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Abstraci- Selecting a  threshold from the gradient
histogram, a histogram of gradient magnitudes, of an image
plays a crucial role in a gradient based edge detection
system. In this paper, we propose a methodology to
determine this threshold value when the edge detection
system is applied to synthetic aperture radar (SAR) images.
We consider a SAR image as a random process, perform a
transformation, model the gradient histogram of the
transformed image using theories of random process and
then determine a region of interest in the gradient histogram
using certain properties of a probability density function.
Standard histogram thresholding techniques are then used
within the region of interest to get the threshold value. The
proposed methodology provides a systematic solution to the
thresholding problem in gradient based edge detection
systems for SAR images and hence results in consistently
appreciable performance. Extensive experimental results are

shown to demonstrate the effectiveness of the proposed
methodology.

.  INTRODUCTION

Synthetic aperture radar (SAR) imaging system, which is
used to capture images for purposes such as environmental
monitoring, mapping and military, has
minimum constraints on the time of the day and the
atmospheric conditions. The images captured using a SAR
imaging system, which is a coherent imaging system, are
corrupted by a noise called speckle [1]. In order to reduce the
speckle an on-board (built within the capturing system)
process called multilook mtegration is carried out, where
incoherent averaging of frames obtained from different
segments of the signal frequency spectrum is performed.
When L different segments of the signal spectrum are
considered, an L-look image is said to be produced [2].

The distribution of the intensity values in a homogenous
region of an L-look SAR image can be fairly modeled by a
gamma probability  density function (PDF) [1]. The
lognormal PDF, which is easy to handle statistically, is a very
close approximation to the gamma PDF and hence a
lognormal PDF can also be considered for the modeling [2,
3]. Edges in an image by intuitive defmition are those
features which separate homogenous  regions.
Therefore, we may model the distributions of two
homogenous regions separated by an edge as two lognormal
PDFs with different parameters.

A SAR Images as Random Processes

Considering an image as a random process is intuitively
appealing as the gray values at various locations in images
obtained using  different capturing systems 5 not
deterministic. An image being a random process implies that
the gray wvalues at differemt locations m the image are
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generated by random variables those characterize the random
process. Mow, it is obvious that any arbitrary image is of non
stationary [4] nature due to the presence of edges. However,
we may realistically assume that each region in an image can
be represented by a stationary random process [4] preserving
the non stationary nature of the overall image. Hence, the
gray value at each pixel within a region of an image is
generated by a particular random variable, which has a short-
tailed probability density function (PDF). The random
variable may not have a long-tailed PDF, as such a PDF
would imply the presence of abrupt values within a region.
An abrupt value in an image should be associated with a
pixel of an edge between regions and not with a pixel within
a region.

From the earlier explanation about the distribution of
intensity values in a homogenous region of an L-look SAR
image, we see that the short-tailed PDF mentioned above
should be considered as a lognormal PDF and hence the
intensity values in various regions of an L-look SAR image
would have been generated by a stationary lognormal random
process. Therefore, it stands that we represent an L-look SAR
image as a wide sense stationary (W55) [4] mixed lognormal
random process. Mixed lognormal random variables, which
characterize a SAR (L-look) image { X ). has a PDF of the
form

AEy=Y F —SE ey )

r= T8,

where [ denctes the numher of regions, the weight W, is
the ratio of the area of the ™ rtegion to the whole area of the
image, m, and s are the mean and standard deviation of the
natural logarithm of the samples in the regions, respectively
and ¥, denote the gray values at i™ row and j° column of
the image X .

B Gradient Based Edge Detection Sysiem

Among the various edge detection methodologies proposed
in literature, the popular are the ones based on finding the
gradient magnitudes at each pixel m an image. Such a
gradient based edge detection system comprises of a
smoothing operation followed by the first-order derivative
operation to get the gradient magnitude and direction values
at each pixel. Various optimal gradient operators performing
the smoothing and first-order derivative operations together
have been proposed. The gradient values are then fed to a
post processimg operation, which usually is an edge thinning
operation. One example of such a post processing method is
the non-maximum suppression (NMS) proposed in [3], which
we consider in this paper.
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Fig. 1. Gradient based edge detection system

