CONVERGENCE OF TAIL SUM FOR RECORDS
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ABSTRACT. Suppose {RE,L]{F:I nz l} s the sequence of lower

records from a distribution F where F i contimons with inf{x €
supp{ F)} = 0. We derive conditions under which logarithm of the

tail sum of records, Z_:L:,. REf]{Fj, properly centred and scaled,
comverpe weakly, We also prove two results on H-varying and reg-
ularly varying functions, which are of independent interest.

1. INTRODUCTION

Let F' be a distribution on [0, oo) with only possible discontinuity at 0.
Further, we assume that inf{x € supp(F)} = 0. Let {X;, Xs,...} be
i.i.d. observations from F. Let us define L; = 1 and set. for n = 2,

L=l sbe oS X .. b

Then {RY(F) = Xi, :n > 1} is called the sequence of lower records

ST : L
from the distribution F. We will drop F' from RY(F) whenever there
is no chance of confusion. Similarly, we may define upper records from
a distribution F. The n-th upper record from the distribution £ will

be denoted by Ry (F). We also define the infinite sums

Sp = Z RLL} and T.(F):= Z Ri,L}._
k=n

n=1

whenever they are finite.

Under the assumption on F, it is clear that R\ (F) converges almost
surely to 0. It was proved by Bose et al. (2003), (see also Iksanov
(2004)) that 37 R < oo ae. if and only if
1 1
F(dx
f s {Iu}{m. (1)
o Flz)
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In such a case, the Laplace transform of the sum Sg is given by

for t = 0. It is clear that the random variable S is infinitely divisible
with its Lévy measure Ly given by the relation

F(dx)

Fi{z)’

Further, it is the case that, all infinitely divisible distributions sup-
ported on [0, oo) with Lévy measure L, such that hy(x) = L([x, 0)) is
a continuous function of x on (0, 0o), must arise in this way. For more

detailed discussions on infinitely divisible distributions supported on
[0, 5¢), we refer the reader to Sato (1999) or Bondesson (1992).

Lp(dzx) =

The above result is useful in simulation of infinitely differentiable laws
(see Bose et al., 2002, for a discussion on this topic.) Indeed, given the
Lévy measure, we can easily construct the corresponding distribution
function F' by the formula F(x) = exp(—L([x,00))) for x = 0. If the
Lévy measure has finite total mass, i.e., L([0,00)) < oo, then F has
a jump at () and after a finite random time, say N, RE{“} becomes (),
and then records after that remains at (). Therelore, we have that
B E;:'_l 4 and it can be exactly evaluated.

n=1
In case, L([0,00)) = oo, we have that F(0) = (. As a consequence,
R =0 foralln = 1. In such a case, we can simulate the random
variables {R:‘?L} : 1 <n < N} where N is a large constant (fixed or
random), using the fact that {RS" : n > 1} is a Markov chain with
initial distribution F' and transition kernel P(x, dy) given by P(x, dy) =
Hy < x} F(dy)/F(r) and approximate the infinite sum Sg by the finite
S Z:’_I RD, Hence, in this case, it is important to estimate how
much error is made in this approximation. In other words, we would
like to investigate the behaviour of 377 | R as N — .

A crucial observation in the study of record values is the following: Let
G be a given distribution function and {Y; : i > 1} be a sequence of
Lid. random variables with exponential distribution having mean 1.
For a nondecreasing function ¢, define the (left continious) inverse of

1 0=
¢ (y) = inf{s : ¢(s) = y}.
Also defline

Yelr) =G (1—-e7), (2)
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and

Ho(z)=1- mcp[— [—log(1 — G{;;:})]”"]. (3)

Then, the joint distribution of {¢/q(Y;). YY1+ Ya).. ... ¢e(30, Yi)}

is the same as that of the first n upper records from the distribution G,
namely, { R&U}{G}., R_EL'I}{G}._ - RLU}{G}}., (see, for example, Resnick,
1973). Using this representation, Resnick (1973) has shown that if the
limiting distribution function G, of the properly centered and scaled
sequence of records {RLU}{G} — an(G)) /ba(G) (where a,(G) and b, (G)
are suitable sequences of constants) exists, then it must be one of the
three distributions, given in Cases (i)-(iii) below.

