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Abstract

In this paper a fuzzy quantization dequantization crite-
rion is used to propose an evaluation technique to determine
the appropriate clustering algorithm suitable for a partic-
ular data set. In general, the goodness of a partitioning is
measured by computing the variances within it, which is a
measure of compactness of the obtained partitioning. Here
a new kind of error function, which reflects how well the
formed cluster centers represent the whole data set, is used
as the goodness of the obtained partitioning. Thus a clus-
tering algorithm, providing a good set of centers which ap-
proximate the whole data set perfectly, is best suitable for
partitioning that particular data set. Five well-known clus-
tering algorithms, GAK-means (genetic algorithm based K-
means algorithm), a newly developed genetic point sym-
metry based clustering technique (GAPS-clustering), Aver-
age Linkage clustering algorithm, Expectation Maximiza-
tion (EM) clustering algorithm and Self Organizing Map
(SOM) are used as the underlying partitioning techniques.
Five artificially generated and three real-life data sets are
used to establish that the proposed methodology is able
to correctly identify appropriate clustering algorithm for a
particular data set.

Keywords: Unsupervised classification, clustering algo-
rithms, algorithm identification, fuzzy vector quantization.

1 Introduction

Clustering [6] is a core problem in data-mining with in-
numerable applications spanning many fields. The three
fundamental questions that need to be addressed in any typ-
ical clustering scenario are: (i) what is a good clustering
technique suitable for a given data set, (ii) how many clus-
ters are actually present in the data, and (iii) how real or
good is the clustering itself. It is well-known in the pattern

recognition community that different algorithms are appli-
cable for data with different characteristics. For example,
while K-means [6] is widely used for hyperspherical, con-
vex, equisized clusters, it is known to fail where the clusters
are not hyperspherical and also significantly unequal in size.
Similarly average (or, single) linkage clustering algorithms
[6] work well for non-overlapping clusters of any shape,
but fail if the clusters overlap. The expectation maximiza-
tion algorithm (EM) [5] is considered to be an appropriate
optimization algorithm for constructing statistical models
of data when the type of data distribution (e.g., Gaussian)
is known. It provides a probabilistic clustering where each
data element has a certain probability of being a member of
any cluster. Unlike the K-means it does not depend on any
distance measure, and accommodates categorical and con-
tinuous data in a superior manner. Recently, some cluster-
ing methods have been proposed that exploit the symmetry
property within the clusters [3]. These methods are found
to be superior to several other techniques when the clusters
do offer a symmetric structure. Thus given a wide choice of
methods, determining an appropriate clustering algorithm
presents a challenge.

In this paper a fuzzy granulation and degranulation cri-
terion is used to determine the appropriate clustering algo-
rithm suitable for a particular data set. In the fuzzy vector
quantization technique [10], the vectors in the code book are
used to encode the original data in terms of the membership
values. During decoding, a given vector is expressed as a
function of the membership values and the cluster centers.
In this paper the final cluster centers formed by the respec-
tive clustering algorithm are regarded as the representatives
of the whole data set. Next, the final membership values
of all data points present in the data set with respect to all
the cluster centers are calculated. Now based on this mem-
bership vector and the final cluster centers, each data point
is approximated. The Euclidean distance between the ap-
proximated point and the original point is the quantization
error for that particular point. The total quantization error



(quan error) of the entire data set represents how well the
clustering algorithm is. The clustering algorithm with mini-
mal total quantization error is the best suitable for segment-
ing that particular data set. It is easy to understand that if the
cluster centers formed by a particular clustering algorithm
represent the whole data set properly, then the total quanti-
zation error will be small. Thus in the absence of original
data points, they can be approximated by some combina-
tion of cluster centers and the corresponding membership
values.

The performance of five well-known clustering algo-
rithms are assessed on five artificially generated and three
real-life data sets of varying complexities. Based on the
proposed performance index the appropriate clustering al-
gorithm for a particular data set is determined. The five
clustering algorithms are the well-known genetic algorithm
based K-means clustering technique (GAK-means) which
is developed in [9], in order to overcome the limitation of
K-means algorithm to get stuck at sub optimal solution, a
newly developed genetic point symmetry based clustering
technique (GAPS) [3], the well-known Expectation Max-
imization clustering algorithm [5], the Average Linkage
clustering algorithm [7] and Self Organizing Map (SOM)
[8]. Let the clustering algorithms be denoted by Ai where
i = 1, . . . A, A is the total number of clustering algo-
rithms those are to be evaluated. Let after application of
Ai on a particular data set (with number of clusters equal
to that actually present in the data set), total quantization
error formed be denoted by Vi. Then the suitable clus-
tering algorithm for that particular data set is denoted by
Ai = argmini=1,...AVi. Thus, according to the proposed
criterion, Ai is the most suitable algorithm for that particu-
lar data set.

