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Abstract

A general 4- and Deefficiency lower bound has been obtained for partial diallel cross designs. These bounds have been
used to show that a class of E-optimal designs, obtained by Mukerjee [1997. Optimal partial diallel crosses. Biometrika 84,
939-948), have high A- and D-efficiencies. Also, a class of block designs, introduced by Mukerjee [1997. Optimal partial
diallel crosses. Biometrika 84, 939-948), is shown to be pearly E-optimal. General eigenvalues of the information matrix of
these designs is obtained, which enable us to show that the block designs have high 4- and D-efficiencies.
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1. Introduction

Genetic properties of inbred lines in plant breeding experiments are investigated by carrying out diallel
crosses. Design of experiments for diallel crosses has received considerable attention in the literature; see
Curnow (1963), Hinkelmann (1973) and Gupta et al. (1993) for references. Let p denote the number of lines
and let a cross between lines § and ¢ be denoted by (i, ), i<i" = 1,2, ... ,p. Let n denote the total number of
crosses observed in the experiment. Our interest lies in comparing the lines with respect to their general
combining ability effects.

Complete diallel cross designs involve equal numbers of occurrences of each of the (§) distinct crosses
among pinbred lines. Gupta and Kageyama (1994), Dey and Midha (1996) and Das et al. (1998a) investigated
the issue of optimality of complete diallel crosses. When p is large, it becomes impractical to carry out an
experiment using a complete diallel cross design. In such situations, we use partial diallel cross designs where a
subset of (§) crosses are used. In the literature designs for partial diallel crosses have been discussed for
n=ps/2 (x=p — 1), distinct crosses. Although efficient designing of partial diallel crosses has been studied by
several authors (Hinkelmann and Kempthorne, 1963; Arya, 1983; Singh and Hinkelmann, 1990, 1995), no
formal optimality results within adequately general classes has been reported except for the recent works of
Mukerjee (1997) and Das et al. (1998b). Sometimes partial diallel crosses can, themselves, be quite large and
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thus it is desirable to use a block design for the experiment. Gupta et al. (1993) and Mukerjee (1997) provide
orthogonal blocking schemes for partial diallel cross designs.

The objective of the present paper is to investigate the 4- and D-optimality properties of certain partial
diallel cross designs. For this, we first derive a general 4- and D-efficiency lower bound for partial diallel cross
designs. These bounds are used to show that a class of F-optimal designs, obtained by Mukerjee (1997), have
high A- and D-efficiencies. Furthermore, a class of block designs, introduced by Mukerjee (1997), is shown to
be nearly E-optimal. General eigenvalues of the information matrix of these designs is obtained, which enable
us to show that the block designs have high 4- and D-efficiencies. As such, presently there hardly exists any
general 4A- or D-optimality results for such partial diallel cross designs and therefore our results contribute
towards identifying designs having high 4- and D-efficiencies.

In a diallel cross experiment, we consider a design d involving p inbred lines, giving rise to a total of (%)
possible distinct crosses. Let s; = (s;.....5,,)" where s;; denotes the replication number of the ith line that
occurs among the crosses in the design J,i = 1,2, ..., p. Then 1:,.*.;.: = 2n, where " denotes transpose of a matrix
and 1; denotes a t-<component column vector of all ones. We use the model M1: ¥ = pl, + 4,9+ &, for an
unblocked diallel cross experiment. For a blocked diallel cross experiment, we consider the model M2:
Y =ul,+ 419+ A28 +&. Here, Y isthe n x | vector of observed responses, pis a general mean effect, g and f
are vectors of p general combining ability effects and b block effects, respectively, 4, 4> are the corresponding
design matrices, that is, the (fi,/)th element of A (respectively, of 4.) is 1 if the Ath observation pertains to the
ith line (respectively, to the /th block), and is zero otherwise; ¢ is the vector of random error components.

Let 2(p, n) denote the class of all unblocked designs with p lines and » crosses. For a design, dy € 24(p.n),
under model M1, Mukerjee (1997) has shown that the information matrix of the reduced normal equations for
estimating linear functions of general combining ability effects g is Cy =Gy —(1/nhs,8), . where
Sy = (8,108,252 Sagp)s Gty = (Wayie b G = Sayi» and for i#i', g, denotes the number of times the cross
(i,i") appears in dy. Similarly, let %(p. b, k) denote the class of all block designs with p lines, and & blocks each
with & crosses. Following Gupta and Kageyama (1994), for a block design o & 24(p, b k) under model M2, the
information matrix for g is given by Cy = Gy — (1/k)N N, where Ny = (ng): ngy is the number of times that
line i occurs in block j of & and G, = (g,) is as defined earlier. For such a block design, #» = bk and
N“llb = 8.

A design dyid) will be called connected if and only if the rank of its information matrix is p— 1.
Equivalently, dyl(d) is connected if and only if all elementary comparisons among general combining ability
effects are estimable. In this paper, we consider only connected designs.

