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Abstract— An important consideration in clustering is the
determination of the correct number of clusters and the
appropriate partitioning of a given data set. In this paper, a
newly developed point symmetry distance is used to propose a
new cluster validity index named Sym-index which provides a
measure of “symmetricity” of the different partitionings of a
data set. The index is able to address all the above mentioned
issues, viz., determining the number of clusters and evolving the
proper partitioning as long as the clusters possess the property
of symmetry. A Kd-tree-based data structure is used to reduce
the complexity of computing the symmetry distance. Results
demonstrating the superiority of the Sym-index in appropriately
determining the proper partitioning and the number of clusters,
as compared to two other recently proposed measures, namely
the PS-index and I-index, are provided for three clustering
methods viz., two recently developed genetic algorithm based
clustering techniques and the average linkage clustering algo-
rithm. Four artificial data sets and two real life data sets are
considered for this purpose. The effectiveness of the proposed
validity index is then demonstrated for automatically classifying
different landcover regions in remote sensing imagery.

Index Terms— Unsupervised classification, cluster validity
index, symmetry, point symmetry based distance, Kd tree,
remote sensing imagery

I. INTRODUCTION

Clustering [1] is a core problem in data-mining with
innumerable applications spanning many fields. In order to
mathematically identify clusters in a data set, it is usually
necessary to first define a measure of similarity or proximity
which will establish a rule for assigning patterns to the
domain of a particular cluster centroid. One of the basic
feature of shapes and objects is symmetry. Su and Chou have
proposed a point symmetry (PS) distance based similarity
measure [2]. This work is extended in [3] to overcome some
of the limitations existing in [2].

The two fundamental questions that need to be addressed
in any typical clustering scenario are: (i) how many clus-
ters are actually present in the data, and (ii) how real or
good the clustering itself. That is, whatever may be the
clustering technique, one has to determine the number of
clusters and also the validity of the clusters formed [4].
The measure of validity of clusters should be such that
it will be able to impose an ordering of the clusters in
terms of its goodness. In other words, if U1, U2, . . . , Um

be the m partitions of X , and the corresponding values of
a validity measure be V1, V2, . . . Vm, then Vk1 ≥ Vk2 ≥
. . . Vkm, ∀ki ∈ 1, 2, . . . , m, i = 1, 2, . . . , m will indicate
that Uk1 ↑ . . . ↑ Ukm. Here ‘Ui ↑ Uj’ indicates that
partition Ui is a better clustering than Uj . Note that a validity
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measure may also define a decreasing sequence instead of
an increasing sequence of Vk1, . . . , Vkm. The measure of
validity of clusters should be such that it will be able
to impose an ordering of the partitions in terms of their
goodness. Several cluster validity indices have been proposed
in the literature. Some of these indices have been found to be
able to detect the correct partitioning for a given number of
clusters, while some can determine the appropriate number
of clusters as well.

Most of the validity measures usually assume a certain
geometrical structure in the cluster shapes. But if several
different structures exist in the same data set, these have
often been found to fail. In [3], Chou et al. proposed a
validity measure called PS-index, which is based on modified
PS distance and it is capable of taking into account the
variability of the cluster shapes. It has been shown in [5] that
the PS distance proposed in [3] has some serious drawbacks.
Consequently we conjecture here that the PS-index will be
unable to identify the proper clustering in certain situations
since it is based on the PS-distance which itself has some
limitations (this is also demonstrated here experimentally).
Therefore it would be challenging to design a cluster validity
index that is able to detect not only the correct number
of clusters but also indicate the appropriate partitioning.
This article presents an attempt in this direction. Here we
propose a cluster validity index named Sym-index (symmetry
based cluster validity index) that uses a new definition of
PS distance (dps). This distance, dps, is able to remove the
drawbacks of the PS distances proposed in [2] and [3]. If the
number of clusters, K , is varied within some range, then the
value of K corresponding to the maximum value of Sym-
index will indicate the correct number of clusters for the
data.

