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Abstract

A novel  Multi-Objective Evolutionary  Algorithm
(MOEA), called Multi-objective Genetic Algorithm with
Relative Distance (MOGARD) ix described. A novel
wlative distance parameter that enswes convergence to
the FPareto optimal front and a nearvest neighbour based
method for maintaining diversity in the non-dominated set
iv wyed. Two novel performance measures arve formulated to
estimate the performance of the MOEAs. A penalty based
constraint handling concept is introduced in MOGARD,
Jforhandling constraints. Experimental results demonstrate
the superiovity of MOGARD on several test problems, as
compared to other recent and well known algorithms.

1. Introduction

The primary objective in multi-objective oplimizalion
(MOO) 15 W evolve a set of solutons which are as close
as possible o the Pareto-optimal (PO) front, while being
as diverse as possible. In this article, a new evolutionary
MOO algorithm called “*Mulu-objective Genetic Algonthm
with Relative Distance (MOGARD)™ 15 proposed. MOG-
ARD uses the concept of relative distance parameter as the
fitness function that helps in better convergence o the true
PO-fromt. A novel diversity parameter 15 used o ensure a
wide spread of the solutions. MOGARD meorporates the
concepl of cliism, using the archive concept as in SPEA2
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Two novel performance measures called relative conver-
gence and hvpergrid measwe are proposed for the evalu-
ation of MOEAs to assess their convergence and diversily
characteristics respectively. Comparative results of MOG-
ARD with NSGA-LL [4], PESA-LL [2] and SPEAZ2 are pro-
vided for different standard test functions of two and three
objectives, and one Lo thirty variables, in terms of these per-

formance measures.

Constraimt handling 15 an important issue in MOO. In[4],
the concept of constrained domination is proposed, where
mfeasible solutions are always discarded even when com-
pared w a feasible but extremely poor solution. In order 1o
overcome this imitation, MOGARD incorporates a penalty
based approach, as suggested for single objective GAs [ 7).

2  Multi-objective Genetic Algorithm with
Relative Distance (MOGARD)

The basic structure of MOGARD is given in Algo-
rithm:1. Different steps are described below in brief. The
parameters of the search space m MOGARD are encoded
as strnng hike structures called chromosomes. A fitness valuge
is assigned to each chromosome that denotes the degree of
goodness of the encoded solution. The fitness F; of the i
chromosome is computed as: F; = f,; . where f; is the
relative distance parameter proposed in this article.

o Relative Distance Parameter (f7;): The significance of
relative distance parameter 1s o give higher poority to those
dominated solutions, that are closer o the non-dominating
solutions which are dominating them. As an example con-
sider the minimization of two functions in Figure 1{a).
The solutions “g°, *h” and *j° are dominated by the non-
dominating solution “c’. As per NSGA-11 and SPEAZ, ‘",
‘B and *57 would have the same fitness. However, it can
be observed that “4" is much closer o the non-dominating
solution ¢ and hence, intuitively, *&” should get higher pri-
ority over ‘g’ and ‘5. The parameter f!; takes care of this
fact. It is calculated as the normalized Evclidean distance
of a dominated solution 1o its nearest non-dominated solu-
tion (if any). MNote that the value of f:; will be 0 for the
non-domianted solutions, and smaller values of f), signi-
fies better solutions.

e Archive Truncation and Density Parameter (d;): MOG-
ARD has efitism sumilar to that in SPEAZ2 [9]. An archive



of fixed size is maintained, that gets updated at each itera-
tion by non-dominated solutions of the current archive and
population, followed by the best (in terms of Fs) remaining
solutions till the archive is full. In case of archive overflow
al any stage, the density paramater o; is used 1o truncate the
archive.

Algorithm 1: O ;= MOGARD(F. 4, .N.()
f* B pop. at iter. #, A;: archive at iter. f, N: size of
pop. and archive, C': max. no. of iter. Oy: final front %/

1. + = 0, randomly initialize Fy, Ay = &
2. Ay — non-dominated solutions from P U A,
3. Wi, i€ {FUA} caleulate f; and d;.
if (i g (Aea)) MFAL, is j' element of A, */

1/2

o frg=ming— a4, (i -4,
else
o fi,=0
f# for computation of d;, see ext and Figure 1ib). #/
4. Update Ay,

o il {| A1} = N, truncate A,y o size N using
d;

o if {|A 1|} < N.copy {N — |44} best dom-
inated solutions from Py U Ay w0 A4,

tn

I = O or other terminating condition is fulfilled,
Oy +— Appy and stop.

6. Genetic Operations:
o Density-based binary toumament selection on
Apyq o get the mating pool.
e Single-point crossover and bitwise mutation per-

formed on mating pool w get Py, compute ob-
jectives of Py,

t— 1+ 1; goto (2).

