surprisingly (because they have quite a small number of operations),
for the doubling formulae in new coordinates in even characteristic, in both cases hy # 0 and hy = 0,
forward did not terminate. So, we took help of the reverse program to derive our conclusions. With the
help of reverse we could get conclusion on any formula in less than two days.

5 Pre and Post Processing

We implemented the methodology described above and found out the minimum number of registers
required for a select set of explicit formula. Each formula was preprocessed in the manner described
below:

5.1 Preprocessing

We call the different explicit formulae which appear in research papers to be in raw form. Our first
step is to preprocess such raw formulae and convert into a form suitable for input to our register
minimization program. This conversion of explicit formulae from one form to another is done using
a preprocessing program. We verify the correctness of the two forms using Mathematica, a symbolic
computation software. We first describe this verification method and then describe the preprocessing
algorithm.



Each explicit formula consists of a set of input and output variables and a sequence of arithmetic
operations involving temporary intermediate variables. The arithmetic operations are addition, sub-
traction and multiplication. Thus each output variable can be written as a multivariate polynomial
in the input variables. This polynomial can be computed by successively eliminating the intermedi-
ate variables. We say that two explicit formulae with the same set of input and output variables are
equivalent if the multivariate polynomials corresponding to the output variables are same for both the
formulae. We use Mathematica to perform this verification. Being a symbolic computation software,
Mathematica can efficiently construct the multivariate polynomial corresponding to the output variable
of an explicit formula. There is, however, a problem in this method. If an explicit formula reuses a
variable, then Mathematica falls into an infinite loop and fails to construct the multivariate polynomial.
There is another pitfall when variables are reused. According to Garey-Johnson [6, page 272], the de-
cision version of the problem when variables can be reused, is known to be NP-hard but not known to
be in NP. Thus our first step is to eliminate variable reuse from raw formulae.

We say that a variable is reused if it occurs more than once on the left hand side.There are three
different kinds of variable — input, output and temporary. If an input variable is reused, then we
want the first occurrence to have the identifier of the input variable, while subsequent ones will have
new identifiers. On the other hand, if an output variable is reused, the last occurrence must have
the identifier of the output variable while the others will have new identifiers. Reuse of intermediate
variables can be tackled either as an input or as an output variable — we tackle them as input variables.
While eliminating reuse of input variables, we have to scan the formula from the start to the end and
while eliminating reuse of output variables, we have to scan the formula from the end to the start. We
do not provide further details, as they are fairly routine and technical in nature.

The second step after elimination of variable reuse is to convert the raw formula into a sequence of
binary operations. For this we initially convert the formula to postfix form and then use a stack to obtain
the sequence of binary operations. This step is also quite routine and is given in most data structure
textbooks. However, we note that we attempt no optimisation at this step. Compiler construction
based techniques of using directed acyclic graphs (DAG’s) to identify common minimal subexpressions
could be applied at this point. Thus the minima we report are really minimum after conversion to three
address codes. The actual minimum could be lesser, though we think this to be unlikely.

The third step is to perform a series of checks: no variable is reused, each output variable occurs
once on the left side, each intermediate variable should occur exactly once on the left side and at least
once on the right side. Finally, we also check if each input variable is used at least once. We do not
consider the failure of this check to be a serious error, since some of the curve parameters are sometimes
not used in some formulae. However, we do report this failure and if any of the other checks fail, we
do not proceed with further processing of the formulae. The output of the third step is verified to
be equivalent to the raw formula after eliminating variable reuse. Once this verification succeeds, we
provide this as input to our register minimization algorithm.

5.2 Post-processing

As mentioned in the last section, the register minimization programs both determine the minimum
number of intermediate variables required in the implementation of the explicit formulae and also
output the corresponding valid sequence. If the number of inputs to a formula is @, minimum number
of intermediate variables required is 8 and 7y is the number of outputs of the formula, then it can surely
be implemented with a+ 3+ locations in memory. For optimal usage of memory, the registers occupied
by input variables can be reused after last usage of the input. Also, in some situations one may not
like reusing the locations storing the input variables as they may be required later. For example in
scalar multiplication algorithms, whenever a HCADD is called one argument is the base point. So, if



the locations storing the parameters of the base point are reused, one has to load them again into these
registers when HCADD is invoked again by the scalar multiplication algorithm. Thus there may be
some inputs such that the register containing them can not be reused. This leads to two cases,

1. All registers are reused.

2. Some selected registers containing some vital inputs are not reallocated.

In our investigation, we allowed reuse of all registers for HCDBL. For HCADD, the inputs are the
parameters of two points (divisors) to be added. In our implementation we allowed reuse of the registers
containing the parameters of the first divisor. We assumed that the second divisor is the base divisor
and its contents should not be destroyed by reusing these registers. For mixed addition algorithm, the
divisor which is in affine coordinates is the base point. We did not allow the reuse of the registers
containing the point in affine coordinates. Also, the registers containing the curve parameters are never
reused nor counted. These are the registers containing the ‘vital’ inputs.

For sake of generality, we also ran our programs allowing reuse of all the registers (except the ones
containing the curve parameters) for all addition formulae. We found that the register usage level can
be brought down by reusing all the registers. If in a device, the base point is stored in some permanent
memory like some kind of ROM and transfering data from ROM to registers is fast enough, then reuse
of all registers is preferable. However, if such data transfer takes significant time, then the time for
an addition may go up significantly relative to doubling and the implementation risks being prone to
timing attacks.

A register allocation program was implemented which converted the binary instructions of the valid
sequences obtained from the minimum intermediate variables programs into the explicit register specified
format (ERSF). A register containing a non-vital input is reallocated as soon as the variable it is
containing is not required any more (is not a ‘live’ register).

The output of this program for an explicit formula is in the ready-to-implement form. We applied
this methodology to several important formuale in ECC and HECC. For HECC, these outputs are the
first explicit formula in ERSF. Hopefully, these formulae will be of importance for an implementation
in software or in hardware.

6 Results

The addition (ECADD) and doubling (ECDBL) formulae in ECC have received much attention from
the research community and the formulae are quite simpler in comparison to those in HECC. It has
been reported by many researchers that the ECADD in mixed Jacobian coordinates for most general
curves over fields of odd characterestic needs 7 registers for implementation. To our knowledge, there is
no result stating that it can not be executed in less than seven registers. This aroused our curiosity for
testing these formulae in our methodology. We experimented with ECADD and ECDBL in Jacobian
coordinates and found that ECADD and ECDBL can be implemented with no less than 7 and 6 registers
respectively. Both forward and reverse program reported this fact. As we intended this work to focus
on HECC, we did not pay attention to other ECC algorithms.

We applied our methodology to many formula in HECC. First of all, we applied our methodology
to Lange’s formulae in new coordinates [15]. These formulae are the most efficient ones for general
hyperelliptic curves of genus 2. All these formulae are inversion-free. However, the cost of avoiding the
inversions is more than an inversion in binary fields. Hence for an implementation over binary fields,
affine arithmetic still looks quite attractive. So we used our methodology to calculate the minimum
number of registers required for implementing HCDBL and HCADD in affine coordinates also. We used
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the formulae presented in [13] which are the most efficient ones in affine coordinates for general curves
of genus 2. Pelzl et al. [20], have proposed a very efficient HCDBL formula for a special class of curves.
We investigated the memory requirement of the HCADD and HCDBL formulae presented in [20] also.

Recently, many efficient doubling formulae have been presented in [17]. Many situations, (like
deg(h) = 1 or 2, hg = 0 or # 0, hy is small etc.) have been considered. If a particular variable is
small then multiplication by that variable can be effected by some additions. The number of additions
will depend upon the value of the small value. Hence we have not inquired these situations. When
deg(h) = 1 and h? and h;! are precomputed, the doubling formula proposed in [17] is very efficeint.
To compute a doubling (1[z] + 9[m] + 5[s]) one needs only 7 registers. However to compute the scalar
multiplication one has to couple it with an addition formula which requires 15 registers.

Note that HCADD and HCDBL for genus 2 curves have many special cases. The most general and
also the most frequent case is the one in which the divisor(s) are of full weight, i.e. if D = (u,v) is the
divisor, then deg(u) = 2,deg(v) = 1. In the current work we concentrate on the most general and the
frequent case only. The same methodology can be applied to other special cases as well. Also, the cost
of various operations we have given in the Table 2 below does not corroborate with the costs provided
in the corresponding papers. That is because authors generally avoid counting the multiplication and
squaring of/with curve constants. In some formulae such operations occur in significant numbers. For
example in even characteristic doubling formula (hg # 0), there are 21 such multiplications/squarings.
Many of the curve constants can be made 0 or 1. For sake of generality, we have accounted for these
multiplications and squarings as well.

We use the following naming convention for the name of various algorithms. The formulae pre-
sented in [13] and in [20] are in affine coordinates. We use a superscript A for them, e.g. HCADD#
and HCDBLA. The formulae in [15] are in Lange’s new coordinates. For the formulae in these new
coordinates over fields of even characteristic we will use the superscript N'e and for those over fields of
odd characteristic we will use superscript N o. Divisor addition algorithms in mixed coordinates will be
denoted by a suffix ‘m’ e.g mHCADDV?,

We summarise our findings in Table 2. In the appendix we present all these formulae in Explicit
Register Specified Format.

Observing Table 2, one can conclude that the formulae presented in [17] are best for an implemen-
tation over binary fields. However, these are based on a classification of curves into isomorphism classes
and if one wants to use curve randomization not all curve parameters can be chosen in this optimal
way. An implementation of the formulae in [13], which are more general in nature, needs only one more
register in doubling. In the scalar multiplication algorithm, sets of explicit formulae will require 15
registers each. The former has no curve parameter which is not zero or 1. The later requires storing
of atmost 6 curve parameters. The computation can be made secure against simple power attacks
by using Coron’s dummy addition method without any extra registers. Two popular countermeasures
against DPA are Coron’s point randomisation [5] and Joye-Tymen’s Curve randomisation [9]. Both
have been extended to hyperelliptic curves by Avanzi [1]. In affine representation point randomisation
countermeasure can not be implemented. As there is no curve constant involved in the explicit formulae
in [20], curve randomisation can not be applied. Hence for a secure implementation the formulae of [13]
are suitable. It will require at most 21 registers (at most 6 registers for curve parameters).

For an implementation over fields of odd characteristic, clearly the formulae in [15] are the most
suitable. In this representation mixed addition requires 20 registers and doubling requires 16. Besides 2
curve parameters are to be stored. So the scalar multiplication can be computed in 22 registers. For a
secure implementation, Coron’s dummy addition method and point randomisation can be used without
increasing the number of registers.