The superiority of this index as compared to PS-index [2]
and a recently proposed I-index [6] is demonstrated for four
artificially generated data sets with different characteristics
and two real-life data sets. Automatic classification of land-
cover regions in remote sensing image is used as another
real-life application for demonstrating the effectiveness of
Sym-index.

II. THE EXISTING POINT SYMMETRY BASED CLUSTER

VALIDITY INDEX [3]

In this section the existing PS-distances as proposed in [2]
[3] are first described, and their limitations are discussed.
The existing symmetry based cluster validity index is then
described in detail.



A. The Point Symmetry (PS)- based Distance Measures

Motivated by the property of point symmetry that clusters
often exhibit, a PS-distance was proposed in [2] which was
further modified in [3]. The modified distance is defined as
follows:
Given N patterns, xj , j = 1, . . .N , and a reference vector
c (e.g., a cluster centroid), the “point symmetry distance”
between a pattern xj and the reference vector c is defined
as

dc(xj , c) = ds(xj , c) × de(xj , c) (1)

where

ds(xj , c) = min
i=1,...N and i�=j

( ‖(xj − c) + (xi − c)‖
‖(xj − c)‖ + ‖(xi − c)‖

)

(2)
and de(xj , c) denotes the Euclidean distance between xj and
c. The value of xi, say x∗

j , for which the quantity within
brackets on the right hand side of Equation 2 attains its
minimum value, is referred to as the symmetrical point of
xj with respect to c. Note that if x∗

j is the same as the
reflected point of xj with respect to c, then the numerator
on the right hand side of Equation 2 will be equal to zero,
and hence ds(xj , c) = dc(xj , c) = 0.

B. Limitations of the PS-distance

It is evident from Equation 1 that the PS-distance measure
can be useful to detect clusters which have symmetrical
shapes. But it will fail for datasets where clusters themselves
are symmetrical with respect to some intermediate point.
From equation 1, it can be noted that as de(xj , c) ≈
de(x∗

j , c), dc(xj , c) ≈ dsymm(xj ,c)
2 , where dsymm(xj , c) =

‖(xj−c)+(x∗
j −c)‖. In effect, if a point xj is almost equally

symmetrical with respect to two centroids c1 and c2, it will
be assigned to that cluster with respect to which it is more
symmetric irrespective of the Euclidean distance between
the cluster center and the particular point. This is intuitively
unappealing. This is demonstrated in Figure 1. The centres of
the three clusters are denoted by c1, c2 and c3 respectively.
Let us take the point x. The symmetrical point of x with
respect to c1 is x1 as it is the first nearest neighbor of the
point x∗

1 = (2× c1−x). Let the Euclidean distance between
x∗

1 and x1 be d1. So the symmetrical distance of x with
respect to c1 is dc(x, c1) = d1

de(x,c1)+de(x1,c1) × de(x, c1).
Similarly symmetrical point of x with respect to c2 is x2,
and the symmetrical distance of x with respect to c2 becomes
dc(x, c2) = d2

de(x,c2)+de(x2,c2)
× de(x, c2). Let d2 < d1;

Now as de(x, c2) ≈ de(x2, c2) and de(x, c1) ≈ de(x1, c2),
therefore ds(x, c1) ≈ d1/2 and ds(x, c2) ≈ d2/2. Therefore
ds(x, c1) > ds(x, c2) and x is assigned to c2 even though
de(x, c2) � de(x, c1). This will happen for the other points
also, finally resulting in merging of the three clusters. This
is intuitively unappealing. From the above observations, it
can be concluded that the PS-distance measure [3] has two
limitations.
Observation 1 : The PS-distance measure lacks the Eu-
clidean distance difference property. Here Euclidean distance
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Fig. 1. Example where point symmetry distance proposed by Su and Chou
fail

difference (EDD) property is defined as follows:
Let x be a data point, c1 and c2 be two cluster centers, and
θ be a distance measure. Let θ1 = θ(x, c1), θ2 = θ(x, c2),
de1 = de(x, c1) and de2 = de(x, c2). Then θ is said to satisfy
EDD property if for θ1 ≈ θ2, point x is assigned to c1 if
de1 < de2, otherwise it is assigned to c2.