In the following N{x) denotes the standard normal distribution func-
tion. For a distribution function J, we say that .J belongs to max-
domain of attraction of K and denote J € D{K) if for some normaliz-
ing constants a,, and b,

J (bt + an) = K(z)

at all continuity points x of K. Resnick (1973) showed that only one
of the following is possible:

e Case (i) The limiting distribution is G(x) = N(x). This happens if
and only if He € D(A) where A(x) = exp(—e™*). In this case, it turns
out that

alNG) = ¢g(n) and BING) = ¢e(n + /1) — ta(n). (4)
e Case (ii) The limiting distribution is

0 if < 0,
N(xlogz) ifx=0

—
on
L

G(z) = Nyofz) = {

where o = 0. This happens if and only if Hg(x) € D(®,2) where
0 it
b, lx) = :
() {ﬂxp{—:::_“’?} it =10
In this case, we have
a®(@) = 0 and B G) = Yg(n). (6)
e Case (iii) The limiting distribution is

N(-alog(—z)) ifz<0,

G{H’f} = a'l\"r‘i__n{:ﬂ} = {1 if @ =1
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where o = 0. This happens if and only if H; € D(¥,2) where

U, (x) exp(—(—z)*?) ifz <0
m(x) =
o/ 1 if £ > 0.
In this case,

a®(G) = o and BN G) = ¢ — te(n)
where xp is the (necessarily finite) supremum of support of G, ie.,
G(xg) =1 and G(xg —€) < 1 for any € > 0. We shall drop G from the
above notations whenever there is no chance of confusion.
From now on we will assume that F(()) = 0. Then, F is continuous
everywhere. Further, we assume that [ 'aF(dx)/ F(z) < 0o. Hence,
the tail part of the sum T, (F) converges to (. In this article, we
study conditions under which (log T, (F') = ) / 3. converges to a proper
random variable in distribution for suitable choices of constants o, and
3.
We define Wy, = — log X, for k = 1. Then, {W} : k > 1} is a sequence
of iid. random variables. Let G be the distribution function of W;.
Then. G is given by

G(z):=1- F(e™). (8)

The support of G has upper endpoint oo, Since r — —logz is a
monotone decreasing function, the k-th upper record generated from
the sequence {W : k > 1} is given by

L L 4
RI(G) = —log R{"(F). (9)
Corresponding to this distribution function G, there will be the associ-

ated distribution Hy; (see (3)). We will drop the subscript G from H,.
Let us set

Hx) := l—f:xp[— {— log(1-G(x)) 1;~_:] o S— [_ [_ log F(ﬂxp{—:ﬂ}]] 1;'2]‘
(10)

The following function which is important for the characterization of
domain of attraction will also be useful for our purpose. Let us define

1 - )
HLE) e (m) (2) = —log F~ (exp(—log" x)). (11)

The relation between U{(-) and vig(-), defined in (2) is given by
e(z) = U(e¥?). (12)

As F(e™®) > 0 for all x € B, we have G(z) = 1 — Fe™®) < 1.
Therefore, using Resnick’s result, only two cases, viz., case (i) that is,
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H € D(A) and case (ii) that is, H € D(®,,s) for some o > 0, are
possible here,

The next section contains the two main theorems along with two results
(Propositions 2 and 3) on [l-varving and regularly varving functions.
Proofs of the main theorems are given in Section 3 and the proofs of
the propositions are given in Section 4.