The parameter (d; ) (which is similar 1o crowded-distance
[4], with some modification) is computed as the distance
of each solution to is immediale next neighbour summed
over each of the M objectives. An example in Figure 1{b),
illustrates the computation of d; parameter. MOGARD
uses density-based binary towrnament selection, similar 1o
crovwded-towrnament selection [4], on the archive o create
the mating pool. From the mating pool the next generation
population 15 generated using single-point crossover and
Bit-wise mutation operaion.

3 Performance Measures

The two novel performance measures introduced in this
article are give below in detail.
¢ Relative Convergence Measure This measure is intro-
duced in this artcle in order to solve some problems inher-
ent in the convergence measures T [4] and puriry P, [1],
[6]. The convergence measures T [4] reflects the close-
ness of an obtained front from the tue PO front. 1t needs
the prior knowledge of the PO front (which is unavailable
in most real life problems) and also involves limited sam-
pling of the true PO front (that may also lead 1o misleading
results). Another measure purity ), [1] compares solutions
of several MOO algorithms only on the basis of domina-
tion (not the amount of domination). Consequently it may
often fail o identify an obviously poor front. For example
Figure 2 represents two non-dominated fronts obtained by
algorithms ¢ and c2, on a two objective minimization prob-
lem. In terms of purity, both the algorithms are equivalent.
However it is evident from Figure 2(a) that the front repre-
sented by o2 18 better, if the distance between 1ts dominated
solutions o the corresponding non-dominated solutions, in
the combined non-dominated front £y in Figure 2(b) is con-
sidered.

To resolve the aforementioned problems a new measure
called relative convergence has been formulated that com-
bines the non-dominated points oblained by all the algo-
::l 5 }~ where
N4 algorithms are combined. Let algonthm A; produced

the solution set S;. If the non-dominated solutions oblained
-t

rithms o form combined front C'p = {U

from C'y be C'7, then the relative convergence for " algo-
rithin, i.e., HY, is defined as:
= . Z min ||z; — ], (1)
o Wi ;E5; YereCy !
where n; = |5;|. This measure is free from the aforemen-

tioned problems. Figure 2(b) illustrates the method for the
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Figure 1. (a): f:, parameter (b): diversity pa-
rameter



computation of i, The smaller the value of this measure,
better s the pedormance.

s Hypergrid Measure ln MOEA literature the performance
measures Lo evaluate the spread and diversity of the solu-
tons on the non-dominated set hike spacing [3], minimal
spacing [ 1] and A [4] are basically distance based and very
often need the pror information regarding the nature of the
true Patero front. Momeover, where the surface itself 1s dis-
continuous, having large gaps in between, these measures
may be misled as in Figure 3. A hypergnd measure has
been formulated in this article, where objective space is first
partitioned into uniform sized hypergrids. The count of the
number of occupied grids, N, gives the information about
the spread of the solutions. Then the average number of
solutions occupying a grd ie., n,, = %.’ 15 calculated,
where N is the number of solutions in the non-dominated
set. Let the number of solutions occupying the " hyper-
grd be ng Vi, 4 € {1,2...N, L. The hypergrid measure
figy, 1s then defined as:

hg = 2)

The kg measure that estimates the standard deviation of the
n; values provides the information about the distribution of
the solutions on the non-dominated set. Figure 3 illustrates
the method for the computation of this measure. The lower
value of g whereas a higher value of N, parameter signi-
fies better performance. The advantage with this measure is
that it is free from the aforementioned problems.

One key issue involved in the computation of fig is the
number of intervals along each dimensions of the objective
space. This should be propedy choosen for the measure
to provide relevant information. An approach, adopted in
this article, is o divide each dimension by the size of the
archive.
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Figure 3. Hypergrid measure calculation

4 Simulation Study

MOGARD s compared with NSGA-IL PESA-II and
SPEAZ on 11 standard test problems including 8 two-
objective and 3 three-objective problems. The binary en-
coded implementation of the algorithms have been studied.
The parameters used in these experiments are: population
sizer 100, number of itevations: 350 (for NSGA-1L SPEA2
and MOGARD) and amhive size: 100 (for SPEA2, PESA-
1l and MOGARD). The parameters for PESA-1L are popufa-
tion size: 10, number of iterations: 3500 and hvpergrid size
32 = 32 as suggested m [2]. Crossover-probability: 0.9,
mutation probability: inversely proportional to the chiro-
mosome length, chimmosome-length: 10 bits per variable.
Twenty runs of the algonthms were executed on each test
problem, the mean and variance of the performance mea-
sures over these runs are reported.
¢ Test Problems: The set of west problems used in this arti-
cle includes SCHI1, SCH2, FON [3], ZDT1, ZDT2, ZDT3,
ZDT4, ZDTo [B], DTLZ1, DTLZ2 and DTLET [5].