It is evident from Figure 1 and from the above discussion
that in the PS-distance measure defined in Equation 1, there
is no impact of the Euclidean distance. (Although a term
de(xj , c) is present, its effect gets almost neutralized by the
denominator of the other term, ds(xj , c)). It only measures
the amount of symmetry of a particular point with respect
to a particular cluster center. As a result a point might be
assigned to a very far off cluster centre, if it happens to be
marginally more symmetric with respect to it.

Observation 2: The PSD measure leads to an unsatis-
factory clustering result for the case of symmetrical inter-
clusters. If two clusters are symmetrical to each other with
respect to a third cluster center, then these clusters are called
“symmetrical interclusters”.

In Figure 1 the first and the third clusters are “symmetrical
interclusters” with respect to the middle one. As explained in
the example, the three clusters get merged into one cluster
since the PS-distance lacks the EDD property. This shows
the limitation of the PS-distance in detecting symmetrical
interclusters which is also experimentally demonstrated in
this paper.

C. PS-index[3]

The cluster validity index, PS-index, based on the PS-
distance defined above, is defined as

PS(K) =
1
K

K∑
i=1

1
ni

∑
j∈Si

ds(xj , ci) × de(xj , ci)
minm,n=1,...,K and m �=nde(cm, cn)

=
1
K

K∑
i=1

1
ni

∑
j∈Si

dc(xj , ci)
dmin

(3)

where Si is the set whose elements are the data points
assigned to the ith cluster, ni is the number of elements
in Si, or, ni = |Si|, dmin is the minimum Euclidean
distance between any two cluster centers and dc(xj , ci) is
computed by Equation 1. The smallest PS(K∗) indicates a
valid optimal partition with the optimal cluster number K∗.

Since the point symmetry based distance dc [3] of Equa-
tion 1 has some inherent problems, hence the PS-index that



is based on dc, also suffers from similar drawbacks. In order
to overcome this, a new point symmetry based distance is
used to propose a new symmetry based cluster validity index.

III. Sym-INDEX: THE PROPOSED SYMMETRY BASED

CLUSTER VALIDITY INDEX

A newly developed symmetry based distance, dps, is
first described in this section. A technique for reducing the
computational complexity of dps is mentioned. Finally a new
cluster validity index is proposed that is based on dps. This
is followed by an explanation of the interaction among the
different components of the index so that it can indicate the
proper partitioning of the data.

A. A New Definition of the Point Symmetry Distance

As discussed in Section 2, both the PS-based distances,
ds and dc, will fail when the clusters themselves are sym-
metrical with respect to some intermediate cluster center. It
has been shown, in such cases the points are assigned to
the farthest cluster. In order to overcome this limitation, we
propose a new PS distance in this article which is called
dps(x, c) associated with point x with respect to a center c.
The proposed point symmetry distance is defined as follows:
Let a point be x. The symmetrical (reflected) point of x with
respect to a particular centre c is 2 × c − x . Let us denote
this by x∗. Let the first and second unique nearest neighbors
of x∗ be at Euclidean distances of d1 and d2 respectively.
Then

dps(x, c) =
(d1 + d2)

2
× de(x, c) (4)

where de(x, c) is the Euclidean distance between the point
x and c. Note that dps(x, c), which is a non-metric, is a way
of measuring the amount of symmetry between a point and
a cluster center, rather than the distance like any Minkowski
distance.
The basic differences between the PS based distances in [2]
and [3], and the proposed point symmetry distance, dps(x, c),
are as follows:

1) Instead of computing Euclidean distance between the
original reflected point x∗ = 2 × c − x and its first
nearest neighbor as in [2] and [3], here the average
distance between x∗ and its first and the second unique
nearest neighbors have been taken. Consequently the
term, (d1 + d2)/2 will never be equal to 0, and the
effect of de(x, c), the Euclidean distance, will always
be considered. This will reduce the problems discussed
in Figure 1.