Most of the optimal gradient operators reported in

literature are based on the three performance criteria, namely,
good detection, good localization and only one response to a
single edge, given by Canny [3]. The optimizations of these
three criteria are contradictory and hence a trade-off is
requited. Such a trade-off implies that the smoothing
operation cannot remove the “false” edges due to the noise
and inherent texture completely. Hence, after all the
operations mentioned above, we need a decision making
system in order to distinguish the actual edges from the
“false” edges. This decision making system, in general, is a
thresholding operation with the threshold being determimed
from the histogram of gradiemt magnitudes (gradient
histogram). A block diagram of the gradient based edge
detection system is given in Fig. 1.
Considering the criticality of the thresholding process in the
overall edge detection system, it is surprising that except for
a few researchers [6-8], no one else has addressed this
problem of gradient histogram thresholding to the best
knowledge of the authors. In [6], the gradient histogram was
assumed to be a weighted sum of two gamma densities in
order to identify a threshold by parameter estimation.
However, no justification was given for such an assumption.
In [7], a cubic facet model for image and a Gaussian model
for noise were considered and wvarious parameters were
estimated in order to determine the threshold using the Bayes
decision procedure. Such a method is very complex and apart
from the emor in the decision, the edge detection
performance also depends on the modeling error. In [£], the
author considers that gradient histograms are unimodal in
nature and hence propose a unimodal thresholding algorithm
that finds a comer in the histogram.

In this paper, we propose a methodology to determine a
threshold from the gradient histogram m order to separate the
actual (desired) edges in a SAR image from the “false™ edges
usmg the “prior” knowledge about the distribution of the
intensity values in its homogenous regions. Natural logarithm
is first applied on the SAR image to get a ransformed image.
A region of interest (ROI) in the gradient histogram of the
transformed image is then obtained by computing certain
skewness and kurtosis values and comparing them to some
predefmed constants. These constants are determined by
approximately modeling a gradient histogram using various
theories of random processes. Once the ROI in the gradient
histogram has  been obtained, any general histogram
thresholding algorithm could be applied to the ROl m order

to determine the threshold value. We consider, for example,
the histogram thresholding algorithms given in [9] and [ 10].
The threshold thus obtained is taken as the upper threshold
for the hysteresis process [5], which is applied on the output
from the NMS operation to get the edges in the transformed
image. MNote that the application of natural logarithm on
images does not affect any desired property of the edges.
Hence, the edges found in the transformed image would
correspond to the edges in the SAR image. The effectiveness
of the proposed methodology is demonstrated using a few
SAR images. A wvery interesting aspect of the proposed
method of threshold determination is that it is applicable to
gradient histograms obtained after the application of any
linear gradient operator.

The organization of the paper is as follows. Section [1 and
Il describes the gradient histogram modeling and threshold
determination, respectively. Experimental results are given in
Section IV and the paper concludes with Section V outlining
the contributions made.

II. GRADIENT HISTOGRAM MODELING

In this section, we shall model the gradient histogram of an
image, say.X , which can be represented by a WSS mixed
Craussian random process. Note that it is always appropriate
to model any arbitrary (no “prior” knowledge) image using a
mixed Gaussian random process. Such a model mmplies that
the distribution of the intensity value in homogenous regions
of the image is Gaussian, which is suitable as a Gaussian
PDF iz a short-tailed PDF (See Section I). However, as
mentioned earlier, an L-look SAR image | X ) is represented
by a WSS mixed lognormal random process. Hence, we need
to apply a natural logarithmic transformation logarithmic
transformation on the pixels of X before the gradient based
edge detection system is used. Hence, we have

X, =In(¥%,) 6))

Mote that X, and ¥, are time samples of random processes
and hence they are random variables.