2. Manw REsSULTS

We study each of the above mentioned cases separately.
Case (i) H € D(A): It is well known (see Resnick, 1987, page 28,
Proposition (.10) that, equivalently [/(-) is Il-varying, that is, there
exists an auxiliary function a(-) such that

Ultz) — U(x)

a(r)

A choice of the function a(-) is given by a({x) = U(ex) — U(x). In this
case, we have the following result:

— logt as ¥ — o

Theorem 1. Assume that F' is continuous. If U(-) is H-varying with
auriliary function a(-) satisfying (loglogt)/a(t) — 0 as t — oo, then
log To(F) +al’
bl
where & follows a standard normal distribution, ie. P& < x) =
Nx). Moreover, we may choose al! and by as in (4).

=&

The relation between the conditions imposed on U{-) and its auxiliary
function a(-) in the above theorem and the finiteness of Sp is given
below.

Proposition 1. If U{x) = — log F(exp(— log” x)) is Il varying with
an auriliory function al-) satisfying (loglogx)/a(x) — 0, then F(0) =
() and f‘: 2F(dx)/F(x) < oo.

Proof. First note that for any v > (L F(F"™ (1)) = u since F' is con-
timious. Thus, from the definition of U{-), we have that, for all x =

0, F ((‘:_U[I}) = exp(— log” x). Observe that since U(-) is Il-varying,
Ulx)/a(x) — oo (see Resnick, 1987, Page 35, Exercise (.4.3.1) and
a(zx)/loglogxr — oo as ¥ — oc. Thus, we have that, U(z) — oo as
x — oo. Therefore, letting * — oo in the formula for F' above and
using the right continuity of F at 0, it follows that F(0) = 0.
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Now define 8; = 1 and for n > 1, define 8, = F—(F(#,_,)/e). Then,

we have
F(8.) = F{F~ (F(0s-1)/e)) = F(8i—1)/e=---= F(1)/e". (13)
Since F'(u) = 0 for all u = 0, we gf-t that &, | (. This iIll}}li(“-i that

(58 - LL5@eE [ 50

r|.1-| r||-1.

= 3 6, [log F(8,) ~ 108 F(Bns)] = Zeﬂ..

n=0 n=0)
since, from (13), we have log F(#,) — log F(#.41) = 1.
Now, from the definitionof U{-) and (13), we have 8, = F—(F(#,_,)/ ¢) =

F—=(F(1)/e") = (:xp(—U(fmp{ﬁﬂ. — log F{l}}])

Let & > 0. Since U{x)/a(x) — oo and a(x)/loglogxr — oo, as x — oo,

we get
Uep(y/T—Tog ) _ 2U(exply/n—TogF(T) .
log log (exp(y/n — log F(1))) log(n — log F'(1)) -
for all n sufliciently large. Thus, we have that
U(exp(y/n —log F(1))) = 2log(n — log F(1))

for all n sufficiently large. Therefore, we have, for all n sufficiently
large,

6, < (:xp(—? log(n — log F{l}]) = (n—log F(1))
Hence, 377 .8, < cc. O
Remark 1. In Theorem 1, we can replace by (G) by a (exp(yv/n))/2. To

see this, let £, = exp(y/n + /n)/ exp(y/n) = exp(y/n+ n —
exp(1/2) as n — oo. Therefore,
b (G) v (exp(y/n+ /n)) — U(exp(y/n))
alexp(y/n)) a(exp(y/n))
B U(tn exp(y/n)) — U(exp(y/n)) —1)2
- alexp(y/n))
as [U(tx) — U(x)]/a(zx) — logt as 2 — oo uniformly on compact sets
of (0,00).

Further observe that, a(-) being an auxiliary function of a [l-varyving
function, is slowly varving (see Proposition 0.12 of Resnick, 1987).
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P‘Llf:ﬁ.. exp (yn —vn — 1) — 1. Hence, a(eV™) ~ a(e¥™ 1) and hﬂ_}l{f}‘ )~
b (G).

Example 1. The powers of uniform distribution satisty the conditions
of the theorem. Let £ be a distribution function defined by

{ ifer=<10
Flz)=<2 ifQ0<z<l
1 ife>1.

Then, we have, for 0 < = < 1, F—(x) = 2Y/*. Therefore, we have
U{x) = log*x/a. In this case, a(z) = 2loga/a. Clearly, we have
loglogx/a(x) — 0 as © — oc.