2) Considering both d1 and d2 in the computation of dps

makes the PS-distance more robust and noise resistant.
From an intuitive point of view, if both d1 and d2 of
x with respect to c is less, then the likelihood that x is
symmetrical with respect to c increases. This is not the
case when only the first nearest neighbor is considered
which could mislead the method in noisy situations.

3) In the PS-distances (in Equation 2) the denominator
term is used to normalize the point symmetry distance
so as to make it insensible to the Euclidean distance.

But as shown earlier this will lead to lack of EDD
property. As a result dc can not identify symmetrical
interclusters. Unlike this, in dps (Equation 4), no
denominator term is incorporated to normalize it.

Observation: The proposed dps measure will, in general,
work well for symmetrical interclusters. Let the two nearest
neighbors of the reflected point of x (in Figure 1) with
respect to center c1 be at distances of d1 and d1

1 respectively.
Then dps(x, c1) = dsym(x, c1) × de1 = d1+d1

1
2 × de1, where

de1 is the Euclidean distance between x and c1. Let the two
nearest neighbors of the reflected point of x with respect to
center c2 be at distances of d2 and d1

2 respectively. Hence,
dps(x, c2) = dsym(x, c2)× de2 = d2+d1

2
2 × de2, where de2 is

the Euclidean distance between x and c2. Now in order to
preserve the Euclidean distance difference property (EDD),
i.e., to avoid merging of symmetrical interclusters, dps(x, c1)
should be less than dps(x, c2) even when dsym(x, c1) ≈
dsym(x, c2). Now, dps(x, c1) < dps(x, c2) =⇒ d1+d1

1
2 ×

de1 <
d2+d1

2
2 × de2 =⇒ de1

de2
<

d2+d1
2

d1+d1
1

. From Figure 1,

it is evident that, de2 >> de1, so de1
de2

<< 1. Thus even

when (d2 + d1
2) ≈ (d1 + d1

1), the inequality de1
de2

<
d2+d1

2
d1+d1

1
is satisfied. Therefore the proposed distance satisfies EDD
property and avoids merging of symmetrical interclusters.
The experimental results provided in [5] also support the fact
that the proposed measure is robust even in the presence of
symmetrical interclusters since it obeys EDD property.

The computation of point symmetry based distance is
highly complex. In order to compute the nearest neighbor
distance of the reflected point of a particular data point
with respect to a cluster center efficiently, we have used
Kd-tree based nearest neighbor search. ANN (Approximate
Nearest Neighbor), which is a library written in C++ [7],
is used for this purpose. Here ANN is used to find d1 and
d2 in Equation 4 efficiently. The Kd-tree structure can be
constructed in O(nlogn) time and takes O(n) space.

B. The Proposed Cluster Validity Measure

1) Definition: The newly developed PS distance is used to
define a cluster validity function which measures the overall
average symmetry with respect to the cluster centers. This is
inspired by the I-index developed in [6], i.e., it follows the
definition of I-index but the Euclidean distance replaced by
the newly proposed point symmetry based distance.
Consider a partition of the data set X = {xj : j =
1, 2, . . . n} and the center of each cluster ci can be computed

by using ci =
�ni

j=1 xj

ni
where ni (i = 1, 2, . . . , K) is

the number of points in cluster i. The new cluster validity
function Sym is defined as:

Sym(K) =
(

1
K

× 1
EK

× DK

)
, (5)

where K is the number of clusters. Here, EK =
∑K

i=1 Ei

such that Ei =
∑ni

j=1 d∗ps(xj , ci) and DK = maxK
i,j=1‖ci −

cj‖. DK is the maximum Euclidean distance between two
cluster centres among all centres. d∗ps(xj , ci) is computed



by Equation 4 with some constraint. Here, first two nearest
neighbors of x∗

j = 2 × ci − xj will be searched among the
points which are already in cluster i, i.e., now the first and
second nearest neighbors of the reflected point x∗

j of the
point xj with respect to ci and xj should belong to the ith
cluster. The objective is to maximize this index in order to
obtain the actual number of clusters.