A, Linear Gradient Operators
Various gradient operators for edge detection proposed by
different authors [5, 11-13] after optimizing various criteria
are linear in nature or can be very closely approximated by a
linear operator. The application of any linear gradiemt
operator { /) on a digital image { X ) can be represented by
a window operation such as
h-'x = ; Z”Wx Xflra"-v 3)
Poq
where p=—k, - 0. +k and g=—k - 0, +&. Inthe
above, (2k+1)x(2k+1) gives the size of the window,
otherwise referred to as the width of the operator. The
symbol g indicates the direction of operation on an
image, that is, the horizontal (R) and vertcal (C) directions
in which the gradient is determined. It is obvious that the
vertical component }::I,K and the horzontal component }:,I,,.‘. of
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the gradient are orthogonal to each other. The magnitude of
the gradient at each pixel in the image is obtained by

= \F{};.'K }1 + {Yg,r. }_I 4

The image (7 of gradient magnitudes can be represented by a
WSS random process. This is due to the reason that both ¥,
and ¥, are WSS mixed Gaussian random processes as a
WSS mixed Gaussian random process to a linear system
produces another mixed Gaussian WSS random process [4].

Modeling the gradient histogram, say A((7), now boils
down to the determination of the PDF of G'.-' However, in
order to find the PDF of (. we require the joint PDF of
}.;.-H and }: . We know that },,H and },,,; are individually
mixed Gaussmn distributed and as they are obtained by
applying the same mixed Gaussian random process X to
different linear systems, they are mutually dependent. Let us
now consider a random variable A | such that

A=a¥, +bY (3)

where o and b are arbitrary real-valued constants. The
random variable A is mixed Gaussian distributed as both T,
and ¥, have been obtained by a linear operation on the
same set of various random variables which are individually
and jomtly mixed Gaussian distributed. The random variable
A being mixed Gaussian distributed implies that ¥,
¥, has a bivariate mixed Gaussian PDF [4]. Note that it can
be easily shown that a bivariate mixed Gaussian PDF is in
fact a mixed bivariate Gaussian PDF. Therefore, the joint
PDFof ¥, and ¥, is given as

and

ar 1 (Y, —u ¥
f(¥.B)= cx}wf =+
ntie) =2 v g DAY W
Y=t ) Y - Yo =ty
Vo this). o ap DB Nwlisly. g
£ : LT £ W
where #, represents all the regions comresponding to ¥, and

Yo th, and v, are the means and standard deviations
corresponding to ¥, . and g, and v,  are the means and
standard dewatmns cnrres}mm:lmg to },,‘. The @
certain constant weights. Now, as mentioned earlier, Y,.','{ and
}_;5. are orthogonal to each other. Therefore, the cnrr:zlatinn
bhetween }:.'u and }’_ﬁ. . =} . Hence, the
correlation co-efficient between ¥, and Y. is given by
HH

VO, — )M, —417)
where w and g, are the first order moments of ¥,
Y. respectively, M, and M, are the second order

moments and ¥, and v, are the standard deviations. We

Hy = ZDJ.-,.:UJ.-, M, = Z !'!.IqM]." s
i A
= Z Ly, Hy, s M, = E vy, M_:f:

are

is zero, that is Ry
(LS

(7

and

have

()

where # and r, respectively represent the

regions
corresponding to }:-.-u and },I,‘ X and L, are the
weights corresponding to the random variables ¥, and ¥,
respectively. The constants @ in (6) are formed from the
various products of , and b, . From (&), we see that the
first {mean) and second order moments of ¥, and ¥, are
the weighted sums of the first (mean) and second order
moments of the constituent Gaussian functions.

We shall now consider a few aspects of an image and the
maodeling of each region in an image using a Gaussian
process and then the whole image as a mixed Gaussian
process, in order to explore the nature of the joint PDF given
in (&)

First, let us consider a few realistic aspects of an image. In
general, the edges in an image cover much less area in the
scene than the homogeneous regions. Hence the weighting
constants t, corresponding to those values of 7
and r, when His 0 d ft, =0 would be much larger
than the others. It can also be realistically assumed that
among g and p, 5
would have negative values and some would have positive.
Hence, the values of 4, and 4, would be very near to zero.
On the other hand, as M, and M,
texture present in various regions, their values would not be
small compared to &, and u,. Hence, we may conclude
from the expression in (7) that the value of o would be very
small and might be considered negligible (zero). As ¥, and
}::I‘._. are mixed Gaussian distributed, a small value of p
suggests that the random variables ¥, and ¥ . are weakly
dependent on each other. Now, as the weighting constants
@, are products of various v, and v, . they would be
Iarge for those values of r, when iy, xﬂ' and g, =0
compared to others. Hence, we may consider that the values
of o are small in general Note that r, denotes all
combinations of 5