It may be mentioned that if £ is the uniform distribution then the n-th
lower record has the representation RE = [, U; where U; are iid uni-
form random variables. Hence the partial sum of £, is a sum of product
of iid random variables. More general quantities have been considered
in the literature, for example by taking other random variables instead
of uniform U; and replacing the product operation by other suitable op-
erations. For the interested reader, some relevant references are Rachev

and Samorodnitsky (1995). Goldie and Maller (2000).

Case (ii) H € D(®42): Again it is well known that an equivalent

condition in this case is that U(-) is regularly varving with index 2/

(follows from Propositions 1.11 and 0.8 of Resnick, 1987). We denote

this by U{-) € BVya. We then have the following result:

Theorem 2. If U(-) is reqularly varying with index 2/ = 0, then
log T,.(F)

(el

where & has distribution Nao given by (7). same as that of the nega-

= &2

tive of the a-th root of lognormal distribution and f)};-!}{(;} = Yg(n) =
U(ev™) is as in (6).

Remark 2. As in Proposition 1, the condition that U(-) is regularly
varving with an index 2 /o = (), iinplies that the basic conditions on F
for finiteness of Sp are antomatically satisfied. To see this, note that
F(e V™)) =exp(- log® x). Since U(-) € RVyy,, we have U(x) — oo as
2 — 0o. Hence, we conclude that F(0) = 0.

Further, using the same notations and following the same computations
as in Proposition 1, we can prove that .ul aF{de)/Fiz) £ 3248
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Since U(-) € RV, ., we have for all n sufficiently large,

Ulexp(y/n —log F(1))) = exp(y/n —log F(1) /a) = n.

Therefore, we have here also, > >, < oc.

Remark 3. Asin Remark 1, since U/(-) is regularly varving and exp(y/n — vn — 1) —
1, we have fjf_}l{(?} ~ bE(G).

We end this section with an example of Theorem 2.

Example 2. As an example of an F which satisfies the conditions of
Theorem 2, take U{x) = 2%®. Easy computations show that we can
define F' as follows:

0 ifu<D
Fu) = t:xp(—%rwﬂ) f0<z<e!
1 if x >el.

The proofs of the main theorems will require the following two results
on l-varying and regularly varying functions. These are of independent
interest.

Proposition 2. Let U(-) be an eventually non-decreasing l-varying
function with a(-) as the awriliary function such that (loglogx)/a(x) —
0 as x — oo, Then, for any k =),

1 : () |og”™
log |}_,:r; (=} f ﬂrﬂu] — 0
a(x) -~ o u

e~V og" 4

and henee

du ~ azx).

Ulex) + log f

The analogue of the above proposition for regularly varving functions
is given below.

Proposition 3. Let U(-) € RV; for 3 = 0. Then, for any x > 0.

1 . el ’—FJII:_'H}]. Ko,
log [ef”ﬁr}f S % "l —o

Ulx) 1
and henee

oo .—H[u}l o
& )
—~log f %rf.u ~ U(z).

The proofs of the above propositions are given in Section 4.
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3. ProoF oF THE MaIN THEOREMS

In order to prove the theorems, we note that, for any two sequences
{ovn} and {3}, we have, using (9),

log T(F) +a,, _ log RS(F) + o, | log T (F) —log RN F)

r{iﬂ - Ai'n ﬁn
RY(@) - a, 1ag[3!;1{F}fR5vL}{F}]
- = + B, '

Using conditions of Theorem 1, if o, = a'(G) and 3, = b/(G). then
the first term converges to £;. Similarly, from the condition of Theorem
2, with v, =0 and 3, = hi”., the first term converges to ..

Hence, in order to prove Theorems 1 and 2, it is enough to show that
the second term in the above expression converges to () in probability
in either case. The rest of this section is devoted towards proving this.

