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GALLAT AND ANTI-GAILAT GRAFPHS OF A GRAFPH

ApaRna LawsHManan 5., Cochin, 5. B. Rao, Kolkata,
A. ViavakumaRr, Cochin

Abstract. The paper deals with graph operators—the Gallai graphs and the anti-Gallai
graphs. We prove the existence of a finite family of forbidden subgraphs for the Gallai graphs
and the anti-Gallai graphs to be H-free for any finite graph H. The case of complement
reducible graphs—cographs & discussed in detail. Some relations between the chromatic
number, the radivs and the diameter of a graph and its Gallai and anti-Gallai graphs are
also obtained.
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1. INTRODUCTION

This paper mainly deals with graph operators, the Gallai graph ') and the
anti-Gallai graph A(G). Both the Gallai and the anti-Gallai graphs are spanning
subgraphs of the well known class of line graphs. The line graph (8] L(G) of a graph
(5 has the edpges of ¢ as its vertices and two distinct edges of 7 are adjacent in L((7)
if they are incident in (5.

The Gallai graph U'(7) of a graph (7 has the edges of ¢ as its vertices and two
distinet edges of (7 are adjacent in ') if they are incident in &, but do not span a
triangle in . In [6], it has been proved that I'(G) is momorphic to G only for cycles
of length preater than 3. Computing the clique mumber and the chromatic mmber of
[ €7) are NP-complete problems. The notion of the Gallai perfect graph & discussed
in [12).

The anti-Gallai praph A{() of a graph G has the edpes of 7 as its vertices and
two distinet edges of G are adjacent in A7) if they are incident in 7 and lie on a
triangle in . It is the complement of ['((7) in L{{7). Though L{{) has a forbidden
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subgraph characterization, both the Gallai graphs and the anti-Gallai graphs do
not have the vertex hereditary property and hence cammot be characterized using
forbidden subgraphs [6]. Several other praph operators are discussed in [8].

The study of H-free graphs—praphs which do not have H as an induoced
subgraph—for some classes of graphs H are quite interesting. Some classes of
H-free graphs are discussed in [3]. An important class of perfect graphs called the
complement reducible graphs or cographs have been extensively studied. Cographs
are recursively defined in [4], [11] as follows:

(1) K is a cograph

{(2) If G i a cograph, so is its complement 7 and

(3) If & and H are cographs, so is their join, G v H, where the join (sum) of two
graphs G and H is defined as the graph with V(G v H) = V(&) U V{H) and
E(Gv H)=E(G)uE(H) U {uv, where ue V(&) and v € V(H)}.

It is known (7] that a graph is a cograph if and only if it is P;-free. Various other
aspects of cographs are discussed in [4], [5], [9], [10], [11].

In thiz paper we prove that there exist infinitely many pairs of non-isomorphic
graphs of the same order having isomorphic Gallai and anti-Gallai graphs. We prove
the existence of a finite family of forbidden subgraphs for the Gallai graphs and anti-
Gallai graphs to be H-free for any finite graph H. The list of forbidden subgraphs
for H = P, is given. The commected Pi-free graphs—cographs whose Gallai and
anti-Gallai graphs are also Pi-free are determined. The relationship between the
chromatic number, the radius and the diameter of a graph and its Gallai and anti-
Gallai praphs are also obtained.

All graph theoretic terminology and notation not mentioned here are from [1].

2. (GALLAI AND ANTI-(FALLAI GRAPHS

It is well known (1] that the only pair of non-isomorphic graphs having the same
line graph is Ky 3 and K5. But, we first observe that, in the case of both Gallai and
anti-Gallai praphs, which are spanning subgraphs of L((7), there are infinitely many
pairs of non-isomorphic graphs of the same order having isomorphic Gallai graphs
and anti-Gallai praphs.

Theorem 1. There are infinitely many pairs of non-isomorphic graphs of the
same order having isomorphic Gallai graphs.
TProof. Weprove this theorem by the following two types of constructions.
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Type 1. Let (7 = P, with n independent vertices joined to both its internal
vertices and an end vertex attached to & of these n vertices, and I = two copies of
Ky with & 4 1 distinet pairs of end vertices made adjacent.