2) Explanation: As formulated in Equation 5, Sym-index
is a composition of three factors, 1/K , 1/EK and DK . The
first factor increases as K decreases; as Sym-index needs to
be maximized for optimal clustering, this factor prefers to
decrease the value of K . The second factor is a measure
of the total within cluster symmetry. For clusters which
have good symmetrical structures, EK value is less. Note
that as K increases, in general, the clusters tend to become
more symmetric. Moreover, as de(x, c) in Equation 4 also
decreases, EK decreases, resulting in an increase in the value
of the Sym-index. Since Sym-index needs to be maximized,
it will prefer to increase the value of K . Finally the third
factor, DK , measuring the maximum separation between a
pair of clusters, increases with the value of K . Note that
value of DK is bounded by the maximum separation between
a pair of points in the data set. As these three factors are
complementary in nature, so they are expected to compete
and balance each other critically for determining the proper
partitioning.

IV. EXPERIMENTAL RESULTS

Several artificially generated and real-life data sets were
used to experimentally demonstrate that the Sym-index is not
only able to find the proper cluster number for different types
of data sets, but is also able to indicate the suitable clustering
method. Due to lack of space results have been shown here
only for two real-life and four artificially generated data sets.
Three clustering algorithms viz., a newly developed point
symmetry based genetic clustering technique (GAPS) [5],
GAK-means algorithm [8] and the Average-linkage cluster-
ing algorithm [1] are used as the underlying partitioning
techniques. The number of clusters, K is varied from 2 to√

n for each algorithm, and the variation of the Sym-index is
noted. Its maximum value indicates the appropriate algorithm
and the appropriate number of clusters. Finally comparisons
are made with two other recently developed cluster validity
indices, i.e., a point symmetry based PS-index [3] and I-
index [6] in terms of the number of clusters and the clus-
terings obtained. The parameters of the genetic algorithms
(GAPS and GAK-means) are as follows: population size is
equal to 100, crossover and mutation probabilities are kept to
be 0.8 and 0.01 respectively. The algorithms are executed for
a maximum of 30 generations. Table I shows the optimum
values of three validity indices, Sym-index, PS-index and I-
index and the number of clusters obtained after application
of the three algorithms GAPS, GAK-means and Average
Linkage on different data sets.

1) Data1: This data set contains 400 points distributed
on two crossed ellipsoidal shells. The clustering re-
sult obtained after application of GAPS on this data

set is shown in Figure 2(a). As expected, GAPS is
able to detect the proper clustering since the data is
symmetrical. The values of Sym-index and PS-index
are the optimum for K = 2 (see Table I). I-index
could not identify the optimal clustering with any of
the algorithms. Irrespective of the index used, GAK-
means fails here since the clusters are non-convex.
Again, Average linkage also fails here as the clusters
have a little overlap.

2) Data2: This data set, consisting of 350 points, is a
combination of ring-shaped, spherically compact and
linear clusters. The clustering result obtained after
application of GAPS on this data set is shown in
Figure 2(b). As the clusters present here are symmetric,
GAPS performs well for this data set. Again GAK-
means and Average linkage are found to fail here.
Sym-index is able to detect the proper clustering after
application of GAPS with K = 3 (see Table I). I and
PS both could not find proper clustering with any of
the algorithms.

3) Data3: This data set consists of 250 points distributed
over 5 spherically shaped highly overlapping clusters,
each consisting of 50 points [9]. The clustering results
obtained after application of GAK-means and GAPS
on this data set are shown in Figure 3(a) and 3(b)
respectively. Although, Sym-index is able to detect 5
clusters for all the three algorithms (see Table I), it
attains the maximum value after application of GAK-
means (Figure 3(a)). Its value for K = 5 with GAPS
is poorer. Indeed, the clustering obtained here (Figure
3(b)) is not completely perfect. This again reveals the
fact that the Sym-index is able to indicate the suitable
clustering algorithm for a given data set. The Best
value of PS-index corresponds to K = 7 with GAK-
means. As this data set contains some symmetrical in-
terclusters, PS-index should prefer the partition where
some symmetrical interclusters are merged. But due to
the denominator of its definition, it tries to maximize
the minimal separation between two cluster centers.
Thus optimal value of PS-index corresponds to K = 7
where some clusters are splitted rather than merged in
order to maximize the minimal separation between any
two cluster centers.