For addition formulae we do not reuse the registers containing the parameters of the base point. As
stated above we also experimented reusing all registers. We provide our results in Table 3. It can be
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Table 2: Register Requirement for Various Explicit Formulae

Algorithm Proposed in | Characteristic Cost Registers Required
HCADDA [13] All 1] + 22[m] + 3[s] + 44][a] 15
HCDBLA [13] All 1] 4+ 22[m] + 5[s] + 56[a] 11
HCADDN? [15] Odd 49[m] + 7[s] + 34[a] 23
mHCADDV° [15] Odd 36[m] + 5[s] + 35[a] 16
HCDBLV? [15] Odd 36[m] + 7[s] + 41[a] 20
HCADD}Y <, [15] Even 52[m] + 4[s] + 35[a] 27
mHCADDy®,, [15] Even 42[m] + 5[s] + 34[a] 17
HCDBLj%, [15] Even 54[m] + 8[s] + 29][a] 20
HCADD)® [15] Even 47[m] + 6[s] + 37[a] 27
mHCADD}® | [15] Even 37[m] + 6[s] + 30[a] 22
HCDBLY [15] Even 40[m] + 6[s] + 27[a] 16
HCADD 20] Even 1[i] 4 21[m] + 3[s] + 30[a] 15
HCDBLA [20] Even 1[i] + 9[m] + 6[s] + 24[a] 10
HCDBLj -1 [17] Even 1] + 5[m] + 9[s] + 10[a] 7
HCDBL7! o(W)=1 =1 [17] Even 1] + 5[m] + 9[s] + 7[a] 6
HCDBLL 422 hg—0 [17] Even 1(s] 4+ 17[m] + 5[s] + 31[a] 10

seen that number of registers goes down sinificantly if all registers are reused.

7 Possible Improvements and Conclusion

Although our register minimisation technique produces minimum number of registers required for any
explicit formula, its output depends upon the nature of the input file. The input file is generally a
sequence of three address codes. There is a vast literature in compiler construction studies on efficient
methods for converting an arithmetic formula into three address codes. Our parsing program which
converted the explicit formulae into three address codes may not be the optimal one. Therefore there is
still some scope for improvement. Besides, the explicit formulae used for finding the minimum register

Table 3: Register Requirement: Register Reuse vs No Reuse

Algorithm Proposed in | #Registers (all reused) | #Registers (selective reuse)
HCADDA [13] 13 15
HCADDV° [15] 19 23
mHCADDV? [15] 19 20
HCADD) <, [15] 23 27
mHCADD;, [15] 18 20
HCADD} [15] 23 27
mHCADD}® g [15] 19 22
HCADDA [20] 14 15
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requirements are best known algorithms. In future, researchers may come out with more efficient
formulae. Thus the minimum register requirements reported in the current work may not be the best
for hyperelliptic curve cryptosystems.

In a memory constrained small device, we may sacrifice a small amount efficiency for efficient memory
usage. That is, instead of keeping a memory location occupied with a computed value which will be
required much later, we can free the corresponding location to store other intermediate values and
recompute the earlier value once again exactly when it is required. For example, suppose in an algorithm
at step k a value x = y op z is computed and used at Steps k + 1 and k + k1, where k; is not small.
Also, suppose that at Step k + k1, both y and z are alive. Then if memory is a concern, instead of
storing the value of x for ki steps, one may prefer to free that memory at Step k£ + 2 and recompute
x just before the Step k& + k1. Thus one saves a memory location for some steps by recomputing one
operation. This may be worthwhile if it is a cheap operation like field addition or negation. In this way
one can trade-off memory for some extra operations. In the current work, we have not gone for such
optimizations. In an implementation on a small device, this kind of optimization can lead to better
utilization of memory.
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A HECC Formulae in ERSF with Selective Register Reuse

Algorithm HCADD"? of [15]

Curve Constants Used: None

Input Variables: U11, Ul(), VH, V10, Z11, Z12, Z11,
U1, Uao, Vai, Voo, 221, Z22, 221

Output Variables: Up1,Upg, Vp1, Vo, Zp1, Zp2, 2p1, 2p2

1. Ry :=U11 2. Ry :=U10 3. R3:=V11 4. Ry :=V10

5. Ry := Z11 6. Rg := Z12 7. Ry :=z11 8. Rg :=U21

9. Rg =U20 10. R10 =V21 11. RH =120 12. R12 =721

13. Ry3 :=Z22 14. Ry4 := 221

15. R15 = R1 * R14 16. R16 = R2 * R14 17. R17 = R5 * R6 18. R17 = R7 * R17
19. ng = R12 * R13 20. R14 = R14 * ng 21. ng = R3 * R14 22. R14 = R4 * R14
23. Rig:= R7+ R, 24. Rip := Rip * R17 | 25. R11 := Rq11 * Ryy 26. Ri7 := R1g — Ryo
27. R14 = R14 — R11 28. ng = R14 + R17 29. Rg = Rg * R7 30. R16 = Rg - R16
31. R20 = R16 * R7 32. Rg = Rg * R7 33. R15 = R15 - Rg 34. R17 = R15 * R17
35. R19 = R17 * R19 36. R17 = R2 * R17 37. R21 = R1 * R15 38. R20 = R21 + R20
39. R4 := Rgo *x Ris | 40. Ry7:= Ri4a — Ry7 | 41. Ro1 1= Ryr* Ry 42. Rg1 1= Roo + Ra1
43. ng = R21 * ng 44. R14 = ng - R14 45. R14 = R14 — R19 46. ng = R16 * R20
47. R13 = RG * R13 48. R19 = R15 * R15 49. R19 = R19 * R2 50. ng = ng + R19
51. ng = R5 * ng 52. R19 = ng * R12 53. R13 = R13 * R19 54. R13 = R13 * ng
99. R20 = R14 * R19 56. R19 = R17 * R19 57. ng = ng * R20 58. R17 = R17 * R20
59. R10 = ng * R10 60. RH = ng * R11 61. ng = R14 * R14 62. R14 = R14 * R20
63. R16 = R16 * R14 64. R21 = ng * R13 65. R12 = R12 * R12 66. R13 = R13 * R13
67. Roo := Ri5+ Rg | 68. Rig := Rig* Roo | 69. Roo := Ri7+ Ri7 | 70. Rig := R1g — Roo
71. ng = R15 * ng 72. R22 = R17 + R14 73. R17 = R17 * Rg 74. Rg = Rg + Rg
75. Rg = R22 * Rg 76. Rg = Rg - R17 77. R11 = R17 + RH 78. R17 = R20 * R19
79. R22 = R20 * R20 80. R11 = R22 * RH 81. R23 = R17 + R17 82. R19 = R19 * R19
83. ng = R19 + ng 84. R16 = ng + R16 85. ng = R14 * Rg 86. Rg = Rg + Rg
87. Ry := Rg — Rig | 88. Ri7 := Rig + Ri7 | 89. Rg := Rg + Ri5 90. Rs := Rg * Ri3
91. R13 = R15 * R14 92. R13 = R23 - R13 93. R13 = R13 - R12 94. R14 = R17 - R13
95. Ri5 := R4 x R13 | 96. Ry := Rg + Ry 97. Rip:= Rig+ Rip | 98. Rig := Ris + Rio
99. Rg := Ry + Rg 100. R1p := R4 * Rg | 101. Ryp := Ry1p — R11 | 102. Ry := R9 — Rg
103. Rg = R22 * Rg 104. Rg = R15 - Rg

Up: := Ri3 Upo := Rg Vp1:= Ry Vipo 1= Rao

Zp1 := Ry Zps := Ry zp1 1= Roy zp2 1= Ry

Number of registers used = 23
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Algorithm mHCADDN? of [15]

Curve Constants Used: None

Input Variables: Ul(), UH, Vi[), VH, UQ[), U21, Vgo, Vgl, Z21, ZQQ, 2215 222
Output Variables: Upgy, Up1, Vo, V1, Zp1, Zpe, 2p1, 2p2

1. R1 = U11
5. R5 = U21
9. Rg = Z21

2. R2 = U10
6. R6 = U20
10. R10 = Z22

3. R3 = V11
7. R7 = V21
11. R11 = 2921

4. R4 = ‘/10
8. Rg = Vé[)
12. ng = 2992

13. Rw = Rg X Ru)
17. R15 = RQ X R11
21. R15 = R15 * R16
25. Rw = R15 * Ru)
29. R4 = R4 * R13
33. R13 = R16 + R14
37. R3 = R14 * R3
41. R3 := Ry x R3
45. R15 = R3 * R11
49, Rg = R13 X Rg
53. R20 = R13 + R19
57. Ry := Ry * Ry
61. Ry := Ry * R3
65. R13 = R14 * R13
69. R13 = R11 * R3
73. Ry := R — Ry
77. Ry := Ry * Ryg
81. Ry := Ry + R4
85. R2 = R2 - Rg

14. R13 = R11 * Ru)
18. R15 = RG - R15
22. R17 = R14 * R14
26. R17 = Rm * Rg
30. Ry := Ry — Rg
34. R16 = R16 * R4
38. Ry := Ry — Ry
42. R3 := R — R3
46. Rg = R4 * Rg
50. R7 := Ri3 * Ry
54. R19 = R19 * R6
58. R1 = R3 - R1
62. R3 := Ry + Ry
66. R3 := R3 — Rq3
70. R¢ := Rs + R
74. Ry := Ry + Ry
78. R1 = R1 - R2
82. R2 = R2 * R10
86. Ry := Ry — Ry

15. Ri4 := Ry * R
19. R16 = R1 * R14
23. R17 = R17 * R2
27. Rm = Rm X R10
31. R3 = R3 * R13
35. Ry := R4+ R3
39. Ri3: =1+ Ry
43. R4 = R4 - R13
47. R16 = Rg * Rg
51. R11 = R19 X R11
55. Rg := R19 + Rg
59. R3 = R14 * R4
63. Ry := Ry3 * R5
67. Ry := R3 — Ryg
71. R6 = R20 * RG
75. Ry := R4 + Ry
79. Ry := Ry + Rs¢
83. Ry := R1 + Ry
87. Ry := Ry * Ry

16. R14 = R14 - R5
20. R16 = R16 + R15
24. R15 = R15 + R17
28. ng = R17 * R17
32. R3 := R — Ry
36. Ry := Ri3x Ry
40. R13 = R3 * R13
44. R13 = R15 * R4
48. R19 = R3 * R4
52. R13 = R4 X R4
56. Rg = R16 * Rg
60. R3 = R15 - R3
64. RH = R4 + R11
68. Ri1 := Ry1 — R3
72. RG = R6 - R19
76. R¢ := R7 + Ry
80. Rg := Rs + R;s
84. R2 = RH * R1
88. R4 = R13 - R4

Up: = R3
Zp1 = Rg

Up[) = R1
Zpo = Ry

Vpi:=Ry
zp1 = Ryg

Vp() = R2
zp2 == Rig

Number of registers used = 20
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Algorithm HCDBL/ of [15]

Curve Constants Used: f3, fo

Input Variables: Ul, U[), ‘/1, V[), Zl, ZQ, 21522

Output Variables: Up1,Upg, V1, Vg, Zp1, Zpe, 2p1, 2p2

1. R1 =Ul 2. R2 =U0 3. R3 =V1 4. R4 =V0

5. Rs :=Z1 6. Rg := Z2 7. Ry .= 21 8. Rg := 22

9. Rg = R4 * R7 10. R10 = R3 * R3 11. RH = R2 * R7 12. R12 = R1 * R1
13. R13 = ng - RH 14. R14 = R1 * R3 15. Rg = Rg - R14 16. Rg = R4 * Rg
17. R14 = Rm * R2 18. Rg = R14 + Rg 19. R6 = R6 * Rg 20. R6 = R6 * R7
21. R5 := Rg * Rs 22. R5 := R5 + R5 23. Ri4 := R5 * R5 24. Rg := Rg * Rg
25. Rg := Rg + R 26. Rg := Rg * Ry 27. Ri5 := R7 x Ry 28. Ris := f3 * Ry5
29. R16 = R16 + R12 30. R12 = R12 - R11 31. R12 = R13 + R12 32. ng = R12 + R16

