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Abstract—Identification of the correct number of clusters
and the corresponding partitioning are two important con-
siderations in dustering. In this paper a newly developed
point symmetry based distance is used to propose symmetry
hased versions of six cluster validity indices namely, DB-index,
Dunn-index, Generalised Dunn-index, PS-index, l-index and
XB-index. These indices provide measures of “symmetricity” of
the different pariionings of a data set. A Kd-tree-based data
structure is used to reduce the complexity of computing the
symmetry distance. A newly developed genetic point symmetry
bhased clustering technigque, GAPS-<clustering is used as the
underlying partitioning algorithm. The number of clusters are
varicd from 2 to % where n is the tolal number of data
points present in the data set and the values of all the validity
indices are noted down, The optimum value of a validity index
over these /n — 1 partitions cormsponds to the appropriate
partitioning and the number of paritions @ indicated by the
validity index. Results on five artificially generated and four
real-life data sets show that symmetry distance based I-index
performs the best compared to all the other five indices.

Index Terms—Unsupervised classification, cluster validity
index, symmetry property, point symmetry based distance, Kd-
tree

I. INTRODUCTION

Clustering [1] is a core problem in data-mining with
innumerable applications spanning many fields. In order to
mathematically identify clusters in a data set, it is usually
necessary to first define a measure of similarity or proximity
which will establish a rule for assigning patterns to the
domain of a particular cluster centroid. The measure of
similarity is vsually data dependent. It may be noted that
one of the basic feature of shapes and objects is symmetry.
As symmelry is so common in the natural world, it can be
assumed that some kind of symmetry exists in the clusters
also. Based on this, Su and Chou have proposed a new type of
non-metric distance, based on point symmetry. This work is
extended in [2] in order to overcome some of the limitations
existing in [3]. It has been shown in [4] that the PS distance
proposed in [2] has some serious drawbacks. In order to
overcome these limitations, a new point symmetry based
distance o, (PS-distance) is developed in [4]. For reducing
the complexity of computing the PS-distance, use of Kd-
tree |5] is also proposed there. This proposed distance is
then used to develop a genetic algorithm based clustering
technique, GAPS [4].

The two fundamental questions that need to be addressed
in any typical clustering scenario are: (i) how many clus-
ters are actually present in the data, and (ii) how real or
pood the clustering itself. That is, whatever may be the

clustering technique, one has to determine the number of
clusters and also the validity of the clusters formed [6].
The measure of validity of clusters should be such that
it will be able to impose an ordering of the clusters in
terms of its goodness. In other words, if U, Dh. ... 00,
be the m partitions of X, and the corresponding values of
a validity measure be V), V5, .. ¥, then ¥y = Via =
e Vim Whie 1,2 . om, i= 1,2, .., m will indicate that
Uir 700 T Uk Here U5 7157 indicates that partition L is
a better clustering than ;. Note that a validity measure may
also define a decreasing sequence instead of an increasing
sequence of Vi, .., Vig. Several cluster validity indices
have been proposed in the literature. These are Davies-
Bouldin {DB) index 7], Dunn’s index [8], Xie-Beni (XB)
index [, l-index [10], CS-index [11], etc., to name just
a few. Some of these indices have been found to be able
to detect the correct partitioning for a given number of
clusters, while some can determine the appropriate number
of clusters as well. Milligan and Cooper [12] have provided a
comparison of several validity indices for data sets containing
distinet non-overlapping clusters while using only hierarchi-
cal clustering algorithms. Maulik and Bandvopadhyay [10]
evaluated the performance of four validity indices, namely,
the Davies-Bouldin index [7]. Dunn’s index [8]. Calinski-
Harabasz index |10], and a recently developed index I, in
conjunction with three different algorithms viz. the well-
known K-means | 1], single-linkage algorithm [1] and a SA-
based clustering method [10].