4) Data4: This data set contains 850 data points dis-
tributed over five clusters. The clustering result ob-
tained after application of Average linkage on this data
set is shown in Figure 4. As the clusters present here
are symmetric and nonoverlapping, GAPS and Average
linkage perform well. GAK-means fails here as all the
clusters are not hyper-spherical in shape. Sym, I and
PS indices are able to find the proper clustering with
GAPS and Average linkage with K = 5 (see Table
I). But PS-index attains its optimum value with GAK-
means for K = 7.

5) Iris: This data set consists of 150 data points distributed
over 3 clusters. Each cluster consists of 50 points.
This data set represents different categories of irises



TABLE I

OPTIMUM VALUES OF THE Sym, PS AND I INDICES FOR ALL THE DATA SETS USING THE THREE ALGORITHMS (ENTRIES IN THE BRACKETS INDICATE

THE NUMBER OF CLUSTERS CORRESPONDING TO WHICH THE INDEX GETS ITS OPTIMUM VALUE). THE BEST VALUE OF THE INDICES, ACROSS THE

ALGORITHMS, ARE MENTIONED IN BOLD FACE.

Data set GAPS GAK-means Average linkage
Sym PS I Sym PS I Sym PS I

Data1 0.049(2) 0.0024(2) 663.85(8) 0.014(8) 0.029(8) 1101.25(5) 0.011(7) 0.04(7) 993.05(6)
Data2 0.057(3) 0.018(6) 7.2(8) 0.051(9) 0.05(8) 7.24(6) 0.019(4) 0.04(4) 3.27(5)
Data3 0.012(5) 0.037(6) 1315.88(6) 0.014(5) 0.031(7) 1276.29(5) 0.013(5) 0.039(5) 1240.83(4)
Data4 0.0076(5) 0.022(5) 12095.52(5) 0.004(7) 0.015(7) 10259.18(8) 0.0076(5) 0.022(5) 12095.52(5)
Iris 0.049(3) 0.084(7) 691.29(3) 0.046(4) 0.107(4) 633.82(3) 0.046(3) 0.088(2) 653.95(3)
Cancer 0.00052(2) 0.125(2) 27662.41(2) 0.0005(2) 0.131(5) 28055.57(3) 0.00048(2) 0.093(3) 27058.82(3)

characterized by four feature values [10]. For this data
set we have calculated the Minkowski Score (MS) [11]
of the clustering result obtained after application of
all three algorithms with K = 3 since it was not
possible to demonstrate the clustering results for this 4-
d data set pictorially. Smaller value of MS means better
clustering. The MS scores are 0.58, 0.61 and 0.62 for
GAPS, GAK-means and Average linkage respectively.
From the obtained MS values it is clear that GAPS
is able to find the best clustering among the three
algorithms and for this particular partitioning, Sym and
I indices obtained their best values. PS-index is unable
to find proper clustering with any algorithms.

6) Cancer: Here we use the Wisconsin Breast cancer data
set consisting of 683 sample points. Each pattern has
nine features. There are two categories in the data:
malignant and benign. The two classes are known
to be linearly separable. For this data set also we
have calculated the Minkowski Score (MS) [11] of the
clustering result obtained after application of all three
algorithms with K = 2 since it is of 9-dimensional.
The MS scores are 0.368, 0.368 and 0.445080 for
GAPS, GAK-means and Average linkage respectively.
From the obtained MS values it is clear that GAPS
and GAK-means perform almost similarly. For the
partitioning obtained by GAPS for K = 2 Sym-
index obtained its best value. I-index obtained its best
value with GAK-means for K = 3. Optimum value
of PS-index indicates Average Linkage as the proper
clustering algorithm where as 3 as the proper cluster
number.

