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Abstract—In this paper, an evolutionary clustering technique
is described that uses a new line symmetry based distance mea-
sure. Kd-tree based nearest neighbor search is used to reduce
the complexity of finding the closest symmetric point. Adaptive
mutation and crossover probabilities are used. The proposed
GA with line symmetry distance based (GALSD) clustering
technique is able to detect any type of clusters, irrespective
of their geometrical shape and overlapping nature, as long as
they possess the characteristic of line symmetry. GALSD is
compared with existing well-known K-means algorithm. Five
artificially generated and two real-life data sets are used to
demonstrate its superiority.

Index Terms—Unsupervised classification, clustering, symme-
try property, line symmetry based distance, Kd-tree, Genetic
algorithm

I. INTRODUCTION

Partitioning a set of data points into some nonoverlapping
clusters is an important topic in data analysis and pattern
classification [1]. It has many applications, such as codebook
design, data mining, image segmentation, data compression,
etc. Many efficient clustering algorithms [2] [3] have been
developed for data sets of different distributions in the past
several decades. Most of the existing clustering algorithms
adopt the 2-norm distance measure in the clustering process.

In order to mathematically identify clusters in a data set, it
is usually necessary to first define a measure of similarity or
proximity which will establish a rule for assigning patterns
to the domain of a particular cluster centroid. The measure
of similarity is usually data dependent. One commonly used
measure of similarity is the Euclidean distance D between
two patterns T and Z defined by D = ||T — Z||. Smaller
Euclidean distance means better similarity and vice versa.
This measure has been used in the K-means clustering
algorithm [2]. By this algorithm hyperspherical clusters of
almost equal size can be easily identified. This measure fails
when clusters tend to develop along principal axes. It may be
noted that one of the basic feature of shapes and objects is
symmetry. As symmetry is so common in the natural world,
it can be assumed that some kind of symmetry exists in the
clusters also. Based on this, Su and Chou have proposed a
new type of non-metric distance, based on point symmetry.
This work is extended in [4] in order to overcome some of the
limitations existing in [5]. It has been shown in [6] that the PS
distance proposed in [4] has some serious drawbacks. Such
as it is unable to detect the proper partitioning where some
clusters are symmetrical with respect to some intermediate
cluster center. The point symmetry based distance proposed

by Su and Chou is only taken into consideration the amount
of symmetry of a particular point, the Euclidean distance
doesn’t have any impact in it. In order to overcome these
limitations, a new point symmetry based distance d,s (PS-
distance) is developed in [6]. This proposed distance is then
used to develop a genetic algorithm based clustering tech-
nique, GAPS [6]. From the geometrical symmetry viewpoint,
point symmetry and line symmetry are two widely discussed
issues. The motivation of our present paper is as follows: to
develop a new line symmetry based distance measure, and
incorporate it in a genetic clustering scheme that preserves
the advantages of the previous GAPS clustering algorithm.

K-means is a widely used clustering algorithm that has
also been used in conjunction with the point-symmetry based
distance measure in [S]. However K-means is known to get
stuck at sub-optimal solutions depending on the choice of the
initial cluster centers. In order to overcome this limitation,
genetic algorithms have been used for solving the underlying
optimization problem [7]. Genetic Algorithms (GAs) [8] are
randomized search and optimization techniques guided by
the principles of evolution and natural genetics, and having
a large amount of implicit parallelism. GAs perform search
in complex, large and multimodal landscapes, and provide
near-optimal solutions for objective or fitness function of an
optimization problem. In view of the advantages of the GA-
based clustering method over the standard K-means [7], the
former has been used in this article. In the proposed GA with
line symmetry distance based clustering technique (GALSD),
the assignment of points to different clusters are done based
on the newly proposed line symmetry distance rather than
the Euclidean distance. This enables the proposed algorithm
to detect both convex and non-convex clusters of any shape
and sizes as long as the clusters do have some line symmetry
property. A Kd-tree based nearest neighbor search is utilized
to reduce the computational complexity of computing the
line symmetry distance. Adaptive mutation and crossover
operations are used to accelerate the proposed GALSD to
converge fast. The effectiveness of the proposed algorithm is
demonstrated in identifying line symmetric clusters from five
artificial and two real-life datasets. The clustering results are
compared with those obtained by the well-known K-means
algorithm.