Secondly, we have considered that each region of an image
X, which is subjected to the gradient operator, is generated
by a Gaussian process and thus the whole image is generated
by a mixed Gaussian process. The values of the random
variables F, and ¥, are obtained by performing a
weighted summation operation (see (3)) on the same set of
pixels of the input image and hence they would have the
same value of variance [4]. that is, v, =v,. Now as each
and Y., that is the value at a particular pixel in
these two gradient images., is generated uniquely from a
single Gaussian function among all the Gauvssian function in
the expressions of the mixed Gaussian PDF, we deduce that

the expression in (6) would not have any term such that

and u "

and e,

for other values of » and r,, some

indicate the “amount™ of

and r, .

value of }:s

¥y, *V,, - Hence we shall alwayshave v, =v, =v, .
Let us now consider the followi mng Exprewnn
a 1 (Y= HV (Ye=pn ¥
.[._.._____._ + _ff‘._l.i-..._ N9y
oV 2 ¥

2 L= 2y
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Mote that the above equation has been obtained by
substituting A, = 0 in (6). Now, as we have found that the
correlation co-efficient between Fgp and ¥, is very small
and the values of o (see (6)) are small in general, we may
approximately consider that Yo and ¥ . are mutually
independent. Therefore we may realistically assume that

f[}).fu:}’,u; }' --_,f {}‘:l,lu‘}’:l.t'}'

Now considering f;{\}:'.-n'};.-a'} . we shall fimd the PDF
of G, . According to [4], the PDF of G, is given by

fiG)=[" ﬂl.—lf{\

Substituting the expression of f in (9), we arrive at

}rf{,..r Y )y, (10)

'\l-"l -"' - 3 3
]' ir ...|| P B
= MRAT) Y H‘g”""- p (1)

"

(‘Teap-[—
NG} = Z&’ ( =

where I, is the zeroth order modified Bessel function of
the first kind. The random wvariable Gs.' represents the
magnitude of the gradient present at the (7, /) position of
the image under consideration. As we can see from (11) the
PDF of G, is approximately a weighted sum of Rician PDFs
[14]. Now. consider the case when g, =0 and g, =0,
that is, the homogeneous areas | Ay ) in the image. Then we
have

G, mp{— -----

Zrﬂx

e Ay .-_;;

Hence, the PDF of (, representing the magnitude of
gradient at locations in the homogeneous areas of the image
is a weighted sum of Rayleigh PDFs. Note that the Rayleigh
PDF is a special case of the Rician PDF. The value of v,

indicates the variation of the random texture in a region. In
an image, this wvariation is considerably less than the
difference in the means of any two regions separated by an
edge. Therefore, in the areas of the image containing edges

(A, ), we shall have [z, +pi v, . We find that in

(12)

Fig. 2. "'%cpmtlun of awclL,htcd sum ut H.nylcu,h and a weighted sum
of Gaussian PDFs using instantaneous skewness and kurtosis values
of their mixture and the determination of the ROL

such cases, the PDF of (5, is given by a weighted sum of
Craussian PDFs as shown below.

i b }l} (13)

2

Hence, we see that every Rician PDF in (11) reduces either
to a Rayleigh PDF or to a Gaussian PDF in our analysis.
Mow, the whole image is given by the accumulation of A
and A4,. Hence, we have an approximate model for a
gradient histogram of an image as

WG) = f(G) = f(G)),, + f(G),, .
II. REGION OF INTEREST AND THRESHOLD DETERM INATION

Z @, Xutp{—

ppedy

f1G,),

From the analysis in the previous section, we deduce that in
order to obtain the edges n an image and remove the “false”
edges due to inherent texture and noise, we need a threshold
value to distinguish and separate f((,), and fi(G,),
given the A((7) of a particular imapge. In other words, we
need to distinguish between the components (bins indicating
the number of occurrences ) of the gradient histogram { A{G))
given by the expression of the weighted sum of Rayleigh
PDFs and the weighted sum of Gaussian PDFs.

