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Abstract

Mast of the algovithms designed for categorvical data
clustering optimize a single measure of the clustering good-
ness. Such a single measwre may not be appropriate for
different kinds of data sets.
multiple, often conflicting, objectives appears to be natu-
ral for this problem. In this article a multiohjective genetic
algovithm based approach for fuzzy clustering of categor-
ical data isv proposed  The performance aof the proposed
technigue has been compared with that of the other well
known categorical data clustering algorvithms. For this pur-
pose, various synthetic and real life categovical data sets
have been considered. Statistical significance test has been
conducted to establish the significant superiovity of the pro-
posed multiofjective approach.

1 Introduction

Clustering [9, 10, 12] is a popular unsupervised pattern
classification approach in which a given data set is parti-
toned into a number of distinct groups based on some sim-
tarity/dissimilarity measures.  Tradinonal data clustering
algorithms are designed for such data sets where the dis-
similarity between any two points of the data set is well
defined. However, many real life data sets are categorical
in nature, where no natural ordering can be found among
the elements in the atribute domain,  In such situations,
the tradiional algorithms, such as K-means [9], fuzzy C-
means [2], ete. cannot be applied, because the concept of
mean does not work for categorical attribute domains. Some
variations of K-means type algorithms, namely Partition-

Therefore, consideration of
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g Around Medoids (PAM) or K-medoids [ 0], K-modes
[7] and fuzzy K-modes [8] have been developed 1o cope
with categorical data. However, all these algonthms rely on
oplimizing a single objective 1o obtain the patitioning. A
single objective function may not work uniformly well for
different kinds of categorical data. Hence it is natural 1o
consider multiple obpectves that need o be optimized si-
multaneously.

Genetic algorthms [3, 5] have been previously used in
data clustering problems [11, 13]. However, most of them
use a single objective w be oplimized, which is hardly
equally applicable to all kinds of data sets. In this art-
cle, the problem of fuzey partitioning of categorical data set
15 modeled as muluobpective opumization (MOO) problem
[3, 1], where search is performed over a number of, often
conflicting, objective functions. Unlike single objective op-
tmization, which yields a single best solution, in MOO the
final solution set contains a number of Pareto-optimal so-
lutions, none of which can be further improved on any one
objective without degrading another [3]. Multiobjective Ge-
netic Algorithms (MOGAS) are used in this regard in order
to determine the appropriate cluster centers (modes) and the
comresponding partition matrix. NSGA-IL [4], a popular eli-
tist MOGA, 15 used as the underlying optimization sirategy.
The two objective functions, the global fuzzy compactness
of the clusters and fuzzy separation, are optimized simulia-
neously.

Another recent work on multiobjective clustering around
(IMOCK-AM) has been proposed in [6], where the authors
had used swings of kength equal to the number of data
points, hence the search space 15 oo large requinng more
computational power. Also this method does not work well
if there are overdaps in the data set.



Experiments have been carried out for a number of syn-
thetic and real life categorical data sets. The performance of
the proposed muluobjectuve techmgue has been compared
with several well known algonthms and the single objective
ones. Also statistical significance tests are conducted in or-
der to confirm that the superor performance of the proposed
technique is significant and does not occur by chance.

2 Multiobjective Optimization

The multiobjective optimization can be formally stated
as [3]: Find the vector T* = [z7,zx5,... ..L':::T
variables which will satisfy the m inequality constraints :

of decision

m(E) =0, =12y m, i1)
the @ equality constraintls
hiz) =0, i=1.2,..., P (2}
and optimizes the vector function
f@) = [A@), fol),.... fil@)]" 3)

The constraints given in Egns. 1 and 2 define the feasible
region F which contains all the admissible solutions. Any
solution outside this region is inadmissible since it violates
one or more constraints. The vector T° denotes an optimal
solution in F. In the context of multiobjective optimization,
the difficulty lies in the definition of optimality, since it is
only rare that we will find a situation where a single vee-
tor = mepresents the optimum solution 1o all the objective
functions.

The concept of Pareto optimality comes handy in the do-
main of multiobjective optimization. A formal definition of
Pareto optimality from the viewpoint of minimization prob-
lem may be given as follows: A decision vector T is called
Pareto optimal if and only if there is no 7 that dominates =%,
1.¢., there 1s no T such that

, and

di e {1,2,..., B}, i) < filZ").