All the above mentioned indices use the Euclidean dis-
tances in their computation. They are therefore able to char-
acterize only convex clusters. It has been shown in [4] that
the symmetry based distance is effective not only for convex
clusters, but also in cases where the clusters are non-conves,
but satisty the property of point-symmetry. In this article we
conjecture that incorporation of the symmetry measure in the
above mentioned validity indices will impart the property
of characterizing non-convex, symmetric clusters to them.
Thus, here we have developed six cluster validity indices
using the newly proposed point syvmmetry based distance
rather than the Euclidean distance. These indices follow the
definitions of the six well-known existing cluster validity
indices, namely, Davies-Bouldin index (DB-index ) [7], Dunn
index [#], Generalized Dunn’s index [13], PS-index [2].
T-index [10], Xie-Beni index (XB index) [9]. The newly
proposed point symmetry based distance is substituted in
place of Euclidean distance in the definitions of these well-
known validity indices and their performances are evaluated.

697



A newly developed genetic point symmetry based clustering
technique, GAPS-clustering [4] is used as the underlying
clustering algorithm. The number of clusters is varied from
Kinin t0 Kmaz. As a result, total {(Kmar — Kmin + 1) par-
titions will be generated, U7 UL . U with
the correspondng validity index values computed as Vi, .
Vit Vipao- Let K = argopt,_p  p [V,
Therefore, according to index V', K™ is the correct number
of clusters present in the data. The corresponding U may
be obtained by using a suitable clustering tec]uuque with
the number of clusters set to /K*. The tuple < [/} K* =
is presented as the solution to the clustering problem. The
effectiveness of the newly proposed point symmetry based
cluster validity indices namely, Syn-DE index, Sym-Dunn
index, Sym-GDwin index, Sym-P8 index, Sym-I index and
Sym-XB index, are shown in identifying number of clusters
from five artificially generated and four real-life data sets
of varying complexities. Experimental results show that the
Sym-f index performs the best compared to all the other five
indices.

Il. THE EXISTING POINT SYMMETRY (PS})- BASED
DMSTANCE MEASURES| 2]

Motivated by the property of point symmetry that clusters
often exhibit, a PS-distance was proposed in [3] which was
further modified in [2]. The modified distance is defined as
fiol lows:

Given N patterns, ¥;, j = 1.... N, and a reference vector
7 {e.g., a cluster centroid), the “point symmetry distance”
between a pattern T; and the reference vector T is defined as

do(%;.7) = d, (F;.7) x d.(F;.7) (1)

where

d, (F;.T) =

mirn
i=1,... & and izs

(fesaee-al)
[T EaEE]
2)

and d-(T;.7) denotes the Euclidean distance between T; and
©. The value of F;, say T}, for which the quantity within
brackets on the right hand side of Equation 2 attains its
minimum value, is referred to as the symmetrical point of
T; with respect to ©. MNote that if T is the same as the
reflected point of T; with respect to 7, then the numerator
on the right hand side of Equation 2 will be equal to zero,
and hence d,(F;.7) = d.(T;.T) =1

A Limitations of the PS-distance

It is evident from Equation 1 that the PS-distance measure
can be useful to detect clusters which have symmetrical
shapes. But it will fail for datasets where clusters themselves
are symmetrical with respect to some intermediate point.
From equation I it can be noted that as de(T;.7) =
d I:—’ 1"} i I:J ry dem o - ”- where ds_.lllzll:':J—_r ‘A':' =
Ii=5 =)+ (=3 —-¢}|| Ineffbﬂ_ if & point T; is almost equally
symmetrical wn‘h respect to two centroids 7 and T, it will
be assigned to that cluster with respect to which it is more
symmetric irrespective of the Euclidean distance between

ik

the cluster center and the particular point. This is intuitively
unappealing. This is demonstrated in Figure 1. The centres of
the three clusters are denoted by 7y, Ty and 7y, respectively.
Let us take the point . The symmetrical point of T with
respect to Ty is T as it is the first nearest neighbor of the
point ¥} = (2= 7 — F). Let the Euclidean distance between
F) and ¥y be dy. So the symmetrical distance of ¥ with
respect 1o o is d‘-I:F i’]':l = d[l—‘_:-:_:m ¥, I:J'1’|':I
Similarly symmetrical point of T with respect to 72 is Fa,
and the symmetrical distance of T with respect to 7 becomes
dE ) = m % d (T, Ta). Let da < di:
Now as d,.(F. Ta) = . (F2.72) and d,(F.7) ) = d,(F, Fa),
therefore da(T. 71 ) = d1/2 and d.(F,F2) = d2 /2. Therefore
da(F.71) = da(F.02) and T is assigned to Tz even though
i, (F.Ta) 2 4, (F. 7 ). This will happen for the other points
also, finally resulting in merging of the three clusters. This
is intuitively unappealing. From the above observations, it
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Fig. 1.
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Example where point symmetry distance proposed by Su and Chou