2 The Proposed Method of Determining the
Proper Clustering Algorithm for A Partic-
ular Data Set

The proposed method of detecting the appropriate clus-
tering algorithm for a particular data set is inspired by
the fuzzy vector quantization-dequantization technique pro-
posed in Ref.[10]. In fuzzy vector quantization, the code
book is formed by optimizing some error function by us-
ing some optimization techniques. Here code book consists
of elements of the data which approximate the whole data
set appropriately. In fuzzy data clustering the cluster cen-
ters and the membership values are the representatives of
data points present in the data set. Thus, codebook con-
sists of cluster centers formed by a particular clustering al-
gorithm. The membership values of all points to all cluster
centers are computed based on the available cluster centers.
Any point can then be approximated by these membership
values and the cluster centers present. The cluster centers

which approximate the whole data set well are desired to be
found out by a clustering algorithm. Let a particular clus-
tering algorithm be Ai, i = 1, . . . A, where A is the total
number of clustering algorithms those are to be evaluated.
Let, total number of clusters present in a data set that is
known apriori be K . The data set consists of N number
of points represented by xi, i = 1, . . . N . The final clus-
ter centers provided by the particular algorithm Ai for this
particular data set are {v1, v2, . . . , vK}. Then a way of en-
coding a particular data point x in the data set can be repre-
sented by the collection of membership values to different
clusters. We require that the corresponding membership de-
grees ui(x), i = 1, 2, . . .K are confined to the unit interval
and sum up to 1. The membership values are calculated by
minimizing the following performance index

Q1(x) =
K∑

i=1

um
i (x)‖x − vi‖2 (1)

subject to the following constraints already stated above,
that is

ui(x) ∈ [0, 1],
K∑

i=1

ui(x) = 1 (2)

Here the Euclidean distance function which is denoted by
‖‖2 is used. The fuzzification coefficient (m, m > 1),
shown in the above expression is used to adjust a level of
contribution of the prototypes to the result of representa-
tion. The collection of K weights {ui(x)}, i = 1, . . .K
along with the cluster centers are used to represent a partic-
ular data point x.

The minimization of Equation 1 is straightforward and
follows a standard way of transforming the problem to un-
constrained optimization using Lagrange multipliers. Now
rewriting Equation 1 by accommodating the constraint in
the form of the Lagrangian multiplier (λ), we obtain

Q1(x) =
K∑

i=1

um
i (x)‖x − vi‖2 − λ(

K∑

i=1

ui(x) − 1) (3)

The resulting system of equations leading to the minimum
of Q comes in the form

dQ

dλ
= 0,

dQ

dui(x)
= 0 (4)

After solving the equations with respect to λ and ui(x), the
resulting weights (membership degrees) become

ui(x) =
1

∑K
i=1(‖x − vi‖/‖x − vj‖)2/(m−1)

(5)

where, i = 1, 2, . . .K . Here, the fuzzification coefficient,
m is chosen equal to 2 though the importance of its proper
choice is studied in [10].
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Thus each data point is represented by the K member-
ship values ui(x), i = 1, . . .K computed by Equation 5
and with the help of K cluster prototypes.

Now, these computed membership values and the clus-
ter prototypes are used to approximate each data point x.
Approximation is based on some aggregation of the clus-
ter prototypes and the associated membership grades ui(x).
The way of forming x′ is accomplished through a minimiza-
tion of the following expression.

Q2(x
′ ) =

K∑

i=1

um
i ‖x′ − vi‖2 (6)

If the Euclidean distance is used to measure the distance be-
tween the prototypes and x′ , the problem of unconstrained
optimization leads to a straightforward solution expressed
as a convex combination of the prototypes

x′ =
∑K

i=1 um
i vi∑K

i=1 um
i

(7)

where the corresponding prototypes are weighted by the
membership degrees. Then the total error due to clustering
is calculated as follows.

quan error =
N∑

i=1

‖xi − x′
i‖2 (8)

where N is the total number of points in the data set. It is
shown in [10] that the quality of reconstruction depends on
a number of essential parameters of the scheme including
the size of the codebook (i.e., here the number of cluster
centers) as well as the value of the fuzzification coefficient
m.

Thus it is easy to understand that if the final cluster cen-
ters formed by a particular clustering algorithm represent
the whole data set appropriately, then each data point should
be well-approximated by using the cluster prototypes and
the corresponding membership values. Then, total dis-
tance between the approximated point and the original point
would be less, resulting in a smaller value of quan error.
Thus the proposed method of determining the appropriate
clustering algorithm suitable for a particular data set relies
on the calculated quan error produced by all the algorithms
for that particular data set. The clustering algorithm which
corresponds to the minimum quan error is considered to be
best suitable for that particular data set.