In other words, &* is Pareto optimal if there exists no fea-
sible vector ¥ which causes a reduction on some colerion
without a simultaneous increase inoat least one other. In
this context, two other notons, weakly non-dominated and
stiongly non-dominated solutions are defined [3]. A point
7" is a weakly non-dominated solution if there exists no =

such that f,{F) < fi(z*), fori =1,2, ..., k. A point T° is
a strongly non-dominated solution if there exists no T such
that fi{x) < fi(z"), fori = 1,2,..., fz, and for atleast

one i, fi(T) < fi{T"). In general, pareto optimum usually
admits a set of solutions called non-dominated solutions.

=]

There are several modern technigues for multiobjective
optimization. Among them, the GA based technigues such
as NSGA-IL[4], SPEA [17] and SPEA2 [ 16] are very popu-
lar. The present aricle uses NSGA-ID as underlying mul-
tiobjective framework for developing the proposed fuzzy
clustering algonthm.

3 Some Algorithms for Clustering Categori-
cal Data

In this section, some popular clustering echnigues used
for clustering categorical data sets have been described.

3.1 Fuzzy K-modes

The fuzzy K-modes [8] algorithm is the extension of
well-known fuzey C-means [2] algorithm in categorieal do-

main. Assume that X = {xy, z0,..., 2, ] be a set of »
objects having categorical atiribute domans. Each object
1= 1,2,..., n, is described by a set of p attdbules

Ay, Aol Ay Let DOM{A;) 1 < j < p, denotes the
domain of j*™ atiribute and it consists of different g; cate-
gories such as DOM{A;) = {u_:.uf ..... uj' +. Hence the
ith categorical object is defined as x; = i:_r:,l._r:,g ..... 3’*;*5
where z;; € DOM(A;)l.1<j<p

The cluster centers in fuzzy C-means are replaced by
cluster modes in fuzzy k-modes clustering. A mode is de-
fined as follows: Let Y = {3y, 90, .. ., 4, + be a set of cat-
egorcal objects with attributes Ay, s, oo Ay A mode of
Y isavector O = [oy,00,..., o), oy € DOM{A;), 1<

j < p, such that the following criterion is minimized.

D(0,Y) =Y D(O,u). (4)

i=1

Here D), 4;) denotes the dissimilarity measure between
() and y;. Note that (0 is not necessarily an element of set
Y.

The aim of fuzzy K-modes algorthm is o cluster the
data set X inw K partiions so that the following criterion
15 minimized.

n K
Tn(U, 2 : X) = " ufi D(zi,z4),

k=1 =1

(5)

where m is the fuzzy exponent. UV = [u;] denotes the
K ¢ n fuzey partiion matrix and 1y (between 0 and 1)
denotes the membership degree of &' categorical object 1o
the i*h cluster. Z = {zy,2,..., 25 } represents the set of
cluster centers (modes ).

The main disadvantages of fuzzy K-modes clustering al-
gorithms are (1) it depends much on the inmtial choice of
the modes and (2) it often ges rapped into some local op-
LI,



3.2 K-medoids

Partitioning around medoids (PAM), also called K-
medoids clustering [ 10], is a vadation of K-means with the
objective to minimize the within cluster vanance WiK).

Z Z Dip, my

i=1 pell;

WK (6)

Here g 18 the medoid of cluster ¢ and DY.) denotes
a dissimilanty measure. Medoid means the most centrally
located point within a cluster, i.e., the point from which the
summation of distances to other points of that cluster is min-
imum. The resulting clustering of the data set X is usually
only a local minimum of WK,

3.3 K-modes

K-modes clustering [7] is the crisp version of the fuzey
K-modes algorithm. K-modes algorithm works similady 1o
K-medoids with the only difference that here, instead of
medoids, modes are used o represent a cluster. K-modes
algorithm minimizes the following objective function.

-3 % v

=1 pe

TC(K) (7)

Here v denotes the mode of the cluster €.

3.4 Clustering Categorical Data based on
Distance Vectors

Clustering Categorical Data based on Distance Vectors
(CCDV)[15]is a recently proposed clustering algorithm for
categorical attributes. CCDV sequentially extracts clusters
from a given data set based on Hamming Distance (HD)
vectors, with automatic evolution of number of clusters.
The output of the algorithm does not depend on the order
of the input data points.

Exceptthese, hierarchical agglomerative clustering algo-
rithms (single, average and complete linkage) are also used
for clustering categorical data.