can be concluded that the PS-distance measure [2] has two
limitations:
Observation 1 : The PS-distance measure lacks the Eu-
clidean distance difference property. Here Euclidean distance
difference (EDD) property is defined as follows:
Let F be a data point, 7 and T2 be two cluster centers, and
& be a distance measure. Let #, = 8(F.7), 82 = 8(F, ),
de, = d (F.7) ) and d,, = d.(F. 7). Then & is said to satisfy
EDD property if for #) = #,, point ¥ is assigned to 7 if
dey < dea, otherwise it is assigned to T2

It is evident from Figure 1 and from the above discussion
that in the PS-distance measure defined in Equation 1, there
is no impact of the Euclidean distance. (Although a term
de(T;.7) is present, its effect gets almost neutralized by the
denominator of the other term, d.(F;. 7)) It only measures
the amount of symmetry of a particular point with respect
to @ particular cluster center. As a result a point might be
assigned to a very far off cluster centre, if it happens to be
marginally more symmetric with respect to it

Observation 2: The PSD measure leads o an unsiis-

Juctory clustering result for the case of svmmetrical inter-

clusters. If two clusters are symmetrical to each other with
respect toa third cluster center, then these clusters are called
“symmetrical interclusters”.

In Figure 1 the first and the third clusters are “symmetrical
interclusters” with respect to the middle one. As explained in



the example, the three clusters get merged into one cluster
since the PS-distance lacks the EDD property. This shows
the limitation of the PS-distance in detecting symmetrical
interclusters which is also experimentally demonstrated in
this paper.

B A New Definition of the Point Symmetry IXstance

As discussed in Section 2, both the PS-based distances, o,
and ., will fail when the clusters themselves are symmetrical
with respect to some intermediate point. It has been shown,
in such cases the points are assigned to the farthest cluster.
In order to overcome this limitation, we describe a new PS
distance 4], d.(F.¢) associated with point & with respect o
acenter 7. The proposed point symmetry distance is defined
as follows: Let a point be T. The symmetrical (reflected)
point of T with respect to a particular centre T is 2= 7 - T .
Let us denote this by T, Let knear unique nearest neighbors
of T bhe at Euclidean distances of d;, i = 1.2, ... knear.
Then

dpa(F,8) = daym(E.7) x de(T,7), !
knear
sl ==
= BeteAEan @

where o .(F.7) is the Euclidean distance between the point T
and 7. It can be seen from Egquation 4 that knear cannot be
chosen equal to 1, since if ¥° exists in the data set then
dp i F.T) = 0 and hence there will be no impact of the
Euclidean distance. On the contrary, large values of bocar
may not be suitable because it may overestimate the amount
of symmetry of a point with respect to a particular cluster
center. Here knear is chosen equal to 2.

MNote that dps(T.7), which is a non-metric, s a way of
measuring the amount of symmetry between a point and a
cluster center, rather than the distance like any Minkowski
distance.

The basic differences between the PS-distances in [3] and

[2]. and the proposed d,.(F.7) are follows:

1) Instead of computing Euclidean distance between the
original reflected point ¥* = 2 =« ¥ — T and its first
nearest neighbor as in [3] and [2], here the average
distance between T* and its bnear unique nearest
neighbors have been taken. Consequently this term will
never be equal to 0, and the effect of d.(F.7), the
Euclidean distance, will always be considered. Note
that if only the nearest neighbor of T* is considered
and this happens to coincide with F*, then this term
will be 0, making the distance insensitive to d,.(F.7).
But considering &near nearest neighbors will reduce
the problems discussed in Figure 1.

2} Considering the knear nearest neighbors in the com-
putation of d . makes the PS-distance more robust and
noise resistant. From an intuitive point of view, if this
term is less, then the likelihood that T is sy mmetrical
with respect to © increases. This is not the case when
only the first nearest neighbor is considered which
could mislead the method in noisy situations.