3 Experimental Results

This section deals with the experimental results which
reveal the superiority of the proposed method in detecting
the appropriate clustering algorithm for a particular data set.

3.1 Clustering Algorithms Used for Comparison

Here, performance of five clustering algorithms on
five artificial and three real-life data sets are evalu-
ated in terms of the above mentioned criterion. The
algorithm which provides the smallest quan error is
regarded as the best suitable for that particular data
set. Five clustering algorithms, viz., a newly devel-
oped point symmetry based genetic clustering technique
(GAPS) [3], GAK-means algorithm [9], Average-linkage
clustering algorithm [6] (source code was obtained from
http://bioinformatics.oxfordjournals.org/cgi/content/abstract),
Self Organizing Map (SOM) [8] (source obtained
from http://www.cs.tau.ac.il/∼rshamir/expander),
Expectation Maximization (EM) algorithm
[5] (matlab source code was obtained from
http://www.mathworks.com/matlabcentral/fileexchange/)
are used as the underlying partitioning techniques. The
parameters of the genetic clustering algorithms (GAPS
and GAK-means) are as follows: population size is equal
to 100 and maximum number of generations is equal to
30. For GAPS, the crossover and mutation probabilities
are chosen adaptively as in [3]. For GAK-means, the
crossover and mutation probabilities are chosen as 0.8 and
0.01, respectively. As already mentioned, the codes for
Average Linkage, EM-algorithm and SOM were obtained
from different sources and were executed using default
parameters. The results reported in the tables are the
average values obtained over ten runs of the algorithms.
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Figure 1. Data1

3.2 Data Sets Used

The data sets that are used for the experiments are di-
vided into 2 different groups.
Group 1: Consists of five artificially generated data sets.
These data sets are used in [2].
Data1: This data set, shown in Figure 1, consists of 250
data points distributed over 5 spherically shaped clusters in
2-dimensional space. The clusters present here are highly
overlapping, consisting of 50 data points each.
Data2: This data set, shown in Figure 2(a), consists of 400
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Figure 2. (a) Data2 (b) Data3
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Figure 3. (a) Data4 (b) Data5

data points in 3-dimensional space distributed over 4 hyper-
spherical disjoint clusters. Each cluster contains 100 data
points.
Data3: This data set, shown in Figure 2(b), consists of 76
data points distributed over 3 clusters.
Data4: This data set, shown in Figure 3(a), is consisting of
500 data points distributed over 10 different clusters. Some
clusters are overlapping in nature. Each cluster consists of
50 data points.
Data5: This data set, shown in Figure 3(b), consists of
300 data points distributed over 6 clusters in 2-dimensional
space. The clusters are of same sizes.
Group 2: Consists of three real life data sets, obtained from
[1]. These are Iris, Cancer and Newthyroid data sets.
Iris: Iris data set consists of 150 data points distributed over
3 clusters. Each cluster consists of 50 points. This data
set represents different categories of irises characterized by
four feature values.
Breast Cancer: Here we use the Wisconsin Breast Cancer
data set consisting of 683 sample points. Each pattern has
nine features. There are two categories in the data: malig-
nant and benign. The two classes are known to be linearly
separable.
Newthyroid: The original database from where it has been
collected is titled as Thyroid gland data (‘normal’, ‘hypo’
and ‘hyper’ functioning). Five laboratory tests are used to
predict whether a patient’s thyroid belongs to the class eu-
thyroidism, hypothyroidism or hyperthyroidism. There are

Table 1. Total quan error obtained by the five
clustering algorithms for eight data sets (en-
tries in bold face indicate the optimal error for
respective data)

Data GAPS GAK Avg. EM SOM
Set -means Link.
Data1 207.96 204.95 212.27 211.29 208.60
Data2 513.12 513.12 513.12 513.12 513.12
Data3 15.47 15.47 15.47 15.47 25.44
Data4 634.08 462.74 465.69 656.94 860.93
Data5 272.13 272.13 272.13 272.13 272.13
Iris 7.48 7.89 7.56 7.719 7.719
Cancer 1690.60 1685.85 1693.03 1702.45 1694.13
Newthy. 7364.57 6718.45 2566.79 8963.22 8471.56

a total of 215 instances. Total number of attributes is five.
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Figure 4. Clustered Data1 after application of
GAK-means for K = 5