The graph (7 of type 1 i as follows. Let vyvavgey be an induced Py, Let vo and vy
be joined to n vertices wy, us, ... 1, Introduce & end vertices wy,wa, ..., wy such
that each w; is adjacent only to w; for i = 1,2, .., k. The edges vyvo, vary, taua, ..,
ey, of (7, which are vertices of I'( (), will mduce a complete graph on n+ 1 vertices
in ['(&). Similarly, vgey, vgug, vgue, ..o, vgu, will nduce another complete graph on
n+ 1 vertices in I'((7). The vertex corresponding to the edge vovy will be adjacent
to both the vertices corresponding to vy1e and vgry. The & vertices corresponding
to the edges wa; for i = 1.2, ...k will be adjacent to the vertices corresponding to
the edges wve and wwg fori= 1,2, .., & respectively.

The graph H of type 1 is as follows. Let v adjacent to wy,we, . . 1,4 and v
adjacent to vy, ve, ..., Ueq1 be the two Ky s in H. Let wyvg, weve, .00 kg1 U
be the & + 1 distinct pairs of adjacent vertices in . The vertices corresponding to
the edges wiy, wus, ... w1 will induce a complete praph on n+41 vertices in U'({H ).
Similarly, the vertices corresponding to vey, v, ..., vu, 4 will ako induce another
complete graph on n + 1 vertices in ['(H). Again, the vertices corresponding to the
edges wyv; fori = 1,2, ...,k + 1 will be adjacent to the vertices corresponding to the
edges wy and vo; for i = 1.2, ...k + 1 respectively.

Therefore, both U'((7) and [ H) are two copies of complete graphs on n+ 1 vertices
together with k + 1 new vertices made adjacent to £+ 1 distinct vertices of hoth the
complete graphs.

Type 2. Let ¢ = P, with n independent vertices joined to both its internal
vertices and an end vertex attached to & of them with & = 1 topether with one end
vertex attached to each of the end vertices of Py, and H = two copies of Ky, with
i+ 1 distinct pairs of end vertices (one from each star) made adjacent and a single
pair made adjacent to another vertex.

The graph & of type 2 can be obtained from the graph & of type 1 by attaching
two end vertices z and y to vy and v respectively. In () the vertices corresponding
to the edges 112 and vy will be adjacent to the vertices corresponding to the edges
e and vgyy respectively.

The graph H of type 2 can be obtained from the graph H of type 1 by adding
a new vertex w and making it adjacent to both w; and v, In T{H) the vertices
corresponding to the edges wwy and wry will be adjacent to the vertices corresponding
to the edges wuy and vy respectively.

Therefore, both ['((7) and T'{H) are two copies of complete graphs on n + 1 ver-
tices together with & 4+ 1 vertices made adjacent to & + 1 distinet vertices of both
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the complete graphs and two end vertices adjacent to one vertex from each of the
complete graphs.

The constructions mentioned in type 1 and type 2 are illustrated in Table 1. In
both the cases, the praphs ¢ and H have the same Gallai praph. If n = & and
n=k—1intype 1 and type 2 respectively, then the order of G and H is the same.

G i T(G) = T(H)

| ]

FLA NV I

Table 1.

Theorem 2. There are infinitely many pairs of non-isomorphic graphs of the

same order having isomorphic anti-Gallai graphs.

Pruouwf. Let G be a graph with vertex set {vy,va,...,1,} and an edge vy
such that (7 is not isomorphic to a graph obtained under permutations of the index
set of the vertices which interchange i and j and A{G) iz connected. Introduce a
vertex © adjacent to v; and v;. Let H; be the graph obtained by introducing one
more vertex u; adjacent to u and v;. Let Ha be the praph obtained by introducing
another vertex us (u; is absent here) adjacent to w and v;. Then by construction
Hy and Hs are nop-isomorphic. A(H;) & A{G) together with four more vertices
corresponding to way, wry, wwg, vy in which we; and vy are adjacent to each other
and to wuy;, wwy and vy are adjacent to each other and to ww,. A{Hs) is AlG)
together with four more vertices corresponding to wwv;, wvy, vas, vyue in which v,
amd wr; are adjacent to each other and to vy, vus and vjus are adjacent to each
other and to wv;. Therefore, A{H,) is isomorphic to A{H3).