3) In the PS-distances (in Equation 2} the denominator
term is used to normalize the point symmetry distance

50 as to make it insensible to the Euclidean distance.

But as shown earlier this will lead to lack of EDD
property. As a result, d. can not identify symmetrical
interclusters. Unlike this, in dps (Equation 3), no
denominator term is incorporated to normalize o, ., .
Observation: The proposed o, measure will, in general,
work well for symmetrical interclusters. Using knear = 2,
let the two nearest neighbors of the reflected point of F (in
Figure 1) with respect to center ¥ are at distances of )
and d} respectively. Then Ao (FoT1) = oy (T 0 ) 2 dpy =
%i w .. where d,; is the Euclidean distance between
T and 7y, Let the two nearest neighbors of the reflected
point of T with respect to center T2 be at distances of da

and d} respectively. Hence, dps(F. %) = dapm(E.T2) x
1
dea = ‘E’—}"E‘ ¥ iz, where d,a is the Euclidean distance

between T and 2. Now in order to preserve the Euclidean
distance difference property (EDD), ie., to avoid merging
of symmetrical interclusters, d, (.7 ) should be less than
o (T.72) even when d, ., (F. 7 ) =2 dayp (F.T2). Now,

dp (F.T) < dplT. )
d| =} d]l d'] + ﬂ!a]]
T de1 < g X 2
i, dy + dl
= e i — T. 3
dea dy + d} &

From Figure 1, it is evident that, dea > > da, so %—: <
1. Thus even when (dy + %) = (d| + d}), the inequality
in Equation 5 is satisfied. Therefore the proposed distance
satisfies EDD property and avoids merging of symmetrical
interclusters. The experimental results provided in 4] also
support the fact that the proposed measure is robust even in
the presence of symmetrical interclusters since it obeys EDD
property.

It is evident that the symmetrical distance computation is
very time consuming because it involves the computation
of the nearest neighbors. Computation of dps (377.7) is of
complexity (N}, Hence for V points and K clusters, the
complexity of assigning the points to the different clusters is
O{N?K). In order to reduce the computational complexity,
an approximate nearest neighbor search using the Kd-tree
approach is adopted in this article.

. Kd-tree Based Nearest Neighbor Compuitation

A K-dimensional tree, or Kd-tree is a space-partitioning
data structure for organizing points in a K-dimensional space.
ANN (Approximate Nearest Neighbor) is a library written in
C+ [ 14], which supports data structures and algorithms for
both exact and approximate nearest neighbor searching in
arbitrarily high dimensions. In this article ANN is used to
find exact d;s, where i = 1,.... knear, in Equation 4 effi-
ciently. The ANN library implements a number of different
data structures, based on Kd-rees and box-decomposition
trees, and employs a couple of different search strategies.
ANN allows the user to specify a maximum approximation
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error bound, thus allowing the vser to control the tradeof
between accuracy and running time. For the purpose of this
article, we have kept the error bound={), calculating the exact
d;s. The Kd-tree structure can be constrocted in O nlegn )
time and takes ((n) space [5].
I, CLUSTER VALIDITY INDICES

In this section, the six point symmetry distance based

cluster validity indices are defined. Mote that the definitions

of these indices are inspired by those of six well-known

existing cluster validity indices.

A Svmmetey Based Davies-Boualdin index (Sym-D8 index )
This index is along the lines of the popular Davies-Bouldin

(DB) index [7]. This is a function of the ratio of the sum of

within-cliuster symmetry 1o between cluster separation. The
scatter within the ith cluster, S, is computed as

Freo d]J,':J —'}
2]

where =; represents the center of cluster ¢ and o}, (7.5;)
is computed osing Equation 4 with some constraint. Note
that here the knear nearest neighbors of the reflected point
T of the point T with respect to =, and ¥ should belong
to the ith cluster, ie., the first koear nearest neighbors of
T* = 2w I; = T are searched among the points which are
already in cluster . The distance between cluster C and
), denoted by d;;. is defined as d;; = d,(T;.5;), where d,
stands for Euclidean distance computation. Then Sy mmetry
Based DB index, Sym-08 index, is defined as

i
iy M

K
where F; = mas; j=i I#il The objective is to minimize
the Sym-D48 index For achieving proper clustering.