Denote ¥; = Ej:l Y, and Z; := V. Also we can write R&“{F} =
(:xp(— (—log R&L}{F}]) = (:xp(—HEH}{G}]. Using the representation of
the upper records, for ¢ = 1, we have
i) . i 3
R(G) = ¢a(X;.Ys) = U(Z).

This implies that

TAF) S RMEY 2
n _ o~ V(Z)+U(Zn) _ oU(Zn) o—UlZ)
Ri(F) Z R(F) Z Z

Now we define a random function V', which is a linear interpolation of
the ¥'s. Let

[
Vi) = 3% + (u = [u) Yigr = Spg + ( — [1) (S — Spa). (14)

i=1

Since almost surely each Y, = 0, V' is almost surely strictly increasing,.
Further, since F' is continuous, from the definition of U(-), see (11), it
follows that UU(-) is also strictly increasing. Hence,

i
e_mz*}*ﬂf ﬂxp( U (t‘ )fr'*.
T
Thus.

r =) {P"} s fﬂc
< @lién) exp| —Ufe VVE) dz
EL}{F} s o ( ( )
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. o0 — (:U[ZH}
ftbuz“_'l}f PXIJ(—U(C vV E_}]){FI.: X Tz
el e T2y - 1}
Now, taking logarithm and dividing by /,. we conclude that it is enough
to show that
Nal(Zn) 22 . T {av/ Viz) i
log [{: el [ ucp( Ul(ev ])n'.u]

; LT (15)

andd
U(Za) = U(Zan) o,
O

since 3,/3,_1 — 1 by Remarks 1 and 3.

0, (16)

We will first estimate the above integral. The following lemma shows
that the above integral could be bounded by deterministic integrals.

Lemma 1. Given anyd = (), on a set of probability 1. f:c (:xp(—U ((: W H:}])n’.:

is bounded from both above and below, eventually (in n ). by expressions
of the form 2 [ e L eV log™ udu, where k is 3+0 and 1 -6 for the
upper and the lower bound respectively.

Proof. On the interval (i,4 + 1), the function V' is linear and strictly
increasing. So on each of the pieces (¥;, X,41), the inverse function is
well defined and is actually linear. Suppose g is the inverse function of
V. The exact expression of g is also easy to obtain:

i — E.!' . " E.!'

glu) =i+ =————=1i-+
) i1 — L Yita

Thus, substituting, u = eV"®) or 2 = g(log” u), we obtain that

i+1 . ey Titl L) 1 2 log 4
f t:xIJ(—U(f:" Hz}))rf.: = Ef 7 g(log” u)log lmrr’:ut
i D\"'(E_*'

u

if E.!' o T Ei-l-l‘

eV i+l —Uu} ),
=2f i (17)

VE uYi,
since ¢'(u) =1/Y; , for &, < u < X, ;.
Now let us fix & > 0 such that 2(1 + &)/(1 — &) < 2+ § and
28, /(1—48,) < 8. Consider the event E{Y = {Y, ., < n= "8} U{Y,,, >
n®}. Then, P (J':;El}) < 1 —exp(—n17%) + exp(—n®t) < n~17% 4

exp(—n®), which is summable. Hence P (limﬂup E}?l}) = (. Let

T— 00
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Ef} = {¥, < n'?}. Since £,/n — 1 with probabhility 1, we have,
P (linl sUup, E;EE}) = (.

Define E through E° = limsup,,_, B |Jlimsup, E. Then clearly
P(E) = 1. From now on, we will concentrate only on the set £. For any
sample point w € £, there exists N = N(w), ~uch that for alln = N,
we have £, > n'"% and n= % <Y, < n®. Now, let n > N be given.
Thenfori>n > Nandu € (Z;,Z;,,), we have logu > /E; > il(1-9)/2
and hence, by choice of 4;, we have

1 . 21+61)/(1-5 ,
— < 161 < (lﬂg 'u,] (T80} /(1—41) < 10g1+& "
Yip
and
1 ) —251 /(1-8 s
0 Pl (logu) L=9) > log ™ u.
Yin ' )
The bounds are then obtained by putting these estimates in (17) and
SUmining over i = . O

The following Lemma about regularly varving functions will be useful
in the proof of the Theorems.