However, the following problem is open.

Problerm. Characterize all pairs of non-iomorphic praphs of the same order
having isomorphic Gallai praph and anti-Gallai graph.

46



3. FORBIDDEN SUBGRAPH CHARACTERIZATIONS

A property P of a graph (7 is vertex hereditary if every induced subgraph of ¢
has the property P.

Notation 3. For a connected graph H, let G(H) = {: T'(G) is H-free} and
G*{H) = {G: A(G) & H-free}.

Theorem 4. The properties of being an element of G{H )| and G*(H) are vertex
hereditary.

Proof. Let G € G(H) and v € V(G). Consider &' = G — {v}. We desire to
prove that G' € G(H). On the contrary assume that ['(G”) has H as an induced
subgraph. Let vy, v, ..., 1 be neighbors of v. Therefore () has the vertex set
VIT(G") U ooy, vva, .. vy b In TG, vy s adjacent to vy if v; is not adjacent to
v, and vy will be adjacent to all edges which have v; as one end vertex and other
end vertex is not v; for j = 1,2,...,t. Hence if H is an induced subgraph of I'(G")

then H i an indoced subgraph of U((7) also, which is a contradiction.
The case of G*{ H) follows similarky.

Corollary 5. G(H) and G*(H) have vertex minimal forbidden subgraph charac-
terizaticon.

Though many well known classes of graphs admit forbidden subgraph character-
izations, the mmmber of such forbidden subgraphs need not be finite (as in the case

of planar graphs). However, for G{ H) and G*(H) we have

Theorem 6. For every vertex minimal forbidden subgraph of G{H) and G*(H ),
the number of vertices is bounded above by n{H 141, where n( ) denotes the number
of vertices in 1.

TProol. Let F{H) be the collection of all vertex minimal forbidden subgraphs
of G{H). Let L € F(H). Therefore, ['(L) has H as an nduced subgraph. The n{ H)
vertices of H, which correspond to n(H) edges of L, say e1,e2,..., €p5), can cover
a maximum of n(H) 4+ 1 vertices of L, since I is connected.

We should prove that n(l) < n(H) + 1. To the contrary assume that n(L) =
n{H )+ 1. Then there exists at least one vertex v € V(L) which is not an end vertex
of any of €1, e2,...,enm). Therefore, I'(L — v) still has H as an induced subgraph,
which contradicts that L is a vertex minimal forbidden subgraph of {H). Hence,
n(L) < n(H)+ 1.

A similar arpument holds for G*(H) ako.



Corollary 7. The number of vertex minimal forbidden subgraphs for G{ H) and
G is finite,

In the next theorem, we obtain a forbidden subgraph characterization of & for
I'(67) to be a cograph.

Theorem 8. Let (7 be a graph. Then, I'((7) & a cograph if and only if G does
not have the following graphs as induced subgraphs.

iii Ky

{ifj ISQ v) M Evi }
N

Prool. If I'G) & not a cograph then there exists an induced Py in (), say

epeaegey. In (3, let gp = wyqige, €2 = o Ues, €3 = g lige amnd £y = 1wygiga.

Since e; is adjacent to ea, let wys = us and let 1;; be not adjacent to ugss. Since
€2 is adjacent to eg, either woy = g or wes = ug .

If way = ugy, then since e is not adjacent to es, 1y is adjacent to wgs. Since ey
is adjacent to ey, either ug; = wyy or uge = wyy. If ugy = wyy, then since € and es
are not adjacent to ey, both uy; and wsy are adjacent to wga. If 1wgs = wyy then ug,
is not adjacent to 1.

If 1o = ugy, then us & not adjacent to wgs. Apgain, since ey is adjacent to ey,
either ug; = uyy or uge = 1wy If ugy = 1y, then since es and ey are not adjacent,
1o s adjacent to wys. If ugs = wyy then ug is not adjacent to wys. The above four
resulting praphs are respectively (iv), (vi), {vi) and (i).