Si=

Sym-DE =

B Symmetey Based Dunn's fndex {Sym-Dunn index)

This index is along the lines of popular Dunn’s index [8].
Let 5 and T be two nonempty subsets of BV, Then the
rading & of S is defined as

| - * T T
A(8) = max{dL, (Z,2)},

where = represents the center of set 5 and o, (7.3} is
computed using Equation 4. Note that here the Jm: e nearest
neighbors of the reflected point T of the point T with respect
to T and ¥ should belong to the set 5. The set distance 4
between 5 and 17 s defined as
8(8.T) = - {u';{: Wik

Here, o.(F. %) indicates the Euclidean distance between
points T and . For any partition, Sym-Dann index is defined
s follows

[]J l[!

8(Cy, Cy)

i min {———" 707 3
ik LEf ek dai o maxy op o &S00 )
Larger values of Sym-Dunn index corresponds to good clos-
tering, and the number of clusters that maximizes this index
value is taken as the optimal number of clusters.

Sym-Dhnn =

700

C. Svmmetry Based Generalized Dunn's Tndex (Svm-GDunn
fnglex )

This index is developed along the lines of Generalized
Dunn’s index [13]. The generalized Dunn’s index was de-
veloped after demonstrating the sensitivity of the original
Dunn’s index [B]. to changes in cluster structure, since not
all of the data points were involved in the computation of
the index. Let &; be any positive, semi-definite, symmetric
set distance function and & be any positive, semi-definite
diameter function. Then the peneralized Dunn’s index, Sym-
Gl index is defined as
800, Cy)
Sym-GDunn = . ::ulnh { 8 !:él}_:!“‘ { T AT 1

As like [13], five set distance functions and three diameter
functions can be defined. But here we have used 4, and 5.
These two measures 44 and My are defined as follows:

:u:\ d,(F,%5)

|51

Hg(8)=2(—

and
8(8.7) =

Y diED.

TESFET

5117

Here 5 and T are the centers of the sets 5 and T,
respectively. Here, d? (F.Zg) is computed by Equation 4
with some constraint. Note that here the bnear nearest
neighbors of the reflected point T of the point T with respect
to g, and F should belong to the set 5. Larger values of
Sym-Gunn correspond to good clusters, and the number of
clusters that maximizes Sym-Ceilunn is taken as the optimal
number of clusters.

I Newly proposed symmetry distance based PS-index (Sym-
P index)

This index is developed along the lines of PS-index [2].
The cluster validity index, Sym-P5 index, is defined as

i o
R | 1 dp, (F. %)
Sym-PS(K) = 1= ZT‘ = TZ

1 -
!

W, g udq:(Euz- EH':I

o
1 1 dr (T )
S N it (6
K g i 2 dmin
where S is the set whose elements are the data points
assigned to the ith cluster, n; is the number of elements in

Sioor,ng = |5, dyg is the mininum Enclidean distance
between any two cluster centers and d;,(f. ;) s computed

by Equation 4 with some constraint. Note that the bnear
nearest neighbors of the reflected point T of the point T
with respect to =; and T should belong to the ih closter.
The smallest Sym-PS{R”) indicates a valid optinal partition
with the optimal cluster number i *.



E Syvmmetry distance based {-index {Svm-1 index)

This is inspired by the [-index developed in [10].
Consider a partition of the dataset X = {7, : j = 1. 2... .n}
and the center of each cluster =; can be computed by using

%= =220 ghere ng (i = 1.2...._K) is the number of

proints in cluster i. The new cluster validity function Sym-f
index is defined as:

1 1
Sym-f{K) = (E b Fp ® U:c) y 7

where K is the number of clusters. Here,

K
Ex = Z E;
i=1

= - N Dk e K ==
such that By = 305, af (T}, %) and D = max o, |5

|l L is the maximum Euclidean distance between two
cluster centres among all centres. df,,l:u_'_li-.:_[:l is computed by
Equation 4 with some constraint. Here, first fnear nearest
neighbors of T} = 2 x 5; — T} are searched among the
points which are already in cluster ¢, e, now the fnear
nearest neighbors of the reflected point T of the point T;
with respect o =; and Ty should belong to the ith cluster
The objective is o maximize this index in order 1o obtain
the actual number of clusters,