4 Proposed Multiobjective Fuzzy Clustering
Technique

In this section, the distance measure between two fea-
ture vectors that is adopted in this aticle is described. Sub-
sequently, the method of using NSGA-1L for evolving a set
of near-Pareto-optimal non-degenerate fuzzy padition ma-
trices 15 described.
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4.1 Distance Measure

This article adopts the following dissimilarty mea-
sure for all the algorithms  considered.  Let =, =
E_r:,l._r:,g ..... _r”,l,.ind_r_.. = |Z41,Fj2, - _r_”,-hL[m)Lal-
egoncal objects desenbed by p L.iLLgurlL.iI attributes. The
distance measure between x; and =, Dz, x;). can be de-
fined by the total mismatches of the corresponding attribute
categories of the two objects. Formally,

D(zi,z;) = Y_ 8(zins 2jn), ()
=1

whene
0 ifzp =z

i ; (9
L afxg # Tj.

M Tig, Tj) =

Note that Dz, ;) gives equal importance to all the cate-
zores of an atiribute.

4.2 Chromosome Encoding and Popula-
tion Initialization

Each chromosome is a sequence of attribute values rep-
resenting the K cluster modes. If each categoncal object
has p attdbutes {4, As. oo Ay 1. the length of a chromo-
some will be p = K, where the first p positions (or, genes)
represent the p-dimensions of the first cluster mode, the next
 positions represent those of the second cluster mode, and
s0 on. Each chromosome of the initial population consists
of the points randomly chosen from the data set

4.3 Computation of Fitness functions

The fimess vector is composed of two fitness functions:
global compaciness 7 [14] of the clusters and fuzzy sep-
aration Sep [14] have been considered as the two objec-
tivies that need o be optimized simultancously. For com-
puting the measures, the modes encoded in a chromosome

are first extracted. Let these be denoted as zp, 22, ..., 25
The membership values ., ¢ = 1,2, K and & =
{1555 SR n are computed as follows [8]:
1 ; ) £
ik = B o l<i< K; 1<k<n,
Z _I'l:'-D( |Jl-]:|”_I
(10}

where Dz, 2 ) and D z;, x4 ) are as described eadier.
is the weighting coefficient. (Note that while computing ;.
using Eqn. 1L if D{z;, z.) is equal to zero for some j, then

1 15 set o zero for all § = 1,..., K, i # j, while u
15 set equal o one.) Subseguently, each mode encoded in
a chromosome 15 updated w z; = [.:,l, T TR ,J.,' where



2y = aj € DOM({A;) using the following inequation [8]:

E moo- E e
Ui = Uypes

k.ay; =a kg =al

1<t< g4, v# L (11)

and the cluster membership values are recomputed.

Thereafter, the variation o; and fuezy cardinality n; of
the #" cluster, i = 1.2...., K, are caleulated using the
following equations [14]:

e

a = Zﬂr:';ﬂ{;,._r:;,.:l. 1 <i<K, (12}
k=1
amnd
ny = Z g, 1<i<K. (13)

k=1
Now the global compactness 7 of the solution represented
by the chromosome 1s computed as [14]:

oy

i i Yo v Dz, m)

Z:::l ik

To compute the other fitness function fuzzy separation
Sep, the mode z; of the i cluster is assumed to be the cen-
ter of a fuzey set {z;|1 = j = K, j # i}. The membership

degree of each z; to z;. § 4. is computed as [14]:

m =

"
- (14)

=1 i=1

1 e
e Dkl WF (13)
Zr:l_r;e_,{ﬁr:__l___l =
The fuzzy separation is defined as [14]:
K K
Sr1;=z Z 1 D(zi, 25). (16)

i=1 j=13%4¢

Note that in order o obtain compact clusters, the mea-
sure 7 should be mimmized. On the other hand, o get well
separated clusters, the fuzey separation Sep should be max-
imized. Hence the objective is 1o minimize 7 and w0 maxi-
mize Sep. These objectives are chosen as they are contra-
dictory in nature, because minimizing 7 means increasing
the compactness of the clusters, whereas maximizing Sep
means mereasing the imter-cluster separation. Thuos they
balance cach other eritically producing good solutions.

4.4 Genetic Operators

The selection operation used here 15 the crowded binary
tournament selection used in NSGA-IL. We have used con-
ventional uniform cmssover with random mask for gener-
ating the new offspring solutions from the chromosomes
selected in the mating pool. For performing musation, if

(i

a chromosome is selected to be mutated, the gene posi-
tion that will undergo mutation is selected randomly. Af-
ter that, the categorical value of that position is replaced by
another random value chosen from the corresponding cat-
egorcal domain. The most characteristic part of NSGA-II
15 1ts ehiism operation, where the non-dominated solutions
among the parent and child populations are propagated Lo
the next generation. For details on the different genetic pro-
cesses, the reader may refer 1o [4]. The near-Pareto-optimal
strings of the last generation provide the different solutions
Lo the clustenng problem.