In (iv), if we add even a single edge the property of I'((G) not being a cograph will
be lost. In (vi), uss adjacent to wys gives (vii), uy; adjacent to wys gives (x) and
the combination of both gives (iv). The addition of these edges will not change the
required property either. In (i), u;; adjacent to wge pives (ii), vy adjacent to wy,
gives (viil) and a combination of both gives (iii). Apain, the addition of these edges
will not change the required property. However, if we add any other edge then the
property will be lost.

The converse can be easily proved.
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Theorem 9. Let (¢ be a graph. Then A{() is a cograph if and only if & does
not have the following graphs as induced subgraphs.

O Ks () () o @) o ) s
& P \ ] ,/E’%}iﬁ

Y H—

N

Prool. If A(() is not a cograph then there exists an induced Py in A7), say

epeaegey. In (3, let gp = wyqige, €2 = o Ues, €3 = g lige amnd £y = 1wygiga.

Since £; is adjacent to es, let wpa = woy and let uy; be adjacent to wes. Since eq
iz adjacent to ey, either ws; = ug; or was = ug.

If 1oy = ug; then wes & adjacent to ugs and wy; & not adjacent to wg;. Since ey
iz adjacent to ey, either wg = wyy or ugs = wyy. If gy = wyy, then uge is adjacent
to 1uye and gy and wes are not adjacent to wgs. If wgs = wyy then wg; & adjacent to
43,

If 19s = ugy then s is adjacent to wgs. Apgain, since ey is adjacent to ey, either
g = U4y OF gs = gy If wgy = 1y, then ugs is adjacent to wys and ws is not
adjacent to wys. If ugs = uys then ugy & adjacent to wys.

All the four resulting graphs are isomorphic to (ii) itself. Also, addition of any
of the possible edges will leave an induced Py in A(G) and hence any graph with 5
vertices which contains (ii) as a (not induced) subgraph are ako forbidden. Hence
all the above praphs are forbidden.

Conversely, it can be verified that the anti-Gallai graph will not be a cograph if
any of the nine praphs listed above is an induced subgraph of .

4. COGRAPHS

Theorem 10. If (7 is a connected cograph without a vertex of full degres then
U(63) is a cograph if and only if (7 = (PR5)°, the complement of p copies of K.

Trool. Let( = (*K3)°. Then the number of vertices of & is 2p and the mumber
of edges of G is 2p(p— 1). Let the vertices of G be {vi1, 112, . .. . a1, 123, . . ., wap}
with vy; and vs; as the only pair of non-adjacent vertices. Therefore, vertices of the
Gallai graph are of the form v;;vy ;- where j # j’. By definition of the Gallai graph,
w1y Will be adjacent only to v or vvey and v or veveye according to
the value of i and ', Therefore, I'{ ) = (21, which iz a cograph.

Conversely, assume that ¢ is a cograph without a vertex of full degree and ['((7)
is also a cograph. For every u € V{{7), there exist at least one v’ € V() which i
not adjacent to .
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Claim: o' is the only vertex which is not adjacent to .

To the contrary assume that there exists another vertex u” which is not adjacent
to u. Since (7 is a connected cograph, G = ;v Ga. Let v € V(). Since u is not
adjacent to both v’ and u”, both of them belong to V(G1). Since G has no vertex
of full depree, (75 must contain at least two non-adjacent vertices v; and 1vs. Then
the edges u"vy, vy, wvs, von’ will induce a Py in U{(7), which is a contradiction.

Therefore ¢ = (PR3], where 2p = n.

Nortation 11. Consider the class of praphs which are recursively defined as

followrs:

Hi = {G: G = (pR2)° v (K,), where p,q = 0}.
H: ={G: G=(JHi1) v K,, where H;_; € H;_; and r 20} fori > 1.
H=JH;

Theorem 12. For a connected cograph G, U{(7) is a cograph if and only if G € H.