Lemma 2. Let [ € RV for 3 € R. Then, jj z;,_}] converges weakly to
av'n

a random variable with distribution Nigays,. given by (5).

Note that, when F = 0, i.e., the function is slowly varyving, the limiting
random variable with distribution N, . is interpreted to be degenerate
at 1 and hence f(Z,)/f ((:‘E] converges to 1 in probability.

Proof. Observe that the functions h,(x) = f(eV™2)/f(eV™), for n € N
converge to the function ii(z) = 27 uniformly on compact sets of (0, o).
The result then follows easily from Theorem 5.5 of Billingsley (1968)
and the fact that

¥, —n
VR E, = f:xp(“”

1 |
. W34
N Jznfﬂ) ¢

where ¢ is a standard normal random variable. O

Now we are ready to prove the theorems and we begin with the first
one.
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Proof of Theorem 1. The expression on the left side of (15) can be
written as

log [L:UIZH}Lﬂcﬂxl}(—fj(emnd:] g a(Z,) . ﬂl(e\"l(ﬁ)
a(Zy) n.((:v'(;) FJ‘E:]}{G}‘

We have already shown that I!JL”{G} Jalexp(y/n)) — 1/2as n — oo (see
Remark 1). The second factor converges in probability to 1 by Lemumna

2, since a(-), being the auxiliary function of a Il-varyving function, is
slowly varyving (see Proposition (.12 of Resnick, 1987). We shall now
show that the first factor converges to () with probability 1. Consider
any w such that Z,, — oo and the bounds for [~ f:xp(—ff (expl+/ V{:}}])n’.:
in Lemma 1 holds eventually in n. Since Z,, — oo, by Proposition 2,
each bound for the first factor converges to (). So the first factor con-
verges to () on the set of all such w, which has probability 1, by Lemma 1
and the fact Z,, — oo almost everywhere. This shows (15).

Now we concentrate on the left side of (16). Replacing f)}:l}{(;} by
r.r.(t:ﬁ].. we have,
Ul =UiZ,a) ULE)=U(Z, 1) o a(Z,_y) ; afev™1)
n.((:ﬁ) a(Zn1) n.(c:**‘”—‘) {r.(eﬁ] ‘

We have already shown that the second factor above converges to 1 in
probability by Lemma 2. As shown in Remark 1, the last factor also
converges to 1. We now show that the first factor converges to zero
almost surely. Given i > 0, we can choose ) < ¢ < 1 and M so large
that for all x = M,

Ultz) — Ulx)
MIP{ alx)
Let 8, = Z,/Zn_1 = exp(vVEn — vVEn-1). Then, 8, — 1 almost surely
as logl, = /X, — Va1 = Yo/ (VEn + 38 —1) — 0 almost surely.

Also, Z, — oo almost surely. Then for almost all w, we can choose
N = N(w), such that for n > N, we have 8, € [1 — ¢, 1 + ¢| and
Zn_1 > M. Then, for all n > N, we have

te 1 —g 1+t’.]}{ﬂ.

‘U{Zw} —Ul(Zaa)| _ ‘U{ann_l} ~U(Zny)| _,

ﬂ-{zn—l} ﬂ-{Zﬂ_[} If
So, [(U(Zn) — U(Za-1))|/a(Za-1) — 0 almost everywhere. This com-
pletes the proof. O

Next, we prove Theorem 2.
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Proof of Theorem 2. The expression on the left side of (15) can be
written as

UiZn) = —_TI{aV V(2 .
lﬂg [-T: 4 fﬂ f:xp( U ((‘: )){L] ’ U{Zﬂ}
U(Z,) U(evn)
It can be shown that the first factor converges to () with probability 1.
using Proposition 3 and Lemma 1, in exactly the same way as in the

proof of Theorem 1. We omit the details. The second factor converges
weakly to Ny, by Lemma 2, since U{-) € RV5,,. This proves (15).