33. ng = Rg * ng 34. R13 = R15 * R7 35. R13 = R13 * fg 36. R15 = RH + R11
37. Ri5 := Ri5 + Rq1 | 38. Ri5 := Ri5 + R11 | 39. Ri5 := Ri5 — Rig | 40. R15 := Ry x Ry5
41. R13 = R15 + R13 42. Rg = Rg * R13 43. Rg = Rg - Rw 44. Ru) = Rlﬁ + R3
45. Ry3 := Rg * Ryg 46. R3 := Rq9 * R3 47. Rg := Rg + Ry» 48. Rg := Rqo * Rg
49. Rg = Rg - R13 50. Rm = R3 * RH 51. Rm = R13 - Rl[) 52. RH =14 R1
53. R3 = R3 * RH 54. R3 = Rg — R3 5. R7 = R3 * R7 56. Rg = Rg * R7
57. R3 := Rg x R3 58. Ry := Rg x Ry 99. Ry :=Ry+ Ry 60. Rg := R3 + Rg
61. R3:= R3 + R;3 62. Rg := Ryo * R1o 63. Rs := Rs + Rs 64. Rg := Rs + Rg
65. Rg := Rg + Rg 66. Rg := Rg + Rg 67. Rg := Ryp * Ry 68. Rg := Ry * R3
69. R3 := R7* R3 70. Rig := R7 *x Ry 71. Ry; := Ry + R3 72. R3 := R3 * R;
73. Ry := Rg * Ry 74. R1 := Ry + Ry 75. Ry := R11 x Ry 76. R1 := Ry — Ry
77. Ry := Ry + Ry 78. Ry := Ry — R3 79. Ry := Ry + R3 80. R3 := R3+ Rg
81. R1 := Ry — Ry 82. R := Ry * Ry 83. Ry := Ryp * Ry 84. R4 := Rg + Rg
85. Ry:= Ry — Ry4 86. R3 := R3 — Ry 87. Rs := R3 x Rg 88. Ry := Rg — Ry
89. R3 = R3 * R4 90. R1 = R3 — R1

Upl = R4 Upo = R6 Vpl = R1 Vpo = R2

Zpl := Ry Zp2:= Rj zpl := Ryg zp2 = R4

Number of registers used = 16
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Algorithm HCADDY,,

Curve Constants Used: ho, h1, hg

Input Variables: U11, Ul(), ‘/11, Vl(), ZH, Z12, 21152125 2135214,

Usa1, Uz, Vai, Voo, Za1, 222, 221, 222, 223, 224

Output Variables: Up1,Upgy, V1, Vg, Zp1, Zpa, 2p1, 2P2, 2P3, 2D4

1. R1 = U11
5. R5 = ZH
9. Rg = 213
13. R13 = ‘/21
17. R17 =221

2. R2 = U10
6. R6 = Z12
10. Rw = 214
14. R14 = ‘/20
18. ng = 2929

3. R3 = V11
7. R7 = Z11
11. R11 = U21
15. R15 = Z21
19. R19 = 293

4. R4 = Vm
8. Rg = 212
12. ng = U20
16. R16 = Z22
20. R20 = 294

21. R21 = R3 * R20
25. Roy := R7 + Ry
29. R20 = R20 + R14
33. R26 = R22 * R7
37. R24 = R21 * R24
41. R20 = R26 * R20
45. R25 = R27 * R25
49. Ros := Ry2 + R13
93. Roq 1= Ros + R
57. R24 = R24 * R26
61. R21 = R21 * R26
65. R19 = R23 * R19
69. R20 = R20 * R26
73. R12 = R21 + R12
7. R13 = R24 * R24
81. R20 = R24 + R27
85. R21 = h1 * R26
89. R13 = R13 + R19
93. ng = R20 * R12
97. R24 = R20 * R21
101. R19 = R19 + R25
105. R14 = R25 + R14
109. R11 = R11 + R12

22. R20 = R4 * R20
26. R13 = R13 * R10
30. R25 = R20 + R21
34. RH = RH * R7
38. R21 = R21 * R2
42. R21 = R20 + R21
46. R20 = R25 + R20
50. R19 = Rg * R19
54. R19 = R24 * R19
58. R13 = R24 * R13
62. ng = R21 * R12
66. Ro7 := Ro3 + Ry
70. RH = R20 * R11
74. R20 = R22 * R20
78. R21 = R27 * R23
82. R20 = hg * R20
86. R20 = R20 + R21
90. R12 = R12 + R13
94. R14 = R20 * R14
98. R25 = hg * R21
102. R19 = R19 + R22
106. RH = RH * R23
110. R12 = ho * R24

23. R22 = R2 * R17
27. Ry1 := Ra1 + Ry3
31. R12 = ng X R7
35. R23 = R23 + R11
39. Ro7 := R; * Ro3
43. R27 = R23 * R7
47. R20 = R20 + R24
ol. R% = R23 * R23
5. R17 = R7 * R17
59. R14 = R24 X R14
63. Ri4 := Ri2 + Ry
67. R27 = R23 X R27
71. Ra1 := Ra1 + Ry
75. R12 = R12 + R11
79 R13 = R13 + R21
83. R21 = R26 X R24
87. R19 = R20 + R19
91. R19 = R23 X R26
95. Rgl = R% * R17
99. Ry7 := ho * Ry
103. R11 = R11 + R23
107. Ry1 := Ri1 + Ry
111. R12 = R14 + R12

24. R23 = R1 * R17
28. R14 = R14 * R10
32. R22 = R22 + R12
36. Rgl = R23 * R21
40. R26 = R27 + R26
44. R27 = R26 + R27
48. R24 = R22 X R26
52. R26 = R26 * R2
56. R26 = R20 X R17
60. R24 = R21 X R17
64. R17 = R19 * R17
68. R23 = R23 X R20
72. Rgl = Rgl * R25
76. R12 = R12 + R13
80. R13 = R13 + R20
84. R11 = R11 + R21
88. R19 = R17 * R19
92. R20 = R26 X R26
96. R22 = R17 * R17
100. RH = R11 + R27
104. R25 = Rll * R13
108. ng = h1 * R24

Upl :== Ry
Zpl := Rogg
Zp3 = R21

Upo := Ri3
Zp2:= Ry
zpd = Roy

Vp1 := Ry
zpl := Rog

VpO = R12
zp2 = Ros

Number of registers used = 27

18




Algorithm mHCADD),,
Curve Constants Used: ho, h1, hg.

Input Variables: Uiy, Uio, Vi1, Vio, Ua1, U2, Va1, Voo, Zo1, Za2, 221, 222, 223, 224

Output Variables: Upla UpOa Vpla VpOa Zpla Zp?a ZP1, 2P2, 2P3,y P4

1. R1 = U11
5. R5 = U21
9. Rg = Z21
13. R13 = 293

2. R2 = U10
6. RG = U20
10. R10 = Z22
14. R14 = 294

3. R3 = V11
7. R7 = V21
11. R11 = 2921

4. R4 = V10
8. Rg = V20
12. ng = 299

15. R15 = R1 * R11
19. R16 = R1 * R15
23. ng = ng X R2
27. ng = R18 + Rg
31. R16 = R16 X ng
35. ng = ng — R16
39. Ri4 := Ris + Ry4
43. R14 = R14 * R16
47. R16 = R16 X Rg
51. Rg := R4 + Rg
55. R13 = R13 X R13
59. R5 = R5 - R14
63. Rg := R1s + Rg
67. R14 = R16 X R16
71. R19 = R17 + ng
75. Rg := Rg + Roo
79. Rg := Rg + Ri3
83. R13 = hg X R15
87. Ry := R7+ Ry
91. Rs:= R7+ R;s
95. Ry := Rs + Ry

16. R15 = R15 + R5
20. R16 = R16 + R11
24. Ri7 := Ry7 + Ris
28. R14 = R3 * R14
32. ng = ng + R14
36. Rig:=1+4+ Ry
40. R16 = ng - R19
44. Rg = R17 * Rg
48. R11 = R17 X R11
02. R20 = R17 * R5
56. R13 = R15 X R13
60. R5 = R5 - R20
64. R6 = ng * R6
68. Rg = R14 * Rg
72. R20 = h2 * R15
76. Rg := R + R11
80. Rs := Rs + Rg
84. R13 = R19 + R13
88. R19 = R7 * R6
92. Ry := hy * Ry

17. R11 = R2 * R11
21. R17 = RH * R16
25. R13 = R17 X R13
29. R14 = R14 + R7
33. ng = R19 X ng
37. R19 = R14 * R19
41. R17 = R17 * R16
45. R7 = R17 * R7
49, R19 = R17 + R14
53. R17 = R15 * R17
d7. Rs := Rs + R
61. Rs := Rs + Ry
65. R7 = R16 * ng
69. R15 = R16 X Rg
73. R20 = R20 + R17
7. R11 = hl * R15
81. R5 = R14 * R5
85. R19 = hg * R15
89. Rg := Ri9 + Rg
93. Rs := Rs + Ry

18. RH = RG + R11
22. ng = R15 * R15
26. ng = R4 * R14
30. R19 = R16 + R15
34. R14 = R15 * R14
38. R14 = R2 * R14
42. ng = R14 * Rg
46. R17 = R16 * R16
50. R14 = R14 * R6
54. Rg = R13 * Rg
58. R5 = R19 * R5
62. Rg := hg * Ry
66. R7 := Roy + Ry
70. ng = Rg * Rg
74. R20 = R1 * R20
78. R¢ := R¢ + R11
82. RH = R14 * R15
86. Ry := R7+ Ryg
90. R7 = R7 * R17
94. R7 := hg * Ry

Upi := Ri3
Zp1 = Rig
zp3 = Ris

Up() = R6
Zp2 = Ry
zps == Ry

Vp1 = R5
zp1 = Ry

Vp() = R7
zp2 = Rys

Number of registers used = 20

19




Algorithm HCDBL}',,

Curve Constants Used: hso, h1, hg, f3, fo.