4.5 Obtaining Final Solution

As the multiobjective method produces a set of non-
dominated solutions in the final generations, it is needed
to obtain & solution from this set. In this article, following
method 15 vsed o this purpose. For each non-dominated
solution, first the clustering label vector is extracted from
the solution by assigning each point to the cluster w which
it has the highest membership, Therealter the label vectors
are reordered so that they cormespond o each other. Subse-
quently the points which are assigned to the same cluster by
atleast 30% of the clustering solutions are obtained. Tak-
g this points as the tmming s, the emaning points ane
assigned a class label using k-nearest neighbour (k-nn) clas-
sification, where k is taken as 5. This way the final solution
15 generated.

5 Experimental Results

The performance of the proposed algorithm has been
evaluated on two synthetic data sets (Data ] and Data2) and
two real life data sets (Congressional Votes and Zoo), and
compared with different algorithms, vie., fuzzy K-modes,
K-modes, K-medoids, hiemrchical average hinkage cluster-
ing, single objective GA based clustering thal minimizes
(SGA()), single objective GA based clustering thal max-
imizes Sep (SGA(Sep)), and CCDV. Each algorithm has
been run for en times and mean value of %CP scores (de-
scribed later) obtained over ten runs of the algorithms have
been reported.

5.1 Performance Measure

The performance of the algorithms have been measured
with respect 1o a term %CP which is defined as the per-
centage of pairs of points that have been correctly clustered
together (1e., which actually belong to the same cluster, and
have been identified as such by the algorithm).



5.2 Input Parameters

The GA based algorithms are run for 100 generations
with population size 50, The crossover and mutation prob-
ahilities are fixed at 0.8 and 0.1, respectively. The fuzey
K-modes, K-modes and K-medods algorithms have been
run for 100 iterations unless they converge before that.

5.3 Synthetic Data Sets

Datal: This synthetic dataset has a one-layer clustering
structure with 15 attnbutes, 250 points and 5 clusters (50
points in each cluster). Each cluster has random categorical
values selected from {1,234 5} in a distinct continuous
setof 12 attributes, while the rest attnbules are set w ().
Data2: This 1s a synthetic data set with 100 points, 10 at-
tributes and 4 clusters (25 points i each cluster). For each
cluster, 2 random attributes of the points of that cluster are
zero valued and the remaining attributes have values in the
range 11,2 ..., o

5.4 Real Life Data Sets

Congressional Votes: This data setis the United States Con-
gressional voling records in 1984, Total number of records
15 435, Each row corresponds 1o one Congress man’s voLes
on 16 different issues (e.g., education spending, crime ete.).
All attnbutes are boolean with Yes (that 15, 1) and No (that
is, 0) values. The data set contains records for 168 Repub-
licans and 267 Democrals.

Zoo: The Zoo data consists of 101 instances of animals in
a zo0 with 17 features. The name of the animal constitutes
the first attribute. This atribute is neglected. There are 15
boolean atiributes corresponding Lo different characleristics
of animals. The character attribute corresponds to the num-
ber of legs lying in the set {0,245 6,8}, The data set
consists of 7 different classes of animals.

The real life data sels are obtained from the
UCT Machine Leaming Repository  (www.ics. ucredu/~
mlearn/MLR epository. html).

5.5 Results

Clustering results in terms of %CP scores on synthetic
and real life data sets using different algorithms are reported
in Table 1. From the table it can be observed that the pro-
posed multiobjectve genete clustienng algorithm gives the
best %CP scores for all the data sets. For Datal, Data2,
Voles and Zoo data sets, the proposed method provides av-
erage %CP scores of 100%, 91.54%, 82.98% and 97.05%,
respectively. It is evident from the tables that for all the
data sets, the proposed multiobjective method consistently
outperforms all other algorithms in enns of %CP scores.