Next, we concentrate on the left side of (16). We have,

U(Z0)) = U(Zn1) _ U(Zn) = U(Znr)  U(Zoy)  U(e™)
U (exp(y/n)) (Z 1) U(evaT) = Ufevm)

By Lemma 2, the second factor above converges in distribution to Ny .
By Remark 3. the third factor converges to 1. We now show that the
first factor converges to zero almost everywhere. Given n > (), we can
choose 0 < e < 1 and M so large that for all x > M,

i { Ultz) — U(x)

Ulx)
for all x = N. Then arguing as before that 8, = Z,/Z,_; — 1 and
Zn — oo almost surely, for alinost all w, we can choose N = N(w),
such that foralln > N, we have #, € [l —¢, 1 +¢] and Z, > M, so
that

te[1—g, 1+E]}-:iﬂ

U(Zn) = U(Znzt)|  |U(BuZucs) — U(Zns)

— < 1.

U(Zor) U(Zn) "
So, |(U{Zn} —~U(Zn-1))|/U(Z4-1) — 0 almost everywhere. This com-
pletes the proof. O

4. ProoF oF PROPOSITIONS 2 AND 3

Finally we give the proofs of Propositions 2 and 3.

Proof of Proposition 2. Let 1 = () be given. Then choose K so large
that [/(-) is non-decreasing bevond e and

[ 5}

22y -2 "< L (18)

i=K
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Next, using the facts that U(-) is [I-varying, powers of logarithm are
slowly varving and (loglogx)/a(x) — (. choose large enough N such
that the following holds for all = = N:

Utz) — U(zx) P
5 —_— fliod € o {
*-,111}{ poy logt|: t € [1_0 ] < 1, (19)
Ly i
1-n< ;{ lﬁigi"f te [L.e*"]} <1+, (20)
a(x) = kloglog . (21)
_— ;{—i- 1+logx g0 ki logx +1 <9 (22)
j—14logz logx —1
and
(:—ffa[l'} < l {23}
2
Now

oo —LI[t) oo —Li{tz) £y
{.:H[J'}f e ( flﬂgﬁ It-:‘il.t — eb’[r}f g iﬂg’c{“'} dt
> 3 1 3

B feh' e_[U[t:}—U ()] ].OE;K {itil':} i N fﬂc a— [Eritx) —17(x}] lﬂgx{ if.’]':} P
o 1 t R el t

{?lfl}

where K is the constant chosen above in (18). We will estimate each
of the above integrals separately.

For the first integral, for ¢ € [1,¢"], we have from (19), for all x > N,

Thus, we have, also using (20), for all x = N,

fEN e—[b'[t:'}—b'[r}] lﬂgx{tﬂ:} 2
: ;

~log t] alx)+alx)logt = —nal(x)+a(x)logt.

K

< (1 +7)log" :r:/ @il gl B o
1

(1 +n)e™} ogh x
a(x) )

For the second integral. we have, using the fact that () is non-
decreasing beyond et

o0 .—[L-'(Lr}—fi[:}]l Mg
¢ og (tr)
- it
fph' t
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i o= UtD) -U (@) o™ (te
- Z/“ ( og {j}f}l.t
o t

=K

Z exp(—[U(e? ) — U(x)]) log™(e?+ x)

=K

1A

o

= Z exp(—[U(e’ x) — U(x)] + rloglog(e’ 1)), (25)

J=K

Using the fact that a(-) can be taken to be a(z) = Ulex) —U(x), we see
that U(e’ z) — U(z) = Y, U(e* 2) = U(e'z) = 31—, a(el z). Now,
for ¥ = N, we have, using (21) and (22),

i—1 -1
> a(e' z)—rloglog(e¢! x) > kY loglog(e' ) — kloglog(e! ! x)
1={) 1=l
i1
>k ZI{JIgE - fc[lﬁg log(e! ! 2) — log log (e ! :;:}]
=1

j—2

j—2 .
(7 +1+logx)
=K logl — k|l : > K log | — k log 2.
f\,; og h[()g G —T1+logn)| 2 h? ogl — klog

Therefore, we obtain, using (25},

/,,; e_[b'gt:}—b'ur}] 10g‘{t:::} "
; ;

<2y emp(—rEilogl) =2 T -9 " <1
i=K

from the choice of K in (18).