Input Variables: Uy, Uy, V1, Vo, 41, Z2, 21, 22, 23, 24

Output Variables: Up1,Upgy, V1, Vg, Zp1, Zpa, 2p1, 2P2, 2P3, 2D4

20

1. R1 = U1 2. R2 = U() 3. R3 = ‘/1 4. R4 = ‘/0
5. R5 = Zl 6. R6 = Z2 7. R7 =21 8. Rg =22
9. Rg = Z3 10. R10 = Z4
11. RH = h1 * R7 12. R12 = hl * h1 13. R13 = h2 * h2 14. R14 = hl * R1
15. R15 = R3 * h1 16. R16 = R7 * R7 17. ng = ng * R16 18. R16 = f3 * R16
19. R17 = hg * R2 20. R14 = R14 + R17 21. R17 = hO * R7 22. R14 = R14 + R17
23. R14 = R7 * R14 24. R17 = R4 * hg 25. R15 = R15 + R17 26. R17 = f2 * Rl[)
27. Ri5 := Ri5 + Ry17 | 28. R15 := Rqo * R15 29. Ri7 :=ho x Ry 30. Ri1 := R11 + Ry7
3l. Ri7:=R1 xR, 32. Ri3 := Ry3 * Ry7 33. Rio:= Rio+ Ry3 | 34. Ri2 := Ri2 *x Ry
35. Ri3:= Rig + R17 | 36. Rig := ho * Ry7 37. Ri4 := R4 + Ry | 38. Rg := Rq3 * Rg
39. Rig := R3 * ho 40. R := Ry * Ry 41. Rg := Rg + Ry 42. Rig := hg * Ro
43. R14 = R16 * R14 44. R12 = R12 + R14 45. Rg = Rg * R12 46. R10 = Rg * R10
47. R19 := R3 * R3 48. Ri4 := Ry * Rg 49. Ri9 := R4+ R12 | 50. R13 := R19 + Ry5
51. R14 = R13 + R11 52. R13 = R12 * R13 53. R11 = Rg * RH 54. Rg = R12 + Rg
5. Rg = R14 * Rg 56. Rg = Rg + R13 57. ng = hg * R1 58. R14 =1 + R1
59. Ri4 := Ry11 * R4 60. Ri1 := Ry x R 61. Rg := Rg + R4 62. Ry1 := Ry1 * Ry
63. Ri1 := Ri3+ Ry1 | 64. Ri3 := ho x Ry 65. R4 := hy1 * Ry 66. Rio:= Ris + R4
67. ng = Rg * ng 68. R12 = R13 + R12 69. ng = R10 * ng 70. R7 = Rg * R7
71. Rg = Rg * R7 72. R3 = Rg * R3 73. R4 = Rg * R4 74. Rg = RH * R11
75. Rg = Rg + R12 76. ng = R11 * R7 77. RH = R11 * Rg 78. Rg = R7 * Rg
79. Ri3:= Rg + R1y 80. Rg := Rg *x Ry 81. R11 := Ry1 * Ry 82. Ri9 := Rg + Rio
83. Ry := Ry1 + Ry 84. Ry := R1 + Ry 85. Ry := Risx Ry 86. Ry := Ry — R11
87. R1 := Ry — Rg 88. R1 := Ry + R3 89. R := Ry + Ry 90. Ry := R7 x Ry
91. R1 = R2 * R1 92. R3 = R2 * R4 93. R4 = R7 * R10 94. Rg = Rm * Rm
95. RH = R2 * R4 96. R13 = h2 * R4 97. R14 = hg * R4 98. R14 = Rg + R14
99. Rio := Rio+ Ry3 | 100. Ri3 := R12 + R14 | 101. Ri3 := R12 x Ry | 102. R3 := R13 — R3
103. ng = ng * R14 104. R1 = R12 - R1 105. R12 = R11 * h1 106. R1 = R1 + R12
107. R12 = RH * ho 108. R3 = R3 + R12
Up1 := R Upo := Ry Vpr:= Ry Vpo := R3
Zp1 = Ry Zps = Ry zp1 = Ry zp2 = Rg
zp3 = Ry Zpy == Ry

Number of registers used =17




Algorithm HCADD)¢ |
Curve Constants Used: hy.

IHPUt Variables: U217 U117 U107 ‘/117 ‘/107 Z117 ZlZa 211, 2125 2135 214, U207 V217 V207 2217 2227 221522242235 224

OUtput Variables: Upla UpOa Vpla VpOa Zpla Zp?a ZP1, 2P2, 2P3,y P4

1. R1 = U21
5. R5 = Vm
9. Rg = 212
13. R13 = V21
17. R17 = 291

2. R2 = U11
6. R6 = ZH
10. R10 = 213
14. R14 = ‘/20
18. ng = 299

3. R3 := Uy
7. R7 = Zlg
11. R11 = Z14
15. R15 = Z21
19. R19 = 293

4. R4 = V11
8. Rg = 211
12. R12 = U20
16. R16 = Z22
20. R20 = 2924

21. Rgl = R4 * R20
25. Ros := Rg + R
29. R14 = R20 + R11
33. R25 = R22 X Rg
37. R24 = Rgl * R24
41. R14 = R25 * R14
45. R20 = R27 * R20
49. Roy := Roz + Rog
53. R20 = R20 + R25
57. Ri7 := Rg * Ry7
61. R22 = R22 X R14
65. R20 = R20 * R17
69. R19 = R19 X R17
73 R27 = R21 + R14
7. R12 = R27 X R12
81. Ri2 := Ri2 + Ri3
85. R13 = R13 + R22
89. Rgl = R19 * R19
93. Rog := 1% Ry
97. Ri2 :== Ri2 + Ry3
101. R23 = R14 x 1

22. R20 = R5 * R20
26. R13 = R13 * R11
30. R20 = R14 + R21
34. R26 = Rl * Rg
38. R21 = R21 * R3
42. R21 = R14 + R21
46 R14 = R20 + R14
50. R19 = Rw * R19
54. R19 = R20 * R19
58. R25 = R14 * R17
62. R13 = R20 * R13
66. R20 = R24 + R20
70. R17 = R21 * R17
74. R14 = R14 * R26
78. R12 = R12 + R14
82. Ri1 := Ro1 + Ry
86. R17 = R25 * R25
90. R22 = R23 + R21
94. R13 = R13 + R24
98. ng = R17 * R12
102. R12 = R12 + R23

23. R22 = R3 * R17

27. R21 = R21 + R13
31. R12 = R12 * Rg

35. R23 = R23 + R26
39. R27 = R2 * R23

43. R27 = R23 X Rg

47. Ri4 := Risa + Ry
51. R25 = R23 X R23
55. R25 = R14 * R14
59. R20 = R20 X R25
63. R11 = R20 X R11
67. R20 = R23 * R20
71. R21 = R21 X R25
75. Rgl = Rgl * R12
79. Ria = Rya + Roy
83. R13 = R17 * R17
87. R11 = R17 X R11
91. Ri4 := Ri4 + Roo
95. R14 = R14 X R13
99. R14 = R17 * R20
103. R23 = R14 * h()

24. R23 = R2 * R17
28. RH = R14 * R11
32. R := Roo + Ry
36. R21 = R23 * R21
40. R25 = R27 + R25
44. Ro7 := Ros + Roy
48. R20 = R22 * R25
52. R25 = R25 * R3
56. R24 = R25 * R24
60. R14 = R14 * R25
64. R20 = R19 * R19
68. R23 = R23 * R14
72. R24 = R17 * R25
76. Ri2 := Ri2 + R
80. R12 = R12 + R21
84. R13 = R13 + R20
88. R20 = R25 * R19
92. R23 = R14 * R22
96. RH = R14 + R11
100. R12 = R23 + R12
104. R11 = R11 + R23

Up1 := Ry
Zp1 = Ras
zp3 1= Ry

Upo := Ri3
Zp2 = Ryg
zpy = Ry

Vp1:= Rz
zp1 == Ry

Vpo := Ri1
zp2 == Roy

Number of registers used = 27

21




Algorithm mHCADD}*
Curve Constants Used: hi, hy.

Input Variables: Uy, Uiy, Uio, Vi1, Vio, U2, Vo1, Voo, Zo1, Za2, 221, 222, 223, 224

OUtput Variables: Upla UpOa Vpla VpOa Zpla Zp?a ZP1, 2P2, 2P3,y P4

1. R1 = U21
5. R5 = Vm
9. Rg = Z21
13. R13 = 293

2. R2 = U11
6. R6 = U20
10. R10 = Z22
14. R14 = 2924

3. R3 = U10
7. R7 = ‘/21
11. R11 = 291

4. R4 = ‘/11
8. Rg = ‘/20
12. R12 = Z99

15. R15 = RQ * R11
19. R16 = R2 * R15
23. ng = ng X R3
27. R13 = R13 * Rg
31. Rysa:= Rys + Ry
35. R5 = R19 * R5
39. R19 = R14 X R19
43. R16 = R17 * R5
47. R7 := R * Ry
51. Rg = R17 * R5
95. Rg := R4 + Rg
99. Rg := Ry + Rs¢
63. R6 = R6 — Ry4
67. Ry := Rg + R3
71. Ry := R + Rg
75. R15 = h1 * R21
79. Rg := Rg + Ry5
83. R11 = hg * R21
87. Ry := R7 + Rg

16. R15 = R15 + R1
20. Rig := Ri6 + R11
24. Ri7 := Ri7 + Ris
28. R5 = R5 * R14
32. R19 = R16 + R15
36. R14 = R15 * R14
40. Ry4 := R3 * R4
44. R17 = R14 * Rg
48. R16 = R17 X R17
52. RH = RH * R19
56. R20 = R13 X R13
60. R6 = R17 X R6
64. R := Rg + Ry
68. Rg = R15 X Rg
72. Rg := Rg + Ry
76. Ry := R9 + Ry5
80. Rg := Rg + Ry
84. Rg := Rg + Ry

17. R11 = R3 * R11
21. R17 = RH * R16
25. R13 = R17 X R13
29. R5 := Rs + Ry
33. R16 = R16 X R5
37. Rs := Rs — Ry
41. R14 := R16 + R14
45. R14 = R14 * R5
49. R19 = R5 * R5
53. R17 = R19 + R14
57. R21 = R5 * R13
61. R6 = RG - R14
65. R7 := R4 + Ry
69. R14 = R15 X R19
73. R7 := R7 + R4
77. R7 := R7 % Ry
81. R6 = R22 * R6
85. Rg = R22 * Rg

18. R11 = Rﬁ + R11
22. ng = R15 * R15
26. ng = R13 X R13
30. R14 = R4 * R14
34. Rs := Rs + Ry4
38. Rig:=1+ Ry
42. Rs :== Rs — Ry9
46. Rg = R16 * Rg
50. R5 := R5 * Ry
54. R14 = R14 * R6
58. R22 = R5 * R5
62. R14 = R19 X R1
66. Rg = R19 * R2
70. Ry4 := Rya + Ry
74. RH = R7 * R14
78. R15 = hl X R21
82. Rg := R11 + Rg
86. R11 = R22 X R21

Up1 := Rua
Zp1 = Rs
zp3 == Roy

Up() = Rg
Zpg := Ri3
Zpy == Ry

Vip1:= Rg
zp1 = Raa

Vp() = R7
zp2 1= Ry

Number of registers used = 22

22




Algorithm HCDBL)® | in [15]

Curve Constants: hi, hg, f3, fo.