Fruonf. Let G be a cograph other than K, with a vertex of full degree. Let
V1 be the collection of all full degree vertices in 7. Define & = {V —V}). TG ) is
and induced subgraph of (7). More precisely, T'((7) = I'{(7;) together with some
isolated vertices. Therefore, ['(Z) is a cograph if and only if ['((7;) & a cograph. If
{31 is a connected cograph then ) has no vertex of full depree and hence ['((7, ) is
a cograph if and only if (73 = (PK3)°. Therefore, I'((7) is a cograph if and only if
G = (PE.)" v (K, € Hy.

If () is discomnected, then consider each of the connected components of ;. If
the removal of all full degree vertices from each of the components of () preserves
connectedness then as above each of these components must be of the form (P Ka)% v
(Ky). Therefore, G = (FiUFKBU...UF,) Vv K, where each F; € H; and g = 0.
Consequently, G € Ha.

If any of the components of Gy, say (72, is disconnected then repeat the above
process to get (G € Ha and hence & = (H UHa U U H ) v K, where each H; € Ha
and v = 0. Consequently, G € Hs.

This process must terminate since the onmber of vertices of (7 is finite. Therefore

for a connected cograph 7, ['((7) is a cograph if and only if G € H.

Theorem 13. For a comnected cograph ¢, A{(5) is a cograph if and only if
(1) 7 = (5 v (o, where (7] is edgeless and G does not contain Py as a subgraph
{which need not be induced) or

{ii:l G 15 Cq,.

Proof. Let (7 be a commected cograph whose A7) i also a cograph. Since &
is a connected cograph, G = 7 v 2. Let (74 be an edpgeless graph and « € V(G
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If (72 contains a Py, say vyvavgyy, then the edges vyos, vau, uvg, vy of & induce a
Py in A{G), which is a contradiction. Therefore, if (7; & edgeless then o does not
contain Py as a subgraph.

Let wyry € E{Gy) and were € E{Ga). If (7] contains one more vertex, say v, not
adjacent to uy and v, then the edges wyvy, vyus, worvs, usn of 7 induce a Py in A(G),
which iz a contradiction. If v is adjacent to at least one of the vertices, say vy, then
the edpes wyua, waty, vyve, mv of & induce a Py in A(G), which is a contradiction.
A similar arpument holds also for the vertex set of (5. Therefore both 7y and s
are Ks's amd G = ).

Conversely, assume that ¢ is a cograph of type (i) or (ii). Then & does not
contain any of the graphs from Theorem 9 as an induced subgraph and hence A(G)

is a cograph.

5. CHROMATIC NUMBER

Theorem 14. Given two positive integers a, b, where o > 1, there exists a graph
{7 such that v(G) = a and y(U(&)) = b.

Prouvf. Ifa =1 then ¢ must be a graph without edges, which makes ['((7)
empty. So we can assume that a > 1.

Let (7 be the graph K, together with b—1 end vertices attached to any one of the
vertices. Then I'((7) is a — 1 copies of Ky, sharing b — 1 vertices in common toget her
with some isolated vertices. Clearly, (&) = a and y(T(G)) = b

Lemma 15. The anti-Gallai graph of any graph (G cannot be hipartite except for
the triangle free graphs.

Proof. Ifw; is adjacent to us in A(G) then the corresponding edges, say e
and ea, lie in a triangle, say ejese;. Then the vertex ug in A(G) which corresponds
to ez will be adjacent to both 1y and ug. Therefore, wjusng induces a cycle of odd
length in A7) and bence A7) cannot be bipartite.

Theorem 16. Given two positive integers o, b, where b < a, b+ 2, there exists
a graph & such that () = a and y(A(G)) = b Further, for any odd mumber a,
there exists a graph & such that v(G) = v (A(G)) = a.

Troof. First note that the anti-Gallai graph of a graph G cannot be bipartite
except for the triangle free praphs by the above lemma. Hence, b= y(A{G)) # 2 for
any (5.