F Svmmetry Distance Based Xie-Beni index (Sym-X 8 index)
Xie and Beni proposed a validity index (Vs g) that fo-
cussed on two properties: compaciness and separation [9].
Here we have developed a new validity index, named Sym-
XA index, along the lines of XB-index using newly developed
point symmetry based distance. It is defined as follows:

K g
- Yl e, dpa (T, %))

Svm-XB = - )
' el poy K ies 420 T e}

dp (T.T) is computed by Equation 4. Note that here also
the knear nearest neighbors of the reflected point ° of the
point T with respect o0 =7 and T shouold belong o the ith
cluster. The most desirable partition {or an optimal value
of i) is obtained by minimizing Sym-X8 index over i =
2.3 ... Kman
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O GAPS: Clustering Algorithm Used for Segmentation

A newly proposed point symmetry based genetic clustering
technique (GAPS) [4] is used as the underlving segmentation
method. This algorithm vses the newly proposed point svim-
metry based distance for assigning the points o different
clusters. The basic steps of GAPS closely follow those of
the conventional GA. Here centre based encoding of the
chromosome is used. Each string is a sequence of real num-
bers representing the K cluster centres. The K cluster centres
encoded in each chromosome are initialized o K randomly
chosen points from the data set. This process is repeated
for each of the Popsize chromosomes in the population,
where Popsize is the size of the population. Thereafier five
iterations of the K-means algorithm are executed with the
set of centers encoded in each chromosome. The resultant
centers are used o replace the centers in the corresponding
chromosomes. This makes the centers separated initiallv. In
order o compute the fitness of the chromosomes, firstly
wssignment of points to different clusters are done. Here a

point T, 1 =i <, is assigned to cluster & ifF dps (T ) =
_dj,,l:f,-.F_l- ) F=1,..., K, j# k and d,,_..”, (T 0p) = 8.

For d. ., (T;.Te) = 8, point T; is assigned to some clusier
i A do (T 8 ) = do (T 8), F =120 K, j# m In
other words, point T; is assigned to that cluster with respect
o whose centers its PS-distance is the minimuom, provided
the amount of syvmmetricity with respect o that cluster

Coenter is less than some threshold & Otherwise assignment
15 done based on the minimum Eoclidean distance criterion

s normally used in [15] or the K-means al gorithm. We also
provide a rough guideline of the choice of @, the threshold
value on the PS-distance. It is to be noted that if a point is
indeed symmetric with respect to some clusier centre then
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the symmetrical distance computed in the above way will problem.
be small, and can be bounded as follows. Let d55 be the
maxinum nearest neighbor distance in the data set. That is J A E ]
A9 = maxi—, wd (T ), where dn'.nl'. (¥, ) is the nearest e :
neighbor distance of ;. Assumi rlg that ¥ T lies withinthe data . b Tt
space, it may be noted that d; = —-U— and dg{—-u— g
resulted in, # = dpar. Id;enll\r a point T is exactly ' - P
symmetrical with respect to some T if d; = 0. However \ A
considering the uncertainty of the location of a point as the '": Hu P 23
sphere of radius df}%" around T, we have kept the threshold # " :
i equals to difF. Thuzi the computation of & is automatic .{_-1].. FELEEE WA ewR R MRS {h.]- S

and does not require user intervention.

After the assignments are done, the cluster centres encoded
in the chromosome are replaced by the mean points of
the respective clusters. Subsequently for each chromosome,
clustering_metric, M is calculated as defined below:
M=10
For £ =1to K do

For all data points T, i = 1 to n and F;