Input Variables: Uy, Uy, V1, Vo, 41, Z2, 21, 22, 23, 24

Output Variables: Up1,Upgy, V1, Vg, Zp1, Zpa, 2p1, 2P2, 2P3, 2D4

1. R1 = U1
5. R5 = Zl
9. Rg = 2Z3

2. R2 = U()
6. R6 = Z2
10. R10 =24

3. R3:=V;
7.R;:= =~

4. Ry =V,
8. Rg = Z9

11. R11 = h1 * R2
15. R11 = R11 + R14
19. Ry == Ri1 + Ry
23. R14 := R3 * R3
27. R15 = R16 + R15
31. Ri4 := Ris + R4
35. R13 = R14 + R13
39. R13 = R14 X R13
43. Rg = R2 * Rg
47. R13 = Rg * Rg
51. R7 = R12 * R7
5. R2 = R14 * R2
99. Ry := Ry + Rg
63. R4 = Rg * R4
67. Ry := R7 * Ry
71. R12 = R1 * R11
75. Ry := Ry + R3
79. R3 = R4 * Rg
83. Ry := Ry + Ry2

12. R12 = h1 * R1
16. RH = h1 * R11
20. RH = RH * R10
24. R15 = Rl * R1
28. Rg = Rg * R15
32. R16 = R3 * h1
36. R14 = R12 + hl
40. Rg = Rg * hl
44. Rg = Rg * R7
48. Ri4 := Rg * R19
52. Rg = Rg * R7
56. R1 = ng * R1
60. Rg = Rll * R7
64. Ry := Ri5 + Ry
68. Rg = R7 X R10
72. R14 = h1 * Rg
76. Ro := Ry + Ry3
80. R12 = Rg * h1

13. Ry3:= fo x Ry
17. R14 = ho * h()
21. R14 = ho * R7
25. R16 = R7 * R7
29. Ri5:=1+ Ry
33. R13 = R13 + R16
37. R12 = R13 * R12
41. R13 = R13 + R12
45. Rg := R12 + Rg
49. R15 = R14 X R2
53. R12 = R7 * R12
57. R2 = R2 - R15
61. Rm = Rll X Ru)
65. Ry := Ry + Rj3
69. R11 = Rm X Ru)
73 R13 = R13 + R14
77. R2 = R4 * R2
81. Ry := Ry + Ry9

14. R14 = R1 * h()
18. R14 = R14 X R7
22. Ri2:= Ri2 + R4
26. Ry := f3 * Rig
30. R16 = R1 * Rg
34. R13 = Rm X R13
38. R13 = R13 + Rg
42. R14 = R15 * Rg
46 R12 = R13 + R14
50. Ry := R1 + Rp
94. Ris := Rio + Ry
58. R2 = R2 - R1
62. R3 := Rg * R3
66. R3 = R7 * R4
70. R1 = R1 - R11
74. R1 = R1 * R13
78. Ry := Ri2 + Ro
82. R12 = Rg * h()

Up1 := R
Zp1 = R7
zp3 = Ry

Upo := Ri3
Zp2 := Ryg
zps = Rg3

Vp1 = R2
zpl := Ry

Vp[) = R1
zp2 = Ry

Number of registers used = 16

23




Algorithm HCADDA of [13]

Curve Constants Used: hs, hy, hg, f4.

Input Variables: w19, u11,v10,v11, U20, U21, V20, V21
Output Variables: upg, up1, vpg, vp1

1. R1 = U190
5. R5 = U0

2. R2 = U1
6. R6 = U921

3. R3 = V10
7. R7 = V20

4. R4 =11
8. Rg = V21

9. Ry :=Rs — Ry

13. R13 = R2 - RG
17. Rm = R14 X Ru)
21. RH = R13 * R11
25. R13 =1 + R2
29. Ry1 := Rys — R13
33. R11 = Rll X R12
37. Ry := R10 — R13
41. R12 = R13 * R12
45. R13 = R13 - f4
49. R13 = R13 + R14
53. R14 = R5 * R10
57. R15 = R6 + Ru)
61. Re := Rs + Ry
65. R12 = h2 % R13
69. R5 = R5 - Rg
73. Ry := h2 x Rg

77. R;:= Ry — h0

10. Ry := R3 — Ry
14. R14 := Ry * R13
18. R15 = R13 X R13
22. R13 := Ris + Ri3
26. R13 = Rll X R13
30. R12 = Rg * R11
34. R12 = Rg * R12
38. Ri3:= Rip — R»
42. ng = R12 - R1
46 R14 = R10 + R10
50. Ry4 := Ry * Ry
54. R15 = Rg + Rg
58. Rg := Rg * Ryp
62. R¢ := Rg + Ri3
66. R10 = R10 + R6
70. Rs := Rs — hl
74. Rg := Rg — R4
78. Ry := R7 + Ry

11. R11 = R4 - Rg
15. Ry4 := R4 + Ry
19. R15 = R15 X R1
23. R12 = R13 * R12
27. R11 = R1 * R11
31. RH = RH * R11
35. Ry := Rg * Ry9
39. R14 = h2 % Rg
43. R13 = Rﬁ + R6
47. Ri3 := R4 — Ry3
51. R13 = R13 X R14
55. Ri5 := hl 4+ Ry5
99. Rs := R¢ + Rs
63. Rg = R15 - R13
67. Rs := Ri9 — Rs
71. Rs := Rs + Ry2
75. Rg = Rg * R11

12. R12 = R10 + R11
16. Rg := Ry *x Ry4
20. Ry := R9 + Ry5
24. R12 = R12 - R10
28. Rl[) = Rl[) - R11
32. R12 = 1/R12

36. Rw = Rm * R12
40. Ri2 := Ri2 + Rua
44. R13 = R13 + R13
48. R14 = h2 * Rg
52. R13 = R13 - R14
56. Rg = R15 * Rg
60. Rg := R12 + Rs
64. Rw = R13 * Rg
68. R5 = R5 * R11
72. Rg := Rg * Ry
76. Ry := Rs — Ry

upg = Rg

upy := Ry3

vpg = Ry

vp1 = Ry

Number of registers used = 15

24




Algorithm HCDBLA of [13]
Curve Constants: ho, hy, ho, f4, f3, fo
Input Variables: wuy,ug,v1, v

Output Variables: upg, up1, vpg, vp1

1. R1 = Ul 2. R2 = Up 3. R3 = U1 4. R4 =1

5. Rs:= fd*x Ry 6. Rg := 2% R3 7. Rg := h1 + Rg 8. Ry :=hox Ry
9. Rg := Rg — Ry 10. R; := 2% Ry 11. R7 := hy + Ry 12. Rg := ho * Ry
13. R7 = R7 - Rg 14. Rg = R3 * R3 15. Rg = R1 * R1 16. R5 = Rg - R5
17. Ry := f3+ Ry 18. R5 :=2 % Rj 19. Rs := Rs + Ryg | 20. Rip:=2x* Ry
21. R5 = R5 - R10 22. R10 = 2% R10 23. Rg = R10 - Rg 24. R10 = R3 * h2
25. R5 = R5 - Rm 26. Rw = f4 * R1 27. Rg = Rg + R10 28. Rm = R3 * hg
29. Ry := Ry + Ry 30. Rg := Ry x Ry 31. Ry := Ry + fo 32. Rg := R9g — Ry
33. Rg = R1 * R6 34. R10 = R7 - Rg 35. Rm = R7 * Rm 36. R7 = R7 - Rg
37. Ry := Rg x Rg 38. Rg := Ry x Ry 39. Ry := Rg + Rig | 40. Rig:=2x% f4
41. R10 = R10 * R2 42. Rg = Rg - Rm 43. Rm = R3 * h1 44. Rg = Rg - Rm
45. R10 = R4 * hg 46. Rg = Rg — R10 47. R10 = R7 + Rs 48. R7 = Rg * R7
49. Rg := R5 * Rg 50. R5 := Rg + R;5 51. R := Rip* Rs | 52. R5 := Rs — Ry
53. Rg =14+ R, 54. Rg := Rg * Rg 55. Rs := R5 — Ry 56. Rg := Ry x Rg
57. RG = R7 - R6 58. R7 = Rg * R5 59. R5 = R5 * R5 60. R7 = 1/R7

61. R5 = R5 * R7 62. R7 = Rg * R7 63. Rg = Rg * R7 64. R6 = R6 * R7
65. R7 = 2% R6 66. Rg = Rg * Rg 67. R10 = Rg * h2 68. R7 = R7 + R10
69. R7 = R7 - Rg 70. Rl[) = R6 - R1 71. Rm = hg * R10 72. R11 = 2% R3
73. Riop:= Rio+ R11 | /4. Rig:= Ri9+ h1 | 75. Rg:= Rg x Rip | 76. R19 := R1 + Rg
77. Rl[) = Rl[) - R7 78. RH = R6 * R6 79. Rg = RH + Rg 80. R11 = 2% R1
81. Ri1 := Ry1 — f4 82. Ry := Rg *x Ry 83. Rg := Rg + Ry 84. R1 := Ry x Rg
85. R1 = R1 + R2 86. R2 = R2 * R6 87. R6 = R7 * Rl[) 88. Rg = R7 * hg
89. Rg := Rg + Rg 90. Ry := Rg — Ry 91. Ry := Ry x R;5 92. R1 .= Ry — R3
93. R1 = R1 - h1 94. R1 = R1 + Rg 95. R3 = Rg * Rl[) 96. R6 = h2 * Rg
97. R2 = R3 — R2 98. R2 = R2 * R5 99. R2 = R2 — R4 100. R2 = R2 — h()
101. Ry := R2 + Rg

upg = Rg upy = Ry vpo = Rs vpy = Ry

Number of registers used =11
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Algorithm HCADD of [20]
Input Variables: w19, u11, V10, V11, 20, U21, V20, V21
Output Variables: upg, up1, vpg, vp1

1. Ry :=ul0 2. Ry :=ull 3. Rz :=vl10 4. Ry :=vll
5. Ry := u20 6. Rg := u21 7. Ry := 020 8. Rg := v21

9. Rg = R2 + RG 10. Rm = R5 - R1 11. R11 = R3 - R7 12. ng = R4 - Rg
13. Ri3:= Ri1 + Rio | 14. R4 := Ry — Ry 15. Ri9 := R4 * R19 | 16. Ri5 := Ro x R4
17. R15 = R15 + Rl[) 18. Rm = Rm * R15 19. R11 = R15 * R11 20. R15 = R15 + R14
21. R13 = R15 * R13 22. R13 = R13 - RH 23. R14 = R14 * R14 24. R14 = R14 * R1
25. R10 = R10 + R14 26. R14 =1 + R2 27. R14 = R12 * R14 28. ng = R1 * R12
29. R11 = R11 - R12 30. R12 = R13 - R14 31. R13 = Rm * ng 32. ng = ng * R12
33. R13 = 1/R13 34. R12 = R12 * R13 35. R13 = R10 * R13 36. R10 = R10 * R13
37. R11 = R11 * R13 38. R13 = R6 + R11 39. R14 = R11 - R2 40. R15 = R13 - R2
41. R14 = R14 * R15 42. R14 = R14 — R1 43. Rs = R6 * RH 44. R6 = Rs + R5
45. Ri4 := Ry + Rg | 46. R14 := R14 + R0 | 47. Ryp := Rio *x R19 | 48. Rg := Ry * Ry
49. Ry := Ri4 + Ry 50. Rs := R5 * R4 51. Ri1 := Ri1 + R13 | 52. R11 := R11 — R»
53. Rm = R11 - Rl[) 54. R11 = R13 - Rl[) 5. R13 = Rm * R11 56. R13 = R13 + Rg
57. RH = Rg * R11 58. R5 = R11 — R5 59. Rs = R13 — Rs 60. R6 = Rs * R12
61. R5 = R5 * ng 62. R6 = RG - Rg 63. R5 = R5 - R7 64. R6 = R6 -1

upp := Ry upy = Ryo vpo := Rj vp1 := Rg

Number of registers used = 15
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Algorithm HCDBLA of [20]
Input Variables: ug, w1, vg,v1
Output Variables: upg, up1, vpg, vp1