II. THE POINT SYMMETRY BASED DISTANCE

In this section, a new PS distance [6], d,,s (T, ¢), associated
with point = with respect to a center ¢ is described. As



shown in [6], dps(T,C) is able to overcome some serious
limitations of an earlier PS distance [5]. Let a point be =. The
symmetrical (reflected) point of T with respect to a particular
centre T is 2 X ¢ — T . Let us denote this by T*. Let knear
unique nearest neighbors of z* be at Euclidean distances of
d;s, i =1,2,...knear. Then

dps(fa E) = dSym (fa E) X de(fa E)a (1)
D vt
= SEL xdo(T ), @

where d. (T, ¢) is the Euclidean distance between the point T
and €. It can be seen from Equation 2 that knear cannot be
chosen equal to 1, since if T* exists in the data set then
dps(T,€) = 0 and hence there will be no impact of the
Euclidean distance. On the contrary, large values of knear
may not be suitable because it may underestimate the amount
of symmetry of a point with respect to a particular cluster
center. Here knear is chosen equal to 2.

Note that d,s(T,¢), which is a non-metric, is a way of
measuring the amount of symmetry between a point and a
cluster center, rather than the distance like any Minkowski
distance.

The benefits of using several neighbors instead of just one
in Equation 2 are as follows.

1) Here since the average distance between T* and its
knear unique nearest neighbors have been taken, this
term will never be equal to 0, and the effect of d.(Z, ),
the Euclidean distance, will always be considered. Note
that if only the nearest neighbor of * is considered and
this happens to coincide with T*, then this term will be
0, making the distance insensitive to d.(z,¢). This in
turn would indicate that if a point is marginally more
symmetrical to a far off cluster than to a very close
one, it would be assigned to the farthest cluster. This
often leads to undesirable results as demonstrated in
[6].

2) Considering the knear nearest neighbors in the com-
putation of d,; makes the PS-distance more robust and
noise resistant. From an intuitive point of view, if this
term is less, then the likelihood that T is symmetrical
with respect to ¢ increases. This is not the case when
only the first nearest neighbor is considered which
could mislead the method in noisy situations.

Note that the complexity of computing d,s(Z,¢) is O(n),
where n is the total number of data points. For all the n
points and K clusters, the complexity becomes O(n?K).
In order to reduce this, we have used Kd-tree based near-
est neighbor search, ANN (Approximate Nearest Neigh-
bor), which is a library written in C++ (obtained from
http://www.cs.umd.edu/~mount/ANN). Here ANN is used to
find exact d;s, i = 1 to knear in Equation 2 efficiently. The
Kd-tree structure can be constructed in O(nlogn) time and
takes O(n) space [9].

II1. THE NEWLY PROPOSED LINE SYMMETRY BASED
DISTANCE

Given a particular partitioning, we first find the sym-
metrical line of each cluster by using the central moment
technique [10]. Let the data set be denoted by X =

{(z1,91), (z2,92), ... (Tn,Yn)}, then the (p,q)th order mo-
ment is defined as

V(zi,yi)€X

Mpg = 7Yy &)

By Equation 3, the centroid of the given data set for one

cluster is defined as (222 0L) The central moment is
moo ’ Moo

defined as

>

V(zi,yi)€X

Upqg = (s —T)P(y: — )9, 4

where T = T4¢ and y = L. According to the calculated
centroid and Equation 4, the major axis of each cluster can
be determined by the following two items:

1) The major axis of the cluster must pass through the
centroid.
2) The angle between the major axis and the z axis is

equal to 0.5 x tan_l(ui:ﬁ)'

Consequently, for one cluster, its major axis is thus expressed
by (e, ML) (.5 x tan™ ! (ZXUL)).

The obtained major axis is treated as the symmetric line of
the relevant cluster. This symmetrical line is used to measure
the amount of line symmetry of a particular point in that
cluster. In order to measure the amount of line symmetry of
a point () with respect to a particular line ¢, d;5(%, ), the
following steps are followed.