For a design dy € Z(p. n), let Ly <4a0 = - -- = Agp—1) denote the non-zero eigenvalues of the information

matrix Cy,. Then, a design o € %(p,n) is A-optimal if 5] ‘;‘e_ﬂ'.lf = Ml 5ipm ZE,' ;‘.JI'J., is D-optimal if

i=l
12 A = maxa,coipm [100) A and is E-optimal if Ap) = maXgeaqun Aqi. Similarly, 4-, D- and E-
optimality are defined for connected block designs d € Z(p, b, k). One may refer to Shah and Sinha (1989) for
the above definitions and the statistical interpretation of these optimality criteria.

2. Improved lower bounds for 4- and D-efficiencies

In this section, while dealing with unblocked partial diallel cross designs (based on model M1), we first
derive general 4- and D-efficiency lower bounds. Mukerjee (1997) has investigated the optimality of certain
partial diallel crosses, under fixed effects model, which are linked with a certain class of group divisible
designs. Though his results are on E-optimality, he also presented results on 4- and D-optimality in the
saturated case. In general, the E-optimal designs turn out to be highly efficient under the 4- and D-optimality
criteria.

Let p = nyna and n = L plny — 1), where n; =2, ny =3, Partition the set {1,2,...,p} into n; mutually exclusive
and exhaustive subsets {_S|,Sg,...,.§:.”} each of cardinality na. Let

dy=1{i.j): 1si=fspand ije S, foru=12,....n} (2.1}

Then, fori=1,....p—m, igi=m—2and fori=p—nm +1,....p—1, ip;=2m — 1) with dj; € F(p,n).
Also, Mukerjee (1997) has shown that for dy € Z(p.n), A4, =n: — 2. Thus, &} is E-optimal in %(p,n) and we
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can write
Aol %.f‘.gm =n1—2 fordy € % (p,n). {2.2)

Mukerjee (1997) has shown that &, is 4- and D-optimal in %(p, n) when 2 =3, e, when the design is
saturated (p = 3np, n = 3n).

Retaining clarity, where ever convenient, we write A; in place of 4. Now, since frace( Cy)=2(n —na+ 1), a
conservative lower bound to Zf"l .r_l for dy & %(p,n) is given by

= 2
(p—1)
Z _{n —nr+ 1) 23)

The A-efficiency findings of Mukerjee (1997) are based on the lower bound as given in (2.3). It can
be wverified that the lower bound in (2.3) will be attained by 4y only when 4 =
Ar=---=dp ) =2n—na+ 1)/ p— 1), ie., dy is a complete diallel cross design. But, since nx <p, we have
A=2n—m+ip—1lI=(m—1p-20p—-1)=in—1)—(nx—1)/{p—1)=m —2. This leads to a
contradiction since from (2.2), for dy € S(p,n), 4y =n: — 2. Based on this fact, for n =1, the following
theorem gives an improved lower bound for ZE,' %

Theorem 2.1, Given the class S p, n) of partial diallel cross designs, where p = mna, n = %p{nl -1},

| P—2) ey S). s 2
E :«'-,,,”-3 e + S E (= aln. na), say) (2.4)

i=l

Jor all dy e Sp n).

Proof. Using the arithmetic mean and geometric mean inequality, we have
| | \ - |

A =47 4+ A

i

i=l

=i+ ”’i
ZJ | J_“;'I
I P =2y s R 2
.}f| +{ﬂ]—1]{j7—2]—.-‘|, since Z}__IE:_{”:_]_HF__}_

=l
Let f(i1) = 47" +(p — 27 /{(n2 — 1)p — 2) — A1). Then

Wy =2 {P_z:r
(A= — 4"+ e
FAPY 4 (m—Dp—2— AT

DOV B R 1) O

[(ma—Dip—2)— 4} “'I
={m—Dip=2)+(p—-3uHip—14 —(m—1)p-2)=0
Thus, the possible stationary values of the function f(4)) are —{n — U{p — 2)/{p — 3) and (n2 — L)(p — 2)/
{p — 1) out of which only the second one is admissible.
MNow,

=10

(p— 3)p — D4 +(na— Dip = 2)/ip — 3[4 — (na — Dip = 2)/i(p— 1]
= p—2)— 4 A
is negative when 0= 4 < ({n: — 1){p — 2)/(p — 1) and positive when 4| ={n — Dip — 2)/(p — 1).
Thus fi4)) is a decreasing function for O<i | <i(m—Dip—2)/(p—1) and since 4 =
(ma— ip—=2)/ip— l)=n—2, from (2.2), the minimum is attained at 4 =m — 2. Hence a sharper

fan =
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lower bound for f(4)) is

(p—20
(na—1ip—=3)4+1"