Resulis: Considering Table 2 for By, MOGARD per-
formed the best for SCH1, SCH2, FON, ZDT1, Z2DT2,
2073, ZDT4, ZDT6 and DLET Z1. NSGA-LL has also
given best results for SCH1 and SCH 2, while PESA-1L
does so for DLTZ2 and DITZ7T. Considering Table 1
for N, it can be seen that MOGARD has the best values
corresponding to all the functions, except £ D713, DLTZ2
and DETZT. Even for these the values are very close 1o
the best ones (provided by NSGA-L for ZD7T°3 and PESA-
Il for DT LZ2 and DT LZT). Similarly for hg (Table 1),
MOGARD outperforms the other algorithms for all except
DETZ2 and DLT Z7 (where, as earlier, PESA-11 perfonms
the best). Again pedommance of MOGARD is second best.
The results demonstrate the superority of proposed algo-
rithm for a range of test functions. Similar performance
of MOGARD has been observed using other performance



Table 1. Mean (M) and Variance (Var) of 7). measure for the test problems

[ Algorithm | SCHI | SCH2 | FON | ZDII | ZDT2 | ZDT3 | ZDT4 | ZDT6 | DLTZI | DLIZ2 | DLTZ7 |
NSGA-IM) | 00NN | 000005 | 000123 | 00075 | 000053 | 0000067 1.03725 | 000000 | 338103 | 054103 | 000715
(VAR) 000000 | 000000 | 00000 | OO0 | 00000 | 00000 | 103200 | 00000 | 1297700 | WOBER4 | 0.00001
PESA-II(M) 000006 | 000021 | 001559 | 000004 | 000003 | 000113 | 788181 | 000021 | 6.14686 | 00014 | 0.00066
(VAR) 000000 | 000000 | O.NKNS | 0000 | 000000 | 00002 | 1566300 | 000K | 6730000 | Oy | 000000
SPEA2(M) 000225 | 0.000IE | 000203 | 000358 | 000508 | 000467 | 068202 | O0MMM | 6.53331 | Q00071 | 000666
(VAR) 000006 | 000000 | 000000 | 0D | 000000 | 000002 | 039100 | O | 5116900 | (00 | O.00001
MOGARDM) | 0000000 | 000005 | 0.00014 | 0000 | 000000 | 000005 | 0.04837 | 000000 | 000494 | 045200 | 000279
(VAR) 000000 | 000000 | O 00000 | 000 | 000000 | 00000 | 02087 | 000 | 0007975 | U16900 | 000000
Table 2. Mean (M) and Variance (Var) of N, and ;7 measure for the test problems
| Ny Measure |
[ Algorithm | SCHI | SCHZ | FON | ZDTI | ZDT2 | ZDT3 | ZDT4 | ZDT6 | DLIZI | DLTZ2 | DLTZ] |
NSGA-INM) | 76750 | 77.800 | 93900 | 89200 | 88.650 | 85200 | 85.700 | 87.550 | 90200 [ 91.750 | 93.950
(VAR) 14408 | 5221 4411 0444 9.397 12,800 [ 7379 3839 11011 7.250 4115
PESA-II(M) 50650 | B3.100 | 90350 | 70100 | 65750 | 47.650 | 60800 | 95700 | B3400 | 99.700 | 99.500
(VAR) 24345 7147 12,134 | 15884 | 21671 | 27818 | 86,274 | 2432 | 208147 | 0.432 0.787
SPEAZ(M) 79400 | 89050 | B4550 | B9.100 | 91350 | B2.100 | 7o 850 | 92.250 | B4800 | B2.250 | BR.000
(VAR) 19937 | 3.629 B.471 7463 14976 | 14726 | 59.818 | 546l 17.116 14.197 10.632
MOGARDIM) | 88.050 | 90950 | 95400 | 95650 | 95650 | B5.150 | 93.650 | 99900 | 98.200 | 97.600 | 95150
(VAR) 1.734 14148 2779 5713 3.503 | 21187 | 16766 | 0095 2168 3.621 1.713
hyg Measure
NSGA-INM) | 0482 | 0465 | 0242 | 0325 | 0329 | 0379 | 0392 | 0351 0316 0.286 0.242
(VAR) 0002 | 0001 | G002 | 0002 | 0002 | G002 | 0000 [ 0.001 0.003 0.002 0.002
PESA-II{M) O848 | 0409 [ 0316 | 065 | 0.671 1.418 | 0868 | 0204 0.360 0.024 0.033
(VAR) 0006 | 0001 [ 0006 | 0028 | 0086 | 0113 | 0001 | D013 0.007 0.003 0.004
SPEA2(M) 0520 | 0327 [ 039% | 0334 | 0293 | 0425 | 0568 | 0274 0.434 0.473 0.352
iVAR) 0010 | 0001 [ 0002 | 0002 | 0007 | 0.003 | 0044 | D002 0.008 0.005 0.003
MOGARDIM) | 0341 | 0299 | 0211 | 0.0% | 019 | 0379 | 0241 | 0010 0.119 0.133 0.121
(VAR) 0000 | 0000 [ 0002 | 0005 | 0003 | 0003 | 0004 | 0001 0.004 0.007 0.00:4