1) For a particular data point Z, calculate the projected
point p; on the relevant symmetrical line 7.

2) Find dps(T, ;) by Equation 2. Then the amount of line
symmetry of a particular point  with respect to that
particular line 4, will be equal to dps (T, D;).

IV. GALSD: THE GENETIC CLUSTERING SCHEME WITH
THE PROPOSED LINE SYMMETRY BASED DISTANCE

As mentioned earlier, the GA-based clustering algorithm
[7] is used in this article since it is known to provide good
clusters when K is known. However instead of the Euclidean
distance, now the proposed line symmetry distance is used
as the distance measure for computing the clustering_metric
(M). The task of the GA is to search for the appropriate
cluster centres z1, 22 ... zx such that M is maximized.

A. String Representation and Population Initialization

The basic steps of GAPS closely follow those of the
conventional GA. Here center based encoding of the chro-
mosome is used. Each string is a sequence of real numbers
representing the K cluster centers and these are initialized to
K randomly chosen points from the data set. This process
is repeated for each of the Popsize chromosomes in the
population, where Popsize is the size of the population.



Thereafter five iterations of the K-means algorithm is exe-
cuted with the set of centers encoded in each chromosome.
The resultant centers are used to replace the centers in
the corresponding chromosomes. This makes the centers
separated initially.
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B. Fitness Computation

In order to compute the fitness of the chromosomes, the
following steps are executed.

1) Find the symmetrical line for each cluster. As described
in the first paragraph of Section III, for each cluster, we
use the moment-based approach to find out the relevant
symmetrical line.

2) For each data point ;, © = 1,... N where N is the
total number of points present in the data set, calculate
the projected point p,; on the relevant symmetrical line
of cluster Cx, k = 1,... K where K is the total num-
ber of clusters. Then compute d;s(T;, k) = dps(Ti, Dy;)
by Equation 2.

3) The point =T; is assigned to cluster Fk iff
dis(Tiy k) < dis(Ti,5), j = 1,....K, j # k
and  (dis(Ti, k)/de(Ti, Dy;)) < 6. For

(dis(Ti, k) /de(T4i,Dy;)) > 6, point T; is assigned
to some cluster m iff de(Z;,Cm) < de(Ti,G5), j =
1,2...K, j # m. In other words, point T; is
assigned to that cluster with respect to whose centers
its PS-distance is the minimum, provided the total
“symmetricity” with respect to it is less than some
threshold 6. Otherwise assignment is done based on
the minimum Euclidean distance criterion as normally
used in [7] or the K-means algorithm.

We have provided a rough guideline of the choice of 6, the
threshold value on the PS-distance. It is to be noted that
if a point is indeed symmetric with respect to some cluster
centre then the symmetrical distance computed in the above
way will be small, and can be bounded as follows. Let d}47
be the maximum nearest neighbor distance in the data set.
That is

NN =max=1 ndnn(Ti), (5)
where dyn(T;) is the nearest neighbor distance of T;.
Assuming that T* lies within the data space, it may be noted
that

max 3 max
dy < HEand  dy < —EE (6)
2 2
resulted in, dl—g‘b < d¥%7. ldeally, a point T is exactly
symmetrical with respect to some ¢ if d; = 0. However

considering the uncertainty of the location of a point as the
sphere of radius d/%7 around T, we have kept the threshold
0 equals to d;%7. Thus the computation of 6 is automatic
and does not require user intervention.

After the assignments are done, the cluster centres encoded
in the chromosome are replaced by the mean points of
the respective clusters. Subsequently for each chromosome
clustering_metric,M, is calculated as defined below:

M=0
For k=1to K do

For all data points T;, ¢ = 1 to n and T; € kth cluster,

do

M=M + dls(fi, k) @)

Then the fitness function of that chromosome, fit, is defined
as the inverse of M, i.e.,

1

fit= 57 ®)

This fitness function, fit, will be maximized by using genetic
algorithm. (Note that there could be other ways of defining
the fitness function).

C. Selection

Roulette wheel selection is used to implement the propor-
tional selection strategy.