1. R1 = ul 2. R2 = ul 3. R3 =00 4. R4 =l

5. Rs := Ry x Ry 6. Rg := R x Ry 7. Ry .= Ry + Ry 8. Ry := Ry x Ry
9. Ry := Ry * Ry 10. Rs:=Ro+ R5 | 11. R5 := R5 + Ry 12. R; := R; * R;5
13. Rg:=Rs+ Rg | 14. R; := R; x Rg |15. R7:= R7 + Ry 16. R; := R7 + R,y
17. R1 = ]./Rl 18. R6 = R6 * R1 19. R1 = R5 * R1 20. Rg = Rg * R1
21. Ry := Ro+ Ry | 22. Ry := Ry + Ry | 23. R5 := Rg + Rg 24. R := Ry + R;5
25. Rg = R6 * R6 26. R10 = Rg * Rg 27. R10 = R10 * Rg 28. Rg = R10 + Rg
29. Rg:= Rs+ R | 30. R5 := R5 * Rg | 31. Rip:= Rs + Ry | 32. Ry := Ry * Ry
33. Ri:= Ry + Rg | 34. Ry :=R1 + R5 | 35. R5 := R5 + Ry 36. Ry :=R1+1
37. R3:=Rs+ R3 | 38. Ri:=R1+ Ry | 39. Ry := Ry + Ry

upo := Rg up1 := Ry vpo = R vpy = Ry

Number of registers used = 10
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Algorithm HCDBL, ,\_, of [17]

Curve Constants: hO, h1,hli,h12, fO, f1, f2, f3
Input Variables: 40,11, v0, vl

Output Variables: uOp, ulp,v0p,vip

1. R1 = u0 2. R2 =ul 3. R3 =0 4. R4 =l

5. Ry ;= Ry xRy 6. R5 := Ry * Ry 7. Rs:=Rs+ f3 8. R3 := R3 * R3

9. R3 = fO—l—Rg 10. R3 = 1/R3 11. R3 = R3*R1 12. R6 = R5*R3
13. Rg:=Rs+ Ry | 14. Ry := Ry * Ry | 15. Ry :=hl2x R3 | 16. R5 := R7 + Rs
17. R6 = R5 * R6 18. R2 = R2 + R7 19. R5 = R5 * R2 20. R5 = R5 + f]_
21. R1 = R5 + R1 22. R1 = hlz * R1 23. R3 = R7 * R3 24. R5 = R7 * R3
25. Rs .= Rs+ R5 | 26. R ;= R5+ f2 |27. Ry .= Ry« Ry | 28. Ry := R5 + Ry
29. Ry :=hli*x Ry

30. ulp := Ry 31. ulp := Rj 32. v0p := Ry 33. vip = Ry

Number of registers used =7
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Algorithm HCDBL} ,\_, ,, _, of [17]
Curve Constants: f0, f1, f2, f3

Input Variables: 40,11, v0, vl

Output Variables: uOp, ulp,v0p,vip

1. R1 =10 2. R2 = ul 3. R3 =00 4. R4 =l

5. R :=R; xRy 6. R5 := Ry * Ry 7. Rs := Rs + f3 8. R3 := R3 * R3

9. R3 = f0 + R3 10. R3 = 1/R3 11. R3 = R3 * R1 12. R6 = R5 * R3
13. R5 = R3 + R5 14. R2 = RG + R2 15. R6 = R5 * R6 16. R2 = R2 * R2
17. R2 = R2 + R3 18. R5 = R5 * R2 19. R5 = R5 + fl 20. R1 = R5 + R1
21. R4 = R4 * R4 22. R5 = R3 * R3 23. R3 = R3 * R5 24. R3 = Rﬁ + R3
25. Ry := Ry + f2 | 26. Ry := Ry + R4

27. ulp := Ry 28. ulp := Rjs 29. v0p := R, 30. vlp = R3

Number of registers used =6
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: A
Algorithm HCDBLdeg(h)

_, of [17]
Curve Constants: hl, h12, f1
Input Variables: f4,0,ul,v0, vl

Output Variables: uOp, ulp,v0p,vip

1. R1 = f4 2. R2 = ul 3. R3 = ul 4. R4 =00

5. Ry := vl

6. Rg := Ro + h12 7. R7 := Ry x Ry 8. Ry:= fl14+ Ry 9. Rg := R3 x R3
10. Rg := hl + R5 11. Rg = R5 * Rg 12. R10 = Rg + R5 13. RH = hl * R5
14. Rg := R¢ + R11 15. Rij1:= R4+ Ry1 | 16. Rg:= Ry; + Rs | 17. Ry := Ry * R3
18. R12 = R10 + R11 19. ng = R3 * R12 20. Rg = R12 + Rg 21. ng = hl * R10
22. Ry := R4 + Ryo 23. Ry := Rg + Ry 24. Rg := hl * Ry 25. Ry := Ry + Ry
26. Rg = 1/R7 27. R2 = R2 * Rg 28. R(; = R6 * R2 29. R2 = R4 * R2
30. R2 = R3 + R2 31. ng = R4 * R4 32. R4 = hl * R4 33. R4 = R7 + R4
34. R4 = R10 * R4 35. R4 = R12 + R4 36. R4 = Rg * R4 37. R7 = R2 + hl
38. Rg = R6 * R6 39. Rg = RG + Rg 40. Rm = Rg + RQ 41. Rm = R10 + R1
42. Rig:= Rigo+ R3 |43. Rip:= Rg*x R1y | 44. Rs := Rs + R1g | 45. R5 := R5 + R4
46. Ry := R; * Rg 47. R .= R+ R, 48. Ry = R+ Ry |49. Ry := Ry x Ry
50. R7 := Ry *x Ry 51. Ry := Ry + hl 52. Ry := Ro+ R3 | 53. R := Ry + Ry
54. Ry := Rg x Ry 95. Ry =Ry + R 56. Ry := Ry + Ry1 | 57. Ry := Rg * Ry
58. Ry := Rs + R» 59. Ry := R + Ry

60. u0p := Ry 61. ulp := Ry 62. v0p := Ry 63. vlp := Ry

Number of registers used = 12
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B HECC Addition Formulae in ERSF with Full Register Reuse

Algorithm HCADD"? of [15]
Curve Constants Used: None
Input Variables: U11,U10,V 11,V 10, Z11, Z12,211,U21,U20,V 21,V 20, Z21, Z22, 221
Output Variables: Upl, Up0,Vpl, Vp0, Zpl, Zp2, zpl, zp2

1. R1 = U11 2. R2 = Um 3. R3 = V11 4. R4 = Vi[)

5. R5 = ZH 6. R6 = 212 7. R7 =211 8. Rg = U21

9. Rg = U20 10. Rm = V21 11. RH = Vé[) 12. R12 = Z21

13. R13 = Z22 14. R14 = 291

15. R15 = R1 * R14 16. R16 = R2 * R14 17. R17 = R5 * R6 18. R17 = R7 * R17
19. ng = R12 * R13 20. R14 = R14 * ng 21. R3 = R3 * R14 22. R4 = R4 * R14
23. R14 = R7 + R1 24. R6 = R6 * R13 25. R5 = R5 * R12 26. R12 = R5 * R5
27. R13 = R5 * R5 28. R6 = R6 * R13 29. R11 = R11 * R17 30. R10 = Rm * R17
31. R3 := R3 — Ry 32. Ry := Ry — R 33. Ri7:= R4+ R3 34. Rg := Ry * Ry
35. R16 = Rg - R16 36. ng = R16 * R7 37. Rg = Rg * R7 38. R15 = R15 - Rg
39. R1 = R1 * R15 40. R1 = R1 + R18 41. ng = R16 * R1 42. R4 = R1 * R4
43. R19 = R15 * R15 44. R19 = R19 * R2 45. ng = ng + R19 46. R6 = R6 * ng
47. R5 = R5 * R(; 48. R(; = R6 * R6 49. R3 = R15 * R3 50. R7 = R7 * R15
51. R; := Ry + Ry 52. R; := Ry * Ry7 53. Ri .= Ry — R4 54. R7 := R3 * Ry4
5. R2 = R2 * R3 56. R2 = R4 - R2 57. R1 = R1 - R7 58. R3 = R1 * R1
59. R4 = R2 * R13 60. R7 = R1 * R13 61. R13 = ng * R7 62. R2 = R2 * R7
63. R1 = R1 * R7 64. Rm = R13 * R10 65. RH = R13 * R11 66. R13 = R16 * R1
67. Ri4y := Ry + R, 68. Ri5 := R7 x Ry 69. R := R7 x Ry 70. Ri17 := Ri5 + Ry5
71. Ry := Ry x Ry 72. Rig := Ry * Rg 73. Ri5 := Rig+ Ri5 | 74. Ry := Ri5 x Ry
75. Ry =Ry — Ry 76. Ry :=R;y —Ryo |77. Ri5:=Ri5— Ry |78 Ri7:=Ri5+x Ry
79. R19 = R2 * Rg 80. R2 = R2 + R2 81. Rg = Rg + Rg 82. Rg = R14 * Rg
83. Rg := Ry — Ryg 84. R11 := Ri9g + R11 | 85. Rg := Ry — R13 86. Rg := Ry + R
87. Rip:= Rip+ Rip | 88. R11 := Rig* R11 | 89. Ri4:= Ri5+ Rg | 90. Rg := Rg + Rg
91. R3 := R3 * Ry4 92. Ry := R3 — Ry 93. Ry := Ri5 x Ry 94. R3 := Rg + Ris
95. R3 := R3 * Rg 96. Ry := R4+ Ry 97. Ry := Ry + Ry3 98. Ry := Ry + Ry
99. R2 = R2 + R3 100. R3 = R15 * R2 101. R3 = R3 - RH 102. R4 = Rg - R2
103. R4 = R16 * R4 104. R4 = R17 — R4

Up, := R Upy := Ro Vpi:=Ry Vpo:= Rs3

Zp1 = Ry Zpy := Ry zp1 == Ry zp2 = Ryo

Number of registers used = 19
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Algorithm mHCADDN? of [15]

Curve Constants Used: None

Input Variables: Ul(), UH, Vi[), VH, UQ[), U21, Vgo, Vgl, Z21, ZQQ, 2215 222
Output Variables: Upgy, Up1, Vo, V1, Zp1, Zpe, 2p1, 2p2

1. R1 = U11
5. R5 = U21
9. Rg = Z21

2. R2 = U10
6. RG = U20
10. R10 = Z22

3. R3 = V11
7. R7 = V21
11. R11 = 2921

4. R4 = ‘/10
8. Rg = Vé[)
12. R12 = Z99

13. Rm = Rg * Ru)
17. R15 = RQ * R11
21. R15 = R15 * R16
25. Rm = R15 X R10
29. R4 = R4 * R13
33. R13 = R16 + R14
37. R3 = R13 * R3
41. R13 = RQ * R14
45. R14 = R13 * R11
49, Rg = R4 X Rg
53. R19 = R11 + R16
57. Ry := Ry * R3
61. Ry := Ry * R3
65. RH = R14 * R11
69. R11 = R7 * R3
73. Rg := Rg — R13