Using Myceilski’s construction [1] there exists a triangle-free graph H with chro-
matic ommber a. For ', A({G) is a trivial graph and hence b = 1. For 2 < b < a, there
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exists an induced subpraph H' of H whose chromatic number is b, Let vy, va, ... v,
be the vertices of H'. Let (& be the graph obtained from H by joining all vertices
of H' to a new vertex u. Smee b < a, x(G) = a itself. If v; and v; are adjacent
{or non-adjacent) in H' then the vertices corresponding to wy; and wy; are adja-
cent (or non-adjacent) in A(G). Therefore, the vertices corresponding to the edges
uwy, wva, .. uty, indoce an H' in A(G). Apgain for any pair of adjacent vertices,
say v; and v; in H', the vertices corresponding to the edges uv; and wv; are ad-
jacent to the vertex corresponding to vyve. Therefore A(G) is H' topether with
one vertex each adjacent to both the end vertices of each edge in H'. For b > 2,
X(A(G)) = x(H") =b.

If a is an odd integer then y(K,) = a and v(A(G)) = yv(L(G)) = ¥'(R,) = a,

where y' is the edge chromatic number.

6. RADIUS AND DIAMETER

In this section v((7) and d{7) denote the radius and the diameter of a praph 7

respectively.

Theorem 17. Let (7 be a graph such that T'((7) is connected. Then »(TG)) =
() — 1 and d(1'G)) = d{G) — L

Prouf. Let »{I'()) = r. Then there exists an edge, say wv, in 7 which is at a
distance less than or equal to v from every other edge in . Hence, any vertex of &
is at a distance less than or equal tor + 1 from both © and v. We have v((7) <+ 41,
which implies »(T{G)) = r(G) — 1.

Let d((Z) = d. There exist two vertices u and v such that the distance between u
and v is diw, v) = d. Let wagusn, v be a shortest path conpecting v and v in .

Claim: dpiglu, ,—1v) = a — 1. uug, s, 1, v & a path of length a — 1
connecting way and w, v in I'(G). Therefore, drg) (e, w,v) a2 — 1

It is required to prove that drig (v, w.—1v) = 2 — 1. On the contrary assume
that there exists an induced path wuy, viv], vavh, vp_ 10} ua—vof length & m T(G)
connecting wwy and uw, v, where & < a — 1. Then there exists a path of length less
than or equal to a —1 connecting « and v in (7, which contradicts d{uw, v) = a. Hence,
drig (v, ta—qv) =a— 1.

Since there exist two vertices of () which are at a distance a— 1, d{T'(G)) must
be greater than or equal to a — 1.

Nole 18, If a and b are two positive integers such that @ > 1 and b 2 a0 — 1
then there exist graphs ¢ and H whose Gallai praphs are connected and »{) = a,
riG)) =b d(H) =a and d(T'(H)) = b



Theorem 19. If ¢ & a graph such that A(G) is connected and »(G) = 1,
rlAG)) 2 2(r(G) — 1) and d{A(G)) = 2(d(G) —1).

TProof. Let v{A(G)) = v = 1. There exists an edge, say uv, in (7 such that
any edge is at a distance less than or equal to v from wy in A{G). Let w € V(&)
Since (7 is connected there exists at least one edpe with w as an end vertex, say ww’.
There exists a path of length less than or equal to r from ww’ to wr in A{G). Any
two adjacent edpes in A{G) belong to a triangle and hence this path induces a path
of length less than or equal to 37 from either u or v to w. Therefore, any vertex is
at a distance less than or equal to %r + 1 from both u and v. Hence r(G) = %r +1,
which implies that r{A{G)) = 2(r(7) — 1).

Tet di{G) = d. There exist two vertices u and v such that d{u, v) = d. Let
uigus .. g v be a shortest path connecting u and v. Consider d{wwy, wg_jv) in
A(G). Ifit is &, then there exists a path of length less than or equal to %Fc +1lin (7
connecting u and v. Therefore, 1k + 1 = d, which implies k& = 2(d — 1). However,
d(A(G)) = k. Hence, d(A(G)) = 2(d(G) — 1).

Wote 200 If o and b are two positive integers such that o > 1 and b 2 2{a—1) then
there exist graphs & and H whose anti-Gallai graphs are connected with »(G) = a,
rlAG)) =b d{H) = a and d{A(H)) = b
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