D. Crossover

Here, we have used the normal single point crossover [8].
Crossover probability is selected adaptively as in [11]. The
expressions for crossover probabilities are computed as fol-
lows. Let f,q. be the maximum fitness value of the current
population, f be the average fitness value of the population



and f " be the larger of the fitness values of the solutions to be
crossed. Then the probability of crossover, p., is calculated
as: ,

pe = ky x 7((?;:;*__’;;, it > 7,

je = ks, if f < 7.

Here, as in [11], the values of ki and k3 are kept equal to
1.0. Note that, when fm(m=7, then f/ = fimae and p. will
be equal to k3. The aim behind this adaptation is to achieve a
trade-off between exploration and exploitation in a different
manner. The value of u. is increased when the better of
the two chromosomes to be crossed is itself quite poor. In
contrast when it is a good solution, y. is low so as to reduce
the likelihood of disrupting a good solution by crossover.
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Fig. 4. Clustered Datal after application of K-means for K = 2
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Fig. 5. Clustered Datal after application of GALSD-clustering algorithm
for K =2
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Fig. 6. Clustered Data?2 after application of K-means for K = 3

E. Mutation

Each chromosome undergoes mutation with a probability
m. The mutation probability is also selected adaptively for
each chromosome as in [11]. The expression for mutation
probability, p,,, is given below:

Fig. 7. Clustered Data?2 after application of GALSD-clustering algorithm
for K =3
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Fig. 8. Clustered Data3 after application of K-means algorithm for K = 3

pm = ko X e i > .

Mm,:k4 lffo

Here, values of ko and k4 are kept equal to 0.5. This adaptive
mutation helps GA to come out of local optimum. When
GA converges to a local optimum, i.e., when fqz — 7
decreases, . and p.,, both will be increased. As a result
GA will come out of local optimum. It will also happen
for the global optimum and may result in disruption of the
near-optimal solutions. As a result GA will never converge
to the global optimum. But as p. and p,, will get lower
values for high fitness solutions and get higher values for
low fitness solutions, while the high fitness solutions aid in
the convergence of the GA, the low fitness solutions prevent
the GA from getting stuck at a local optimum. The use of
elitism will also keep the best solution intact. For a solution
with maximum fitness value, y. and p,, are both zero. The
best solution in a population is transferred undisrupted into
the next generation. Together with the selection mechanism,
this may lead to an exponential growth of the solution in
the population and may cause premature convergence. To
overcome the above stated problem, a default mutation rate
(of 0.02) is kept for every solution in the GALSD.

We have used the mutation operation similar to that used in
GA based clustering [7]. In GALSD, the processes of fitness
computation, selection, crossover, and mutation are executed
for a maximum number of generations. The best string seen
upto the last generation provides the solution to the clustering
problem. Elitism has been implemented at each generation
by preserving the best string seen upto that generation in
a location outside the population. Thus on termination, this
location contains the centers of the final clusters.
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Fig. 9. Clustered Data3 after application of GALSD-clustering algorithm
for K =3

Fig. 10. Clustered Data4 after application of K-means algorithm for K = 2

V. IMPLEMENTATION RESULTS

The experimental results comparing the performances of
GALSD and K-means algorithm are provided for five ar-
tificial data sets and two real-life data sets. For the newly
developed GALSD-clustering, value of 6 is determined from
the data set as discussed in Section IV-B. For GALSD,
the crossover probability, s, and mutation probability, fi,,
are determined adaptively as described in Section IV-D and
Section I'V-E, respectively. The population size, P is set equal
to 100. The total number of generations is kept equal to 20.
Executing it further did not improve the performance.

1) Datal: This data set consists of two bands as shown
in Figure 1(a), where each band consists of 200 data
points. The final clustering results obtained by K-
means and GALSD are given in Figures 4 and 5,
respectively. As expected K-means shows poor perfor-
mance for this data since the clusters are not hyper-
spherical in nature. Our proposed GALSD is able to
detect the proper partitioning from this data set as the
clusters possess the line symmetry property.