M=M 4+ dp,l:?,',ﬁk}l
Then the fitness function of that ch.mmo.mme Jit, is defined
as the inverse of M, ie. fit = 4. This fimess function,
Fit, will be maximized by using genetic algorithm. Roulette
wheel selection is used to implement the proportional selec-
tion strategy. The normal single point crossover operation is
used here, Crossover probability is selected adaptively as in
[4]. Ezch chromosome undergoes mutation with a probability
Hee . The mutation probability is also selected adaptively for
each chromosome as in [4]. In GAPS, the processes of fitness
computation, selection, crossover, and mutation are executed
for a maximum number of generations. The best string seen
uptothe last generation provides the solution to the clustering

i kth cluster, do

02

Fig. 8. Clustered Datsd after application of GAPS {a) for K = 6 (b) for
KH=4

e o

5
L g

Fig. 9. Clwstened Daw3d afer application of GAPS for K = 4

IV. EXPERIMENTAL RESULTS

The six data sets that are used for the experiments
are divided into 2 different groups. The first group con-
sists of five arificially generated 2/3-dimensional data
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sets. Figures 2(a)., 2(b). 3(a), 3(b) and 4 show Datal,
Data?, Data3, Datad and Data5, respectively. The sec-
ond group consists of four real-life data sets. These
are fris, Cancer, Newthyreid and Glass obtained from
(httpe A www.ics. uci.edu/mlearn/MLRepository.html ). The de-
scription of the data sets used for the experiment are shown
in Table I fris data set represents different categories of
irises characterized by four feature values. It has three classes
Setosa, Versicolor and Virginica. The Wisconsin Breast Can-
cer data set has two categories in it malignant and benign.
The two classes are known to be linearly separable. The
Newthyroid is the Thyroid gland data ("normal’, “hypo” and
Typer” functioning). Five laboratory tests are used to predict
whether a patient’s thyroid belongs to the class euthyroidism,
hypothy roidism or hyperthy roidism. The (lass identification
data consists of 9 attributes. There are six classes present in
the data. The study of classification of types of glass was
motivated by criminological investigation. At the scene of
the crime, the glass left can be used as evidence, if it is
correctly identified.

The parameters of the GAPS are as follows: population
size=100 and maximum number of generations=30. For
GAPS, the crossover and mutation probabilities are chosen
adaptively as in [4]. The results reported in the table are the
average values obtained over ten runs of the algorithm. Here
Kiopin i kept equal to 2 and K. is set equal to /% where
n is the total number of data points present in the data set.

Figures 5(a), 6, Ta), B(a) and Ya) show, respectively,
the partitions obtained after application of GAPS-clustering
on Datal, Data2, Data3, Datad and Data5, respectively, for
actual number of clusters present in the data sets. Table
Il shows the optimum values of the newly proposed point
symmetry distance based six cluster validity indices, namely,
Svm-DE, Sym-Dune, Sym-Giunn, Sym-P5, Sym-T and Sym-
XB indices, over K =1 to /n number of partitions obtained
after application of GAPS-clustering and the indicating par-
tition number for all the nine data sets used here. It can be
seen that for Datal, all the indices except Sym-P5 is able
to find the proper clustering and the proper cluster number.
Sym-PS provides K = 0 as the proper cluster number. The

corresponding segmentation is shown in Figure 5(b). For
Data2, GAPS-clustering is able to detect the proper clustering
for & =2 (shown in Figure 6) and all the indices are able
to identify this. As like the previous case, for Data3 also
GAPS-clustering is able to find the proper partitioning for
K = 3 (the corresponding segmentation result is shown in
Figure 7(a)) and all the indices except Sym-DEB is able to
detect this. Optimum value of Sym-D8E wrongly indicates six
as the proper cluster number. The corresponding partitioning
is shown in Figure 7(b). But for Datad, Svmn-D8, 8 ym-GDunn
and Sym-l are able to detect the proper clustering (Figure
Bia)) and the proper partition number. Sym-Dur, Sym-PS
and Sym-XB merges two pairs of clusters into two clusters.
The corresponding partitioning is shown in Figure 8(b). For
Datas, all the indices are able to detect the proper clustering
after application of GAPS (the corresponding partitioning is
shown in Figure 9).