8

Table 1. Average %CP scores for different
data sets

Algorithm Datal  Daa2  Vowes  Zoo
Fuzey C-modes 9531 7627 7782 EOUJE
K-modes BRO5 7391 7538 BERE24
K-medoids 9357 7736 7492 BEE4T
Average hinkage 100 8448 BL.TT 9348
ooV 100 6992 B36 9505
SGA () 96.11 7949 T9.61 92.17
SGA (Sep) 91.17  77.09 B39 9180
MOGA (7, S5ep) 100 9154 8298 9705

Table 2. Objective function values and %CP
scores for Data1

Algorithm T Sep  ARI
SGA () 11.29 1344 9611
SGA (Sep) 11.57 1639 91.17
MOGA (7, 5ep) 1134 1538 100

Table 2 reports another interesting observation.  Here
the 56CP scores for single objective and multi-objective GA
based algorithms have been shown for Datal data set. The
final objective function values are also reported.  As ex-
pected, the single objective GA based algorithm that min-
tmzes 7 oonly, produces the mimimum 7 value (11.29),
whereas, the single objectve GA based method that max-
imizes Sep only, gives the maximum Sep value (1639).
The proposed multi-objective GA based techmgue provides
slightly poorer 7 (11.34) and Sep (15.38) values, however,
in terms of the WO P scores, the proposed technique pro-
vides the best result (L00). This signifies the importance of
optimizing both 7 and Sep simultaneously instead of opt-
mizing them separately o get good clustering solution.

5.6 Statistical Significance Test

In this article, we have vsed one way ANOVA (ANaly-
sis OFf VArance) at the 5% significance level, o compare
the mean %CP values produced by different algorithms in
order 1o test the statistical significance of clustering solu-
tions. Eight groups have been created for each data set cor-
responding to eight algorithms considered here. Each group
consists of %CP values obtained by len consecutive runs of
the corresponding algonthm.  The null hypothesis s that
there are no significant differences among the mean %CP
vitlues produced by all the algorithms, and the alternative
hypothesis is that there are significant differences in mean
FeCP values for at least two methods.

Table 3 reports the ANOVA results for the four data sels



Table 3. ANOVA result for different data sets

Data set 55 MS F-Stat ~ P-value  F-critical
Bin Gr  Wihn Gr. Total Bin Gr  Withn Gr.
Datal 1264.91 189.03 1453.94 180.70 2.63 68.83  23BE-29 2.14
Data2 nuzou 30606 339905 441 .86 4.25 10394 4.80E-35 2.14
WVoles 585.51 537.51 1122.99 B3.64 1.47 1120 LesE-Y 2.14
Loo 685,12 200.62 BO4.74 97.87 291 3362 2.82E-20 2.14
considered here. The sum of squares (85) and the mean [4] K. Deb, A, Pratap, 5. Agrawal, and T. Mevarivan. A
square (MS) of variances of both between groups and within fast and elitist multiobjective genetic algorithim: NSGA-IL
groups are reported. The statistic 1o check the null hypoth- IEEE Transactions on Evelutionary Computation, 6:182—
esis (F statistic) is the mto of the mean squares between i Eﬂh %‘ﬁﬁm s e
Beqow . AL | « L C (Ll & [T . it/ TR Ty
ﬁ:'ﬂj :f :L:'t‘l:Lr:ta[”;iﬁ";;'LE'EF:E-L‘T::"IE"’&";E'EE ::”:" and Machine i:'amr'ng. .-".df:lLﬂm}-"r'_rbslgy. New ‘t{flu'k. 1989,
T Sk [6] J. Handl and J. Knowles. Multiobjective clustering around

ject the null hypothesis. For example, ANOVA result for
Datal data set shows that the value of the F statistic (68.83)
is greater than its eritical value (F-critical = 2.14) and prob-
ahility (P-value) that this result occurred by chance is very
less (2.38E-29). This is extremely strong evidence against
the null hypothesis, indicating that the betier mean %CP
value obtained by the multiobjective fuzey clustering tech-
nigque is only due to goodness of the algorithm and not by
chance. This is true for all other data sets also.

6 Conclusions

In this aricle a multiobjective genetic algorithm based
fuzey clustering algorithm that optimizes the fuzzy com-
pactness and fuzey separation of the clusters simultane-
ously, has been proposed for clustering categorical data.
The algorithm is designed on the framework of NSGA-IL,
a popular multiobjective GA. The performance of the pro-
posed method has been compared with other well known
clustering technigues on several synthetic and real life cat-
egorical data sets o establish its superionty. Also the use
of multiple objectives rather than single objective has been
Justified. Statistical significance test has been carried out in
order o judge the statistical significance of the clustering
solutions. As a scope for future research, use of multiobjec-
tive algorithms other than NSGA-LL is 1o be studied.
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