2) Data2: This data set is a combination of ring-shaped,
compact and linear clusters shown in Figure 1(b). The
total number of points in it is 350. The final results
obtained after application of K-means, and GALSD
are shown in Figures 6, and 7, respectively, where K-
means is found to fail in providing the proper clusters.
The proposed GALSD is able to detect the proper
partitioning.

3) Data3: This data set is a combination of a ring-shaped
cluster, a rectangular cluster and a linear cluster as
shown in Figure 2(a), with total number of points equal
to 400. The final results corresponding to K-means

Fig. 11. Clustered Data4 after application of GALSD-clustering algorithm
for K =2

Fig. 12.  Clustered Data5 for K = 5 after application of (a) K-means
algorithm (b) GALSD-clustering algorithm

algorithm, and GALSD are shown in Figures 8 and
9, respectively. As evident from Figure 8, K-means
fails in correctly detecting the linear cluster; it includes
points from the rectangular cluster in the linear cluster.
As expected, the ring is properly detected. In the
partitioning provided by the GALSD some points of
the rectangular cluster are included in the ring because
those become more symmetric with respect to the ma-
jor axis of the ring which passes through the rectangle.

4) Data4: This data set contains 400 points distributed
on two crossed ellipsoidal shells shown in Figure 2(b).
The final results corresponding to K-means algorithm,
and GALSD are shown in Figures 10 and 11, respec-
tively. As expected K-means is not able to detect the
proper partitioning but GALSD is able to do so.

5) Data5: This data set contains 850 data points dis-
tributed on five clusters, as shown in Figure 3(a).
The final results corresponding to K-means algorithm,
and GALSD are shown in Figures 12(a) and 12(b),
respectively. K-means again fails here in detecting
ellipsoidal shaped clusters. But as the clusters present
here are line symmetric, the proposed GASLD is able
to detect the clusters well.

6) Two_leavesl: Most of the natural scenes, such as leaves
of plants, have the line symmetry property. Figure
13(a) shows the two real leaves of Ficus microcapa
and they overlap a little each other. First the sobel
edge detector [10] is used to obtain the edge pixels in
the input data points which is shown in Figure 13(b).
After running the K-means algorithm, the obtained



(a)

Fig. 13. (a) Two_leaves] data (b) Edge pixels of leaves as input data points

(a) (b)

Fig. 15. (a) Two_leaves2 data (b) Edge pixels of leaves as input data points

Fig. 14. Clustered Two_leavesl data for K = 2 after application of (a)
K-means algorithm (b) proposed GALSD clustering algorithm

partitioning is shown in Figure 14(a). The clustering
result obtained after execution of the proposed GALSD
algorithm is shown in Figure 13(b). The proposed
GALSD demonstrates a satisfactory clustering result.
Two_leaves2: Figure 15(a) shows the two real leaves
of Fizuslvgi. The edge map obtained after application
of the Sobel edge detector is shown in Figure 15(b).
Figures 16(a) and 16(b) show the final clustering result
obtained after application of K-means and GALSD
clustering algorithms, respectively. Both the algorithms
perform equally well. K-means is able to detect the
proper partitioning as the two clusters are completely
separated.

7)

VI. DISCUSSION AND CONCLUSION

In this paper a new line symmetry based distance is
proposed which is based on the existing point symmetry
based distance. Kd-tree based nearest neighbor search is
used to reduce the complexity of symmetry based distance
computation. A genetic clustering technique (GALSD) is
also proposed here that incorporates the new line symmetry
distance while performing cluster assignments of the points
and in the fitness computation. The major advantages of
GALSD are as follows. In contrast to K-means, use of GA
enables the algorithm to come out of local optima, making it
less sensitive to the choice of the initial cluster centers. The
proposed clustering technique can cluster data sets with the
property of line symmetry successfully. The effectiveness of
the proposed algorithm is demonstrated in detecting clusters
having line symmetry property from five artificial and two
real-life data sets. Other than the clustering experiments

Fig. 16. Clustered Two_leaves2 data for K = 2 after application of (a)
K-means algorithm (b) proposed GALSD clustering algorithm

using leaf example, it is an interesting future research topic
to extend the results of this paper to face recognition. Current
work is going on to improve the proposed GALSD clustering
technique so that it can work perfectly for data sets like
Data3.
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