Interestingly, it was observed that for all the data sets, Sym-
index was able to detect the proper number of clusters as well
as the suitable clustering algorithm. For example, for Data2
where GAPS should perform the best for K = 3, the value
of Sym-index is the maximum for GAPS (0.57) as compared
to those for GAK-means (0.51) and Average linkage (0.019)
thereby indicating the suitable clustering technique. Again,
for Data3, where GAK-means should perform the best for
K = 5, the value of the Sym-index is the maximum (see
Table I) for this case. The other indices are sometimes misled
in this regard. For example, for Data3, I value is the more
for GAPS with 6 clusters, (=1315.88) as compared to GAK-

means with 5 clusters (=1276.29). Again, for Data4, GAPS
with K = 5 should be the appropriate choice (one that
is correctly indicated by Sym-index), PS-index attains its
minimum value for GAK-means with K = 7. These results,
therefore, point at the significant superiority of the proposed
index.

V. APPLICATION TO IMAGE SEGMENTATION

The newly proposed cluster validity index along with
the two other indices are used in conjunction with GAK-
means [8] clustering algorithm for segmenting remote sens-
ing satellite images of parts of the Mumbai.

The IRS image of Mumbai was obtained using the LISS-
II sensor. It is available in four bands, viz., blue, green,
red and near infra-red. Fig. 5(a) shows the IRS image of
a part of Mumbai in the near infra red band. As can be
seen, the elongated city area is surrounded on three sides
by the Arabian sea. Towards the bottom right of the image,
there are several islands, including the well known Elephanta
islands. The dockyard is situated on the south eastern part
of Mumbai, which can be seen as a set of three finger like
structure.

After application of GAK-means algorithm on this image,
Sym-index gets its optimal value for K = 6 where as PS-
index and I-index get their optimum values for K = 3
and K = 4 respectively. The partitionings corresponding
to the optimum values of PS-index, Sym-index and I-index
are shown in Figures 5(b), 6(a) and 6(b) respectively. It
can be seen from the figures that partition corresponding
to optimum value of Sym-index is able to differenciate more
regions much better than that of the partition corresponding
to two other indices. Interestingly, in this case the bridge
connecting Mumbai to the mainland has also been identified
reasonably well (Figure 6(a)), while this is missed in the
other two (Figures 5(b) and 6(b)).

VI. CONCLUSION

A new symmetry based cluster validity index is proposed
in this article that is able to indicate both the appropriate
number of clusters as well as the appropriate partitioning. Its
effectiveness is demonstrated for four artificially generated
data sets, two real life data sets and for also one remote
sensing image where determining the different types of



landcovers is of great importance. GAPS, a newly proposed
symmetry distance based genetic clustering technique, GAK-
means and Average Linkage algorithms are used as the
underlying partitioning methods. The experimental results
establish the superiority of the newly proposed Sym-index in
appropriately determining the number of clusters as well as
to indicate the appropriate clustering technique, as compared
to two other recently developed validity indices, PS-index
and I-index. As a part of future work, the effectiveness
of the proposed index needs to be studied extensively with
more data sets and algorithms. In the present study, some
GA based clustering algorithms are used for the comparison
purpose. Performance of some simple greedy search or other
stochastic optimization such as simulated annealing will also
be provided as a comparison in future. The authors are
currently working in this direction.
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Fig. 2. Clustering obtained by GAPS on (a) Data1 for K = 2 (b) Data2
for K = 3
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Fig. 3. Clustering on Data3 (a) obtained by GAKmeans for K = 5 (b)
obtained by GAPS-clustering for K = 5
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Fig. 4. Clustering obtained by Average linkage on Data4 for K = 5
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Fig. 5. (a) IRS image of Mumbai in the NIR band with histogram
equalization (b) Clustered image of Mumbai corresponding to optimal value
of PS-index attained for K=3
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Fig. 6. Clustered image of Mumbai corresponding to optimal value of (a)
Sym-index attained for K=6 (b) I-index attained for K=4
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