In order to distinguish the components of A7), we shall
consider skewness and kurtosis values as for a Rayleigh and
a Gaussian PDF, skewness and kurtosis are constants which
do not vary with the parameters of the density function. The
expressions of skewness { 8§ ) and kurtosis { K ) [4] are

2]
§=—3 (14)
e,
2]
K=— (15)
e
where @]T stands for " -order central moment

corresponding to the PDF of the random wariable under
consideration. For a Rayleigh PDF, we have, § =063 and
K =325 and fora Gaussian PDF § =0 and K =3.

In order to carry out the desired separation, we calculate
the instantaneous skewness ( 5(G,) ) or kurtosis ( K(G,) )
of A(G) progressing along the increasing values of
gradient magnitude & (see Fig. 2). That is, S(G)) and
K(G) for A7) respectively give the skewness and
kurtosis values for the data represented by all those bins of
A7) where the gradient magnitude value is less than & .
We shall then set that &, value as threshold where the
skewness or kurtosis  first  respectively  equals  the
skewness or kurtosis values of a weighted sum of
Rayleigh PDFs. However, determination of skewness or
kurtosis values of a weighted sum of Rayleigh PDFs is a
non-trivial sk, Let us consider the following
prmsmn

Va)=|, —mp{——}a‘t‘? 27 {——m"{—n (16)

The above expression gives the sum of an infinite number
of Rayleigh PDFs. We calculate the skewness {S) and
kurtosis ( K ) of (@) given by (16) and obtain § =125
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and K =4.7 . Hence, the skewness and kurtosis values of a
sum of a large number of Rayleigh PDFs do not vary with the
underlying parameters. We empirically determine that when
the number of Rayleigh PDFs in the weighted sum is not
larpe S <125 and K <4.7 Hence, we may consider
S=125 and K =4.7 respectively as the maximum values
of the skewness and kurtosis that a weighted sum of Rayleigh
PDFs can have. Note that although we now know the range
of values that the skewness and kurtosis measures of a sum
of Rayleigh PDFs may take, we remain devoid of knowing
the actual values a particular sum of Rayleigh PDFs would
take.

Consider the expression in (12). We see that if we come
across an image for which all v, are equal or there is only
one homogeneous region in the image, then the weighted
sum of the Rayleigh PDFs will reduce to a single Rayleigh
PDF. Hence, we shall consider that value of ”. as the
threshold where we get S(G,)= .63 or K(G,)=125.On
the other hand, in some other image we might have a large
number of ohjects with texture such that all v are different.
In such a case, the weighted sum of Ra}-'h:.i.gh PDFs will
contain a large number of Rayleigh PDFs and hence we shall
consider that wvalue of G threshold,
SG =325 or K(G,)=47.

Therefore, given a gradient histogram A{(7), we may
define a Region of Interest (ROI) within which the threshold
value would lie. This ROl contans all the components of
f((7)  stating from the G when S(G)=063 or
K(G )=1.25 until the value of & when S(G )=125 or
K(G,)=47 . Note that use of skewness or kurtosis may
produce different ROIs as the amount of decision error may
not be the same for both the cases. In this paper, we shall use
both the skewness and kurtosis based approaches and define
the ROI from the smallest &, to the largest (7, among the
four values obtained (see Fig. 2).

as the where

A Threshald determination and post-processing

From the analysis presented till now, we have approximately
obtained a ROl in the gradient histogram () where the
required threshold would lie. In order to find a single
threshold value T to eliminate the “false™ edges, we now
need to consider only the components in the ROI and not the
overall gradient histogram A( ().