14. R13 = R11 * R10
18. R15 = RG - R15
22. R17 = R14 * R14
26. R17 = Rm * Rg
30. Ry := R4y — Rg
34. R16 = R16 * R4
38. R3 := R3 — Ry
42. R13 = R16 - R13
46. Rg = R3 * Rg
50. Ry := R4 * Ry
54. R16 = R16 * R(;
58. R1 = R13 - R1
62. R3 := Ry + Ry
66. R3 := Ry — Ry
70. R¢ := Rs + R
74. R := Ry + Rg

15. Ry4 := Ry * R1x
19. R16 = Rl X R14
23. R17 = R17 * R2
27. Rw = Rm * Ru)
31. R3 = R3 * R13
35. R14 = R14 * R3
39. Ry :=1+ Ry
43. R3 = R3 - R4
47. R15 = Rg * Rg
51. R7 := Ry * R13
55. Rg := Ry + Rg
59. R3 = R14 X R3
63. R13 = R11 * R5
67. R3 :== R3 — Ri3
71. R6 = R19 X RG
75. Rg := R + Ry

16. R14 = R14 - R5
20. R16 = R16 + R15
24. R15 = R15 + R17
28. ng = R17 X R17
32. R3 := R3 — Ry
36. R3 := Ry + R3
40. R4 = R14 * R4
44. Ry := R15 * R3
48. R16 = R13 * R3
52. R11 = R3 * R3
56. Rg = R15 * Rg
60. R3 = R14 - R3
64. Ry := Ri3 + Ry
68. Ry := Ry — R3
72. R6 = RG - R16
76. Ry := Ry + Ry

7. R2 = R2 * R15 78. R1 = R1 - R2 79. R1 = R1 + R4 80. R2 = R5 + R5
81. Ry := Ry + R4 82. Ry := Ry x Ry 83. Ry := Ry + Ry 84. Ry := R; x Ry
85. R2 = R2 - Rg 86. R4 = R6 - R1 87. R4 = R15 * R4 88. R4 = RH - R4
Up, := R3 Upy := Ry Vpi:=Ry Vpo:= Ry

Zp1 := Ry Zpy = Ri7 zp1 == Rys zpg = Rig

Number of registers used = 19
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Algorithm HCADD}'%, of [15]

Curve Constants Used: ho, h1, hg

Input Variables: Uy1,Uio, Vi1, Vio, Z11, Z12, 211, 212, 213, %14,

Us1, Uso, Var, Vao, Za1, Za2, 221, 222, 223, 224

Output Variables: Upla UpOa Vpla VpOa Zpla Zp?a ZP1,2P2, 2P3, P4

1. R1 = U11
5. R5 = ZH
9. Rg = 213
13. R13 = ‘/21
17. R17 =221

2. R2 = Ul[)
6. R6 = Z12
10. Rw = 214
14. R14 = ‘/20
18. ng = 2929

3. R3 = V11
7. R7 =211
11. R11 = U21
15. R15 = Z21
19. R19 1= 293

4. Ry := Vo
8. Rg = 212
12. ng = U20
16. R16 = Z22
20. R20 = 224

21. R3 := R3 * Ry
25. Rg = Rg * R19
29. Ry := R4+ Ryo
33. R20 = R19 * R7
37. R20 = R22 + R20
41. R23 = R23 * R2
45. R21 = R21 * R7
49. R20 = R21 * Rg
53. Ry := R3 * Ry
57. R7 := Rg * Ry
61. R2 = R2 * R4
65. Rw = R12 + R10
69. R21 = R21 * R1
73. R1 = R19 X R1
77. Ry := Ry + Ry3
81. R3 := Rg + Ry7
85. RH = h1 * R4
89. Ry := Ry + R3
93. R2 = RH * R2
97. R14 = R11 * R12
101. R3 := R3 + Ry~
105. R10 = R17 + R10
109. Rg := Ry + Ry

22. R4 := R4 x Ry
26. R13 = R13 * R10
30. Ryy:= R4+ R3
34. RH = RH * R7
38. R22 = R19 * R20
42. Roo := Ros + Ra3
46. R20 = R20 + R21
50. R1 := R7+ Ry
54. Ro := Ry + Ry
58. Rg := Ry * Ry
62. ng = R2 * R12
66. Ri4 := Ry x Ry
70. R1 = R1 * R4
74. Ry := Ry * R3
78. R3 = R17 * R21
82. R3 := hy * R3
86. R3 := R3 + R
90. Re := Ry + Ry
94. R10 = RH * R10
98. Ri7 := hg * Ry9
102. R3 := R3 + Ri3
106. Rg = Rg * R21
110. Rg := hg * Ry4

23. R20 = RQ X R17
27. R3 = R3 + R13
31. R12 = ng * R7
35. Ro1 := Ro1 + R11
39. Ry := Ryg x Ry
43. Rg = R22 * Rg
47. R14 = R20 * R14
51. R1 = R3 * R1
95. R3 := Ry2 + R11
59. Ry := Ry * Ry
63. R13 = R14 * R13
67. Ri7 := Ro1 + Ry
71. RH = R1 * R11
75. Ry := Ry + Ry2
79. R3 := R4 + R3
83. Rg = R4 * Rg
87. R3 := R3 + Ry
91. R3 = R21 X R4
95. R12 = R4 * R7
99. R19 = hg * R12
103. Ry := Rg9 + Roy
107. Ry := Rg + R»
111. Ry := Ry + Ry

24. R21 = R1 * R17
28. R10 = R14 * R10
32. R19 = R20 + R12
36. R22 = R1 * R21
40. R23 = R21 * R21
44. R3 = R21 * R3
48. R4 == Ris + Ry
52. Ry := R4 + R
56. Ry := Ry * Ry7
60. R14 = R22 * R4
64. R10 = R14 * R10
68. R17 = R21 * R17
72. Ry := Ro + R,
76. Ry := Ry + Ry
80. Ri := R3 + Ry
84. Ry := Rq11 + Ry
88. R3 = R7 * R3
92. RH = R4 X R4
96. R13 = R7 * R7
100. Ry := Rg + Ry9
104. R17 := Ry x R
108. Rg = h1 * R14

Up1 := R
Zp1:= Ry
zp3 = Ry

Upo := Ry
Zp2 := Ry
zps = Ry

Vp1 = R2
zp1 = Ry

Vp() = Rg
zp2 == Ri3

Number of registers used = 23

33




Algorithm mHCADD, of [15]
Curve Constants Used: ho, hy, hg.

Input Variables: Uiy, Uio, Vi1, Vio, Ua1, U2, Va1, Voo, Zo1, Za2, 221, 222, 223, 224

Output Variables: Upla UpOa Vpla VpOa Zpla Zp?a ZP1, 2P2, 2P3,y P4

1. R1 = U11
5. R5 = U21
9. Rg = Z21
13. R13 = 293

2. R2 = U10
6. RG = U20
10. R10 = Z22
14. R14 = 294

3. R3 = V11
7. R7 = V21
11. R11 = 2921

4. R4 = V10
8. Rg = V20
12. ng = 299

15. R15 = R1 * R11
19. R16 = R1 * R15
23. ng = ng X R2
27. Ry .= Ry + Ry
31. R16 = R16 X R4
35. R3 := R3 — Ry
39. Ry := R+ Ro
43. R2 = R2 * R3
47. Rz := R3 * Ry
51. Rg = R2 + Rg
55. R13 = R15 X R17
99. Rs := Rs + R
63. Ry := Ry + Ry
67. R5 := R3 * R3
71. R14 = R15 + Rg
7. Ry :=Rs+ Ry
79. Ry := Ry + Ri3
83. R11 = hg X R7
87. R13 = R13 + R15
91. Ry := R13+ Ry
95. Rg := Rg + Ri3

16. R15 = R15 + R5
20. R16 = R16 + R11
24. Ri7 := Ry7 + Ris
28. R3 = R3 * R14
32. R15 = R15 X R3
36. Ry :=1+4+ Ry

40. R3 = R3 - R4
44. Rg = R4 * Rg
48. R11 = R7 * R11
52. R16 = R3 * R14
56. R15 = R15 X R7
60. R5 = R15 * R5
64. R4 = h2 * Rg

68. Rg := Rs * Rg
72. R15 = hg * R7
76. Ry := Ry + Ry
80. Ry := Ry + Ry
84. R11 = R14 + R11
88. R14 = R13 * R1
92. R13 = hl * R4

17. R11 = R2 * R11
21. R17 = RH * R16
25. R13 = R17 X R13
29. R3 = R3 + R7
33. Rz := R4 + R3
37. R4 = R15 * R4
41. R4 = R17 * R3
45. R4 = R4 * R7
49, R15 = R? + R2
53. R17 = R13 * R13
57. R7 := Ry * Rj
61. R2 = R5 - R2
65. Ry := R4 + R4
69. R7 := R3 * Ry
73. R15 = R15 + R15
77. Ry := h1 * Ry
81. R2 = R5 * R2
85. R13 = hg * R7
89. Rg := R4 + Ry
93. Ry := Ro + Ry3

18. RH = RG + R11
22. ng = R15 * R15
26. Ry := Ry * R4
30. R14 = R16 + R15
34. R3 = R14 * R3
38. R2 = R2 * R15
42. R14 := Ry * Ry
46. R7 = R3 * R3
50. Ry := Ry * Rg
54. Rg = R13 * Rg
58. R16 = R? + R16
62. R2 = R2 - R7
66. R4 = R14 * R4
70. Rg := Rg * Ry
74. R1 = R1 * R15
78. Ry :=R1+ Ry
82. R4 = R5 * R7
86. R13 = R16 + R13
90. R13 = R13 * R15
94. R13 = h[) * R4

Upi :== Ry
Zpy:= R
zp3 = Ry

Up() = R1
Zpo = Ry
ZP4 = R4

Vp1 = R2
zp1 = Rs

Vp() = R6
zpg = Ry

Number of registers used = 18
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Algorithm HCADD)* | of [15]

Curve Constants Used: hg, h.