measures, but due to the lack of the space those results have
been omitted.

5 Constraint Handling

Constraint handling is a requirement in many real-life
problems. In [4] the authors have introduced the notion
of constrained domination, where an infeasible solution al-
ways gels eliminated when compared to a feasible one, ir-
respective of the goodness of the objective value. Therefore
a poor feasible solution will be preferred as compared to a
very good solution which is infeasible, although it may be
very close 1o the feasible region. It may also be the case
that the path 1o the best solutions lies through the infeasible
space, whence this approach may be at a disadvantage.

In the present aricle a penalty based approach w con-

straint handling is incorporated that overcomes this problem
to a large extent. This approach is motivated by the sugges-
tionsin [ 7] for single objective GAs. The Constrained MOO
problem can be defined as

e Minimize : f(z) = [fi(z),i =1,..., M],

o Subject to: g(z) =0, §=1,2,.....L

here M is the number of objectives, f;(z) is the i'" objec-
tive function and g; (x) is the j*" inequality constraint. If §
is the constraint violation corresponding to 7°" inequality
constraint then the penalty funcion p(x), is defined as

th

. (3)

p(x) =n.xmax{§;},¥[i =1,2,...,J],
i

where n.. is given by n. = |[{j : g;(x) < 0}|. Thus the fi-
ness of x comesponding 1o each objective now gets updated
s

fix) = [filx) +plx),i=1,..., (4)
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Figure 4. Final PO-fronts of (a): MOGARD and
(b): NSGA-II on tnk

Table 3. Results on Constraint test problems

| F; Measure

| Algorithm | constr | tnk s ctpl ctp
| NSGA-I 020 0.10 0.43 0.81 0.23
[

|

| MOGARD (1,90 (.80 &3 (.96 0,49

| 5., Measure
i MSGA-IT | 0092 | 0043 [ D011 | O | D022
| MOGARD | 0.067 | 0041 | 0009 | 0007 | 0.021

This approach gives more priority to the feasible solutions,
while degrading the infeasible solutions but not totally
disqualifying them. In most complex constrained search
spaces, with disconnected feasible regions, the infeasible
solutions may also play a vital role. MOGARD and NSGA-
I algorthms have been compared for their relative pedor-
mance on CONSTR, SEN, TNK [4], ctpl and ctp?2 (3]
constrained test problems.

The comparative results of MOGARD with NSGA-LL in
terms of two existing performance measures namely pu-
rity (F) and minimal spacing (5,,). are provided in Ta-
ble 3. A higher value of purity measure and a lower value
of 5, signifies better performance. Figure 4 represent-
ing the final non-dominated fronts obtained by MOGARD
and NSGA-I for fnk problem, cleady shows beter pedor-
mance of MOGARD, where NSGA-IL s found o fail 1o
capture the true non-dominated front fully. Out of the five
disconnected front segments NSGA-I obtained four seg-
ments, while MOGARD is successful in oblaining all the
five segments. Results with other performance measures
also demonsirated similar performance.

6 Discussion and Conclusions

An MOEA called MOGARD has been described that
has a novel relatve distance pammeter, diversity method
and a constraint handling concept integrated in MOO. Two
novel pedformance measures namely, relative convergence
and hypergrid measures have been proposed. The pedor-

mance of MOGARD, based on these concepts, is compared
with that of other MOEAs (NSGA-IL, PESA-I1 and SPEAZ2)
on several test problems with different characteristics. It is
found that, in general, MOGARD outperforms the other al-
gorithms in terms of the new measures (as also existings
whose results could not be included) for most of the test
problems. Constraint handling in MOCO problems has been
investigated using a penalty based concept. The compar-
ative performance evaluation of constrained-MOGARD is
done with NSGA-II using some constrained test problems.
Again, the performance of MOGARD is found o be signif-
icantly better than that of NSGA-IL
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