After the ROI in the gradient histogram is obtained, we
any conventional  histogram  thresholding
algorithm may be used on the components in the ROl in
order to determine the threshold T In our experiment (see
Section IV), we consider the two histogram thresholding
algorithms, namely, Otsu’s method [9] and beam theory
based method [10], as examples, to be used on the
components i the ROL As mentioned earlier, once the
threshold T has been obtained from the gradient histogram
A7), we carry out a few post-processing tasks in order to
get the edges in the image under consideration. The post-

suggest  that

"

processing tasks used are the non-maximum suppression
(MMS)  and the MNMMS
operation, which is applied on the image of gradiemt
magnitudes (. it is considered that an edge at a pixel is
legitimate only when the gradient magnitude at that pixel

the hysteresis thresholding. In

assumes a maximum along the gradient direction in a local
neighborhood [5]. The hysteresis thresholding process, which
is applied on the image obtained at the output of the NMS
operation, employs two different thresholds, namely, the
upper and the lower threshold [3]. We consider the threshold
found by the proposed methodology as the upper threshold

proposed ROI+ [9]

(<) by proposed ROL = [ 10]

idi by [7]

() by [8]

fe) by [6]
‘.-__% :
B e
N N

Sraciant v;-.n.a;?-u".'(nnrmn‘li';fnd o fH'x”runnn |E'A."155|> S
{g) Gradient histogam of transformed image

Fig. 3. Edges in a SAR image obtained using Canny’s gradient operator, the

vanous gradient histogram thresholding techniques and the mentioned post-

processing opertions

and the lower threshold as the upper threshold multiplied by
0.4. Hysteresis thresholding is used as it is highly successful
in dealing with the detrimental edge streaking problem.

IV, EXPERIMENTAL RESULTS

In this Section, we provide experimental results using two
SAR images in order to demonstrate the superiority of the
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proposed the others. The existing
techniques to perform  gradient
considered for comparison are the ones proposed in [6], [7]
and [B]. Note that, to the best knowledge of the authors, there
exists no other thresholding technique intended for gradient
histograms. CQualitative  evaluation of performance  is
considered in this paper. Quantitative evaluation is avoided
as there is no globally accepted objective measure present for
evaluating the thresholding process for edge detection.

A SAR image of the famous pentagon building in U, 5. A
is shown i Fig. 3. The gradient histogram shown i Fig.
3(g). which is considered for threshold determination, is that
of the tansformed image. We see that the technique
proposed by [6] fails to remove the “false™ edges due to
texture and noise. Although the other existing techniques
give satisfactory results, the proposed ones outperform all the
others in reducing “false™ edges and also in extracting the
appropriate edges.

Fig. 4 demonstrates the usage of the proposed thresholding
technique with different linear gradient operators, namely,
Camny’s step edge detecting operator [3], Petrou’s ramp edge
detecting operator [13] and Sobel’s operator [15] on a SAR
image of an agricultural region. Note that Sobel’s operator is
not an optimal operator unlike the other two. It is evident
from the figure that although the usage of an appropriate
linear gradient operator is crucial for edge detection, the
proposed thresholding technigque gives acceptable results
with any linear gradient operator.

It s extremely difficult to claim or prove that a
thresholding technigue would always give better results than
any other. However, the consistency of a thresholding
technigue in providing acceptable

methodology  over
histogram thresholding

results is  extremely
important. We have considered many images of widely
different types and applied gradient based edpe detection
systems using owr methodology of threshold determination.
The edge detection results obtained m all have been found
highly satisfactory. We are unable to report more results in
this paper due to lack of space.

{c) Gradient by Petrou’s

{d) Gradient by Sobel’s

Fig. 4. Edges obtained using different linear gradient operators, the
proposed thresholding technique of determining an BOL and then using
[9], and the mentioned post-processing operations

V. CONCLUSION

A methodology of thresholding for edge detection in a SAR
image has been proposed in this paper. The proposed
methodology has been systematically obtamed based on
certain realistic assumptions and “prior” knowledge about a
SAR image. Theories of random process have been
considered here to perform a transformation on the SAR
image and deduce a general model for a gradient histogram
of the transformed image. Certain properties of a probahility
density function have been used to determine a region of
interest (ROI) in the gradient histogram, from which the
threshold value has been obtained uvsing standard histogram
thresholding technigues. Experiments have been carried out
using a few SAR images and different gradient operators. It
has been observed that the use of the concept of ROl on edge
detection systems helps in consistently obtaining appreciable
performance. Moreover, the proposed methodology is seen to
scorte over the few existing technigues of the same paradigm
in extracting both the appropriate edges from SAR images
and removing the unwanted due to inherent texture and noise.
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