Putting the estimates in (24) together, taking logarithm and dividing
by a(x), we have

1 ey = e ot t
_A%mef_jﬁiﬂ

a(x)
o
- alx)

(1 4 5) e™l=) log" :;:]

a(x)
log(1 +n) i loglogz  loga(x)

alx) : alx) a(z)

log [1 +
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since (1 + 1) e™® log" 2 /a(x) — oc. Then using loglogzx/a(z) — 0,

we have,
1 . o0 f—b‘(t} | !
lim sup { }lﬂg |}.’:EJ (=) f %dt] <.

L) T i o

On the other hand, using (24) and then (19), (20) and (23), we have

. 2 o=t} |gp* ¢ et e~ [V —U(2)] |ou™(tr
{.:D(I} —"E{H s & { o }ﬂli
@ t 1 t

K

>(1—n)log"x a~malE) f t—alz)-14
1

(1 —n)log®ze @) (1 — ¢~ Kala))
- alx)
(1 —n)log" xe M)
= 2a(x)
Then taking logarithm, dividing by a(x) and taking limit as @ — oo,
we have arguing as before

1 > U () [ 4
lim inf —— log [c:r”m /’; ﬁrjt] >y

z—oe q(x)

Since 1 > 0 is arbitrary, we have

) —U () :
: log |}_,:r; () /m e—lﬂ&du] — 0.
alx) = % u

Further conclusion follows since Ulex) — U(x) ~ alx). O

Proof of Proposition 3. Let nn € (0, 1) be given. First we may choose
N = eso that for all = N, we have, log" u < u and

(1 =gt (z) < U(tz) < (14 g)t*U () for all ¢ > 1. (26)

The set of inequalities (26) is Potter’s bound for regularly varving func-
tions (see Resnick, 1987, page 22, Proposition (L.8). Thus, we have, for
=N,

> oVl jog o ; %
I, = f R - N < f e VW gy = f e V) gy
T u T 1

= :::/’L exp(—(1 - ﬂ}tﬂ_”U{:ﬂ}]dt

S —t 41/(F—-m)—1
T -’r(l—ﬂ}U[J:}e prAEmm =t

T (B-n)(1-nU(z) [(1- ,j};;,r{g:}]‘ftt e
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Now, using L'Hopital's rule, it is easy to check that

/’Le“t‘;dt ~ e % gf (27)

as r — oo. Thus, we can choose K = N so that for all x = K,

e~V logh u (1+n)x ;
B Uk ~(-n)U(z)
f i du < (8 —n)(l—n)U(x) 3

Therefore, multiplving [, by ") taking logarithm and dividing by
Ulx), we have,

1 ~ o=Vl Jog" y
limsup log {eb (=) f —r.r'.'u,]
Ulx) x

r it

T—00 £
; 1 (1+n)
< lim | =
5 ("’ + 7@ s lm s ﬂ}U{:ﬂ}D L

using the fact that U(-) € RV for 3 > 0.

On the other hand, using (26), for all x = N, we have,

o0 e—b‘[u} loe™ o0 (.:—U[u} o0 (:—U(tr}
f —ghn'.u = f du = f ilt
- it - it 1 t

fﬂc exp(—(1+ n)t? 70U (z)) %

t

1 o
= f e ?s ds.
B+1 Jamua)

Then, again using (27), we can choose K" = N so that for all » = K,
we have

/I e~ Ulu) log" ”riu > (1- f;}:.'r:e_“""?]'i”'(x]“
i i (24 (1 +n)lU(x)
Then, arguing as before,
1 . 20 U} |gp®
liirlilcjf U@) log |i(:b (z) 1 %{fu > —.

Since i € (0.1) is arbitrary, the results follow. !
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