For the four real-life data sets, Iris, Cancer, New-thyroid
and Cdass, no visualization is possible as these are high-
dimensional data sets. For these four data sets, the Minkow sti
Seore [16] is calculated after application of GAPS-clustering
algorithm. This is a measure of the quality of a solution given
the true clustering. Let T be the “true” solution and 5 the
solution we wish to measure, Denote by n; the number of
pairs of elements that are in the same cluster in both S and
T. Denote by g the number of pairs that are in the same
cluster only in 8, and by n1g the number of pairs that are in
the same cluster in T. Minkowski Score (MS) is then defined
!
gy + Mg

MS(T,8)= V (8)

TR
For MS, the optimum score is 0, with lower scores being
“hetter”. For Iris data set, MS value corresponding to the
partitioning obtained by GAPS-clustering for K = 3 is (.62,
As can be seen from Table 11, only Sym-7 index is able to
detect the proper partition number for this data set. Optimum
values of Sym-DB, Sym-GDunn, Sym-P5 and Sym-XEB indices
indicate two clusters, which is also often obtained for many
other methods for Iris. The performance Sym-Dunn is the
worst. For Cancer dataset, MS value corresponding to the
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TABLE Il
ExecuTion TIMEIN SECONDS BY GAPS WITH AND WITHOUT K TREE
BASED SEARCH

Data set | GAPS with Kd wee | GAPS with out Kd tree
Daw3 T LI ]
Datad k] BN
Dt 128 CINE

partitioning obtained by GAPS-clustering for &' = 2 is
LA6TOGG, Svm-D08, Svm-Celnn, Sym-PS, Svm-I and Sym-
XB indices are able to indicate this partitioning. But again
for this data set, the performances Sym-Durin is the worst.
For Newthyeoid data set, only Swn-J-index is able to detect
the proper cluster number (3 in this case) along with GAPS-
clustering (see Table 1), The corresponding MS value is
0.58%. No other validity indices are able to detect the proper
cluster number along with GAPS-clustering. For (ilass data
set, again only Sym-f index is able to detect the proper cluster
number, The MS score of the corresponding partitioning
is (.7223, No other indices are able to detect the proper
partitioning or the proper partition number. From the results
on nine data sets, obtained by six newly developed point
symmetry distance based cluster validity indices along with
the GAPS-clustering technigue, it is revealed that Sym-/
index is able to detect the proper cluster number in almaost all
the cases. It may be noted that for real-life data sets having
higher number of dimensions, most of the symmetry based
cluster validity indices do not perform well. This may be
due to the inability of the most of the cluster validity indices
to handle higher dimensional data sets. More experiments
have to be done in order to find out the proper reason of
the inability of the proposed indices for detecting number of
clusters from data sets having higher number of dimensions.

A Effectiveness of Using Kd-tree for Nearest Neighbor
Search

Mote that the proposed implementations of GAPS and
point symmetry based distance utilize a Kd-tree structure to
reduce the time required for identifying the nearest neigh-
bors. In order to demonstrate the time gain obtained, GAPS
is also executed without using the Kd-tree data structure.
GAPS is implemented in C and executed on a PIV processor,
1.60GHz speed, running Linux. Table 11 provides the time re-
quired for the two cases for three data sets Data3, Datad and
Data5. As is evident, incorporation of Kd-tree significantly
reduces the computational burden of the process.

V. DISCUSSION AND CONCLUSION

Identifying the proper number of clusters and the proper
partitioning from a data set are two crucial issues in unsu-
pervised classification. Six newly proposed point symmetry
distance based cluster validity indices which mimic the
existing six cluster walidity indices are proposed in this
article. These newly developed indices exploit the property
of point based symmetry to indicate both the appropriate
number of clusters as well as the appropriate partitioning.
Here point symmetry based distance is osed in place of
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Euclidean distance in the definitions of the well-known six
cluster validity indices, namely, DB-index, Dunn-index, Gen-
eralized Dunn’s index, PS-index. lHindex and XB-index. The
performance of these six newly developed point symmetry
based indices, named as Sym-D8 index, Sym-Durin index,
Sy GDunn index, Sym-PS index, Syvmn-l index and Sym-XB
index, respectively, are evaluated on five artificially generated
and four real-life data sets. Results show that Sym-J index
is more effective than the other five in finding the proper
cluster number and the proper partitioning from datasets with
different shapes and convexity as long as the clusters present
in them are symmetric in nature. As the point symmetry
based distance computation is a time consuming process,
Kd-tree based nearest neighbor search is used to reduce its
time complexity. Future work includes incorporation of the
newly developed point symmetry based distance in many
other existing cluster validity indices. Performance of these
symmetry based validity indices need to be checked along
with many other existing clustering al gorithms on many other
real-world data sets.
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