Input Variables: Usy, U11, Uro, Vi1, Vio, 211, Z12, 211, 212, 213, 214, U0, Vo1, Voo, Z21, Zo2, 201, 222, 223, 224
Output Variables: Up1,Upgy, V1, Vg, Zp1, Zpa, 2p1, 2P2, 2P3, 2D4

1. R1 = U11 2. R2 = U10 3. R3 = V11 4. R4 = V10

5. R5 = Z11 6 R6 = Z12 7 R7 = 211 8 Rg = Z12

9. Rg = 213 10. R10 = Z14 11. R11 = U21 12. ng = U20

]_3 R13 = V21 14 R14 = V20 15 R15 = Z21 16 R16 = Z22

17. R17 = 291 18. ng = 299 19. R19 = 293 20. R20 = 2924

21. R3 = R3 * R20 22. R4 = R4 * R20 23. R20 = R2 * R17 24. R21 = R1 * R17
25. Ry := Rg *x Ry9 26. Ri3 := Ri3x Ryg | 27. R3 := R34+ Rq3 28. Rip := R4 * Ryg

29. Ry := R4 + Ry
33. R20 = R19 X R7
37 R20 = R22 + R20
41. R23 = R23 * R2

45. R21 = R21 * R7
49. R20 = Rg * Rg
53. R2 = R3 * R2
57. R3 = R4 * R3

61. R3 = R21 * R3
65. R14 = R22 * R4
69. R19 = R21 X R1
73 R20 = R2 + R1

30. R4 := R4 + R3
34. R11 = Rll X R7
38. R22 = R19 * R20
42. R22 = R22 + R23
46 R20 = R20 + R21
50. Ry :=R;+ Ry
54. Ry := R4 + Ry
58. Ry := R7 * Ry7
62. R7 := Rg * Ry
66. R1 = R1 * R4
70. R13 = R14 X R13
74. R1 = R1 * R11

31. R12 = R12 * R7
35. R21 = R21 + R11
39. R4 = R20 * R4
43. Rg = R22 * Rg
47. R14 = R20 * R14
51. Ry := R3 * R;
55. R3 := Ro1 + R11
59. R7 := Rog *x Ry
63. Ry := Ry * Ry
67. R2 = R2 * R4
71. Rm = R14 X R10
75. R2 = R2 * R12

32. R19 = R20 + R12
36. R22 = Rl * R21

40. R23 = R21 * R21
44. R3 = R21 * R3
48. R14 = R14 + R4
92. Ry :=Ruu+ Ry

56. R4 = R1 * R1
60. R3 := R3 + Ry
64. Ry := Ry * Ry
68. R17 = R19 * R1
72. R4 := Rg x Ry
76. Ri1 := Ri2 + Ri1
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77. Ri1 .= Rgop*Ry1 | 78. Ri1 = Ri1+ Ry |79. Ry .= R; + Ryy 80. Ri1:=Ry1 + Ry
81. Ri1 := Ri11 + R13 | 82. Ry := Ry + Ry 83. Rg := Rg * Ry 84. R3 := Rg + Rj
85. R3 = R3 + R17 86. Rg = R4 * R4 87. R2 = Rg * R2 88. Rl[) = R4 * R7
89. Rio := R7 x Ry 90. Ri3:= Rig+ Ry2 | 91. Ry := Ry + Rq3 92. R4 := Ry * Ry3
93. R17 = h1 * Rm 94. R3 = R3 + R17 95. R1 = R1 * R3 96. R1 = R1 + R2
97. R2 = R11 + R3 98. R2 = Rg * R2 99. R11 = Rg * R10 100. R2 = R14 + R2
101. R14 = RH * h1 102. R2 = R2 + R14 103. R14 = R11 * h() 104. R1 = Rl + R14
Up1 := Ry3 Upo := R3 Vp1:= Ry Vpo := Ry
Zp1 = Ry Zpy = Ry zp1 = Ry zp2 = Rio
zp3 := Ryp zpy := Ry

Number of registers used = 23




Algorithm mHCADDY*, of [15]

Curve Constants Used: hq, hg.

Input Variables: Usi, Ui, Uio, Vi1, Vio, U2o, Vo1, Voo, Z21, Za2, 221, 222, 223, %24
Output Variables: Upla UpOa Vpla VpOa Zpla Zp?a ZP1,2P2, 2P3, P4

1. R1 = U21
5. R5 = Z21
9. Rg 1= 293

2. R2 = U20
6. R6 = Z22
10. R10 = Z924

3. R3 = V21
7. R7 = 2921

4. R4 = V20
8. Rg = Z99

11. R11 = Ull * R7
15. Ry9 :=U1l x Ry
19. R14 = R14 + R4
23. R12 = ng X R14
27. R10 = R10 — Rys
31. Rg = R13 * Rg
35. R15 = RH * R15
39. R12 = R13 X Ru)
43. R5 = R10 * R5
47. Rm = R10 + R16
51. RH = RH * R14
55. R13 = R13 X R13
59. R3 = ng * R3
63. R2 = RH * R2
67. R3 := Ry + R3
71. RH = h1 * R17
75. R3 := R3 + Ry
79. R4 = ho * R17
83. Ri:=R1+ Ry

12. R11 = R11 + R1
16. R12 = R12 + R7
20. R10 = V11 % R10
24. R11 = Rll * R10
28. R14 = RH * R11
32. R14 := Ry * Ry
36. R11 :=U10 * R11
40. R13 = Rll X R5
44. R7 = R7 * R15
48. R17 := R5 * Ry
52. R14 = R13 * R5
56. R11 = R13 + R11
60. R1 = R15 * R1
64. Ri1 := Ri11 — R»
68. Ry := Ry + Rya
72. Ry := R7 + Ry1
76. Ry := R3 + Ry
80. Ry := Ry + Ry

13. Ry :=U10 x R,
17. R13 = R7 * R12
21. R10 = R10 + R3
25. Rm = R14 + Ru)
29. R14 = R14 xU10
33. Ry := Rg * Rj5
37. Ri1 == Ri2 + Ry
41. R11 = Rll * R10
45. R10 = RH * R15
49. ng = R15 x U1l
53. ng = R5 * R5
57. R7 := Ry1 + Ry
61. R11 = R15 + R11
65. Ry := Ro + Ry
69. Ry := Ry + Ryo
73. R1 = R1 * R7
7. R3 = ng * R3
81. R2 = ng * R2

14. R; := Ry + Ry
18. Ri4 := V10 % Ry
22. Ry5 := Ris + Ry
26. Rw = R15 * R10
30. R13 = R13 + R14
34. R15 =1 + Ull
38. Rip := Ry — Ri5
42. R15 = Rm * R10
46. R16 = Rg * Rg
50. R14 := R13 + Ry4
54 R19 = R1 + R2
58. Ry := Riax Ry
62. RH = R11 * R19
66. Ry := Ri1 — Ry
70. Ry := Ry * Ry
74. RH = h1 * R17
78. R3 := R4 + R3
82. R4 = ng * R17

Up1 := Ry
Zp1:= R;
zp3 = Ri7

Upy := Ry
Zp2 := Ry
zps = Ry

Vp1 = R3
zp1 = Ry

Vp() = R1
zp2 = Ryg

Number of registers used = 19
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Algorithm HCADDA of [13]

Curve Constants Used: hs, hy, hg, f4.

Input Variables: w19, u11,v10,v11, U20, U21, V20, V21
Output Variables: upg, up1, vpg, vp1

1. R1 = U190 2. R2 = U111 3. R3 = V10 4. R4 = V11

5. R5 = U0 6. R6 = U921 7. R7 = V20 8. Rg = V21

9. Ry := Rs — Ry 10. R3 := R3 — Ry 11. R4y := R4 — Rg 12. Rip:= R3 + R4
13. Ri11 := Ry — Ry 14. Ri5 := Ry * R13 15. Ri9:= Rio+ Ry | 16. Rg := Ry * Rq9
17. R3 = R12 * R3 18. R13 = Rll * R11 19. R13 = R13 * R1 20. Rg = Rg + R13
21. R4 = RH * R4 22. R11 = R12 + R11 23. R10 = RH * R10 24. R10 = R10 — R3
25. Ri1 =14+ Ry 26. Ry; := Ry x R13 27. Ry := Ry * Ry 28. R3 := R3 — Ry
29. R4 = R10 — R11 30. R10 = Rg * R4 31. R4 = R4 * R4 32. R10 = 1/R10
33. R4 = R4 * R10 34. Rm = Rg * Rl[) 35. Rg = Rg * R10 36. R3 = R3 * Rm
37. Riy := R3 — Ry 38. Ry := R3 — R» 39. Ri1 := hy * Ry 40. Ryy := R1p + R11
41. R2 = R2 * Rw 42. R1 = R2 - R1 43. R2 = 2% R6 44. R2 = R2 + R11
45. R2 = R2 — f4 46. R10 = 2 x% R3 47. R10 = R10 — R11 48. R11 = hg * Rg
49. R1p := R19+ R11 | 50. Ry1 := R9 x Ry 51. Ry := Ry * Ry; 52. Rip := R1p — R11
53. R11 := Rs * R3 54. Ri9 := 2 x Rg 55. R19 := h1 + Ry» 56. Rg := Ry * Ry
57. Ri9 := Rg + Rg3 58. R3 := Rg * R3 59. R3 := R3 + R; 60. Ry := Ry + R3
61. Ry := R1 + Ry 62. Ry := R1 + Ry 63. Ry := R12 — R1g | 64. R5 := Ryo * Ro
65. Rg := ho x Ry 66. R5 := Rs + Ry 67. R3 := R5 — R3 68. R3 := R3 * Ry
69. R3 = R3 - Rg 70. R3 = R3 - h1 71. R3 = R3 + RG 72. R2 = R1 * R2
73. R5 = hg * R1 74. R2 = R2 — R11 75. R2 = R2 * R4 76. R2 = R2 — R7
77. R2 = R2 - h() 78. R2 = R2 + R5

upo = Ry upy = Ry vpo = R vpy = R

Number of registers used = 13
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Algorithm HCADD"of [20]
Input Variables: w19, u11, V10, V11, 20, U21, V20, V21
Output Variables: upg, up1, vpg, vp1

1. R1 = U1l0
o. R5 = U0

2. R2 = U1l
6. Rs = U921

3. R3 =010
7. R7 = V20

4. R4 =11
8. Rg = V21

9. Ry := Ry + Rs
13. Ry1 := R3 + Ry
17. Rm = R4 * Ru)
21. R12 = ng * R14
25. Ri1 := Ri11 — R3
29. Ry := Ry * Ry
33. R11 = 1/R11
37. R3 := R3 * Ry
41. R13 = R3 - R2
45. R3 := R3 + Ryo
49, R2 = R13 * R2
93. Ry := Ry + Ry
57. R2 = R1 * R2
61. Ry := Ry * Ry

10. Rw =1 + R2
14. R12 = R5 - R1
18. Ry := R1 x Ry
22. R3 = R14 * R3
26. Rip := R11 — Ryg
30. Ry := Ri19+ Ry
34. R10 = R10 * R11
38. RH = R4 X R4
42. R6 = R6 * R3
46. R3 = R3 - R2
50. Ry := Ry — Ry
54. R2 = R12 - R3
58. Rg := Ry — Rjs
62. Ry := Ry — Rg

11. Ry := R4 — Rg
15. R13 := Ry — Rg
19. R14 := Ry * Ry3
23. Ri4 := R4 + Ry3
27. R3:= R3 — Ry
31. R11 = R4 * R10
35. RH = R4 * R11
39. Rg = R11 * Rg
43. Rg := R¢ + R5
47. R3 = R3 - R11
51. R1 := Ry + Ry
55. R4 := R3 * Ry
59. Ry := Ry — Rg¢
63. R2 = R2 - R7

12. R3 := R3 — Ry
16. R4 = R13 * R4
20. R4 := R4 + Ry2
24. R11 = R14 * R11
28. R4 = R13 * R13
32. Rm = Rm X R10
36. R4 = R4 * R11
40. R12 = Rﬁ + R3
44. R5 = R5 * R3
48. R2 = R12 - R2
52. Ry := R1 + Ry
56. Ry := R4+ Ry
60. R4 = R4 * R10
64. Ry :=Ry —1

upgy = Ry

upy = R

vpo = Ry

vpl := Ry

Number of registers used =14
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