4 Discussion of Results

Here, each of the above mentioned five clustering algo-
rithms are executed on each of the eight data sets with num-
ber of clusters kept equal to the original number of clusters
present in the data set. The obtained cluster centers (pro-
totypes) are then used to find the membership values of the
points to all the clusters. After that, each point is realized
in terms of the cluster prototypes and the membership val-
ues computed. The error between the approximated point
and the original point is calculated. Then the total error of
the entire data set gives an idea that how well the clustering
algorithm estimates the clusters in terms of its prototypes
and the membership values of the points to different clus-
ters. The total error, quan error, obtained by each of the
above mentioned five algorithms for the five artificial and
three real-life data sets are provided in Table 1.
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Figure 5. Clustered Data1 after application of
(a) GAPS for K = 5 (b) Average Linkage for
K = 5
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Figure 6. Clustered Data1 after application of
(a) EM algorithm for K = 5 (b) SOM for K = 5

For Data1, the obtained quan error after application of
GAK-means algorithm is the minimum among all the five
algorithms. This implies that GAK-means is the best for
this particular data set. This is also verified after visually
inspecting the partitioning obtained by all the five clustering
algorithms for this particular data set. Figures 4, 5(a), 5(b),
6(a) and 6(b) show, respectively, the partitionings obtained
after application of GAK-means, GAPS, Average Linkage,
Expectation Maximization and SOM on Data1. It is easy to
conclude that GAK-means partitions the data in proper five
clusters (shown in Figure 4). For Data2, all the algorithms
provide the same quan error. This implies that all the algo-
rithms perform similarly for this particular data set. As a re-
sult, all the algorithms provide the same partitioning for this
data set. The corresponding partitioning is shown in Figure
7. For Data3, GAPS, GAK-means, Average Linkage and
EM algorithms perform equally well, providing the lowest
total error, quan error. SOM performs badly for this par-
ticular data set providing the largest quan error. The par-
titionings obtained by GAPS, GAK-means, Average Link-
age and EM are the same. It is shown in Figure 8(a). Fig-
ure 8(b), providing the partitioning obtained by SOM for
Data3 shows the worst performance of SOM. For Data4,
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Figure 7. Clustered Data2 after applica-
tion of GAK-means/GAPS/Average Link-
age/Expectation Maximization/SOM for K = 4
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Figure 8. Clustered Data3 after applica-
tion of (a) GAK-means/GAPS/Average Link-
age/Expectation Maximization for K = 3 (b)
SOM for K = 3

the quan error obtained after application of GAK-means is
the minimum. This implies that partitioning provided by
GAK-means is the best. This is also verified visually from
Figure 9 which contains the partitioning provided by GAK-
means after application on Data4 for K = 10. The per-
formance of SOM is the worst among the five algorithms.
The corresponding segmentation result is shown in Figure
10. For Data5, again all the algorithms perform equally
well providing the same quantization error. The partition-
ings provided by all the algorithms are the same and it is
shown in Figure 11.

For the real-life data sets, no visualization is possible as
these are higher dimensional data sets. In order to measure
the goodness of the partitioning for these three real-life data
sets, the Minkowski Score (MS) [4] is calculated. This is a
measure of the quality of a solution given the true cluster-
ing. For MS, the optimum score is 0, with lower scores be-
ing “better”. For Iris data set, as seen from Table 1, GAPS
clustering performs the best. The corresponding MS score
is 0.62. The other algorithms perform quiet similarly for
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Figure 9. Clustered Data4 after application of
GAK-means algorithm for K = 10
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Figure 10. Clustered Data4 after application of
SOM algorithm for K = 10

this data set. For Cancer data set, GAK-means performs
the best in terms of the total quan error obtained. The cor-
responding MS score is 0.367. The performances of GAPS,
Average Linkage and SOM are quite similar. For Newthy-
roid data, Average Linkage performs the best in terms of
total quan error obtained. The MS score corresponding to
the obtained partitioning is 0.878716.

5 Discussion and Conclusion

In this paper, a new criterion for determining the ap-
propriate partitioning algorithm for a given data set is pro-
posed which uses a new error function other than total vari-
ance/compactness of the clusters. The error function is
based on the fuzzy vector quantization-dequantization cri-
terion. This error function gives an quantitative measure-
ment of how well the cluster centers obtained by a particu-
lar clustering algorithm after application on a particular data
set, represent the whole data set. The clustering algorithm
which provides the minimal total error is regarded as the
suitable partitioning technique for that particular data set.
The effectiveness of the proposed criterion in detecting the
proper partitioning technique among the five well-known
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Figure 11. Clustered Data5 after appli-
cation of GAK-means/GAPS/Average Link-
age/Expectation Maximization/SOM for K = 6

data partitioning algorithms is established on five artificially
generated and three real-life data sets.

Future work includes the use of some other distances in
place of Euclidean distance while calculating the member-
ship values of different points to different clusters, so that
the proposed criterion is able to detect proper partitioning
technique for some non convex/ convex symmetrical clus-
ters other than hyperspherical ones.
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