From (2.4), the A-efficiency of the design ) € Z(p.n) is at least as large as eq(n), m) where

1
fim R —prt

atlp,ma)
Tk

i.e. substituting the values of A, we have

eqln,m) =

alhy, )
(P —mMn — 217+ (m — D202 — 1}

MNext, we consider mprmed lower bounds to D-efficiency. For n) = 1, the following theorem establishes a
sharper lower bound for {]'[“'_I Fi s

(2.5)

eqln,m) =

Theorem 2.2, Given the class S p, n) of partial diallel cross designs, where p = nina, n = _.'—,p{n; — 1},

=1

gl ' .
; p—2) ) g
iyl — £ ,Ha), 8 ., _-h

(]._[f.I ) {”‘_"H{”’—l}{ﬂ—3]+1}” (= d{ny, ma), say) 02.6)

Jor all dy e %p, n).

Proof. As before, using the arithmetic mean and geometric mean inequality, we get
| - 1
i el Z

pml 7! _ 1y
]._[’:*' 2 4 |1}I -
=1 {Z::| ":"JI}P_

Now again using the arithmetic mean and geometric mean inequality on A2, Ay, ..., 4,1, we have

(.:_. ﬁ;‘_,-)_lp ( 1) (;ji)P_ @

From (2.7) and using the inequality 31, L i€ (ma — Liip — 2), it follows that

r—1 -1 _:
3 (p—2F 1 |
']. ] ; . I- _-E
(1_[} ) }M{{m— Dip —2) — 42 = g(4), say -

i=1

Then,

GO =7 (=" - D -2 — " M — D= —1p -2t =0
yields that the only admissible stationary value of the function g(4) is (n2 — D(p — Dp — 1)~
Clearly, the function g'(4)) is negative when 0= <i(m — l)p—2)p— 17! and positive  when
A=l — Dip— 2)p — 1)~'. Thus, gld) is a decreasing function for O=4) <(m — L)p—2)p— 17" and
since 4 ={na — L)ip —2)p— 1)7'=ny — 2, the minimum is attained at i, = no — 2. Hence a sharper lower
bound for gii)) is

)
{na — 7]{{:?-.- —p =3+ 1y

gl —2) =
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From (2.6), the D-efficiency of the design d, € %(p,n) is at least as large as eplm,na) where
{8(ny,ma )} e= 0
{TL) Ay~

i.e. substituting the values of 4, we have

epln )=

ep(ny,ma) = {8(ny, ma)na — 2" (Amy — )P0 O 2.9

Based on Theorems 2.1 and 2.2, the efficiency lower bounds ¢ 4i(n, 1) and epin,n2) have been calculated
for the designs ) as given in (2.1). We consider designs o having parameters in the practical range
m =2, m =4, p< 200, There are a total of 535 possible designs within this range. It is observed that, 100%,
91.0%, 78.7% and 61.5% of the designs have ¢4 greater than 0.8, 0.85, 0.9 and 0.95, respectively. Also, if we
restrict to designs having ny < n then of the 353 possible designs, 100%, 99.4%, 98.3% and 90.1% of the
designs have ey greater than 0.8, (.85, 0.9 and 0.95, respectively. Similarly, 100%, 91.0% and 73.6% of the
designs have ep greater than (.85, 0.9 and 0.95, respectively. Also, restricting to designs having ny £na, 100%,,
99 4% and 96.6% of the designs have ey greater than (.85, 0.9 and 095, respectively.

3. Nearly E-optimal block designs and their 4- and D-efficiencies

Mukerjee (1997) has discussed blocking for partial diallel crosses and constructed E-optimal block designs
for the case when n; is odd (case 1) and even (case 2). We now study an alternative method for constructing
block designs when n is odd. The resulting designs have the advantage of block sizes being considerably
smaller than Mukerjee’s case | designs. Also, from the optimality considerations, we observe that these
alternative designs perform well with respect to 4-, D- and E-criteria.

In the construction of the block design, that follows, there are p (= nyn2) lines, and the lines are denoted by
.uj.f, l=ugm, 0<j<m — 1. In(2.1) take 5, = {a. af,....a,,_}. Then from (2.1) o, consists of nyna(n — 1)/2
crosses where in a cross the two lines are from the same 8. Forna ( =5) odd, a general approach for grouping
the crosses in o} into blocks is now given.

Let M| be the incidence matrix of a general block design o) involving iy treatments and n: blocks such that
each block has size ny and each treatment is replicated my times. For 1€usn, 0=/<n — 1, in the kh
occurrence  of  treatment w  in ), replace treatment w by the (na—1)/2  crosses
{{“JJ':-J"“JJ:J—J"H] sl = — 1)/2), where j+ ! and s — j 4 [ are reduced (mod n2). This gives the diallel cross
block design, *. constructed through an alternative method. Clearly, & & %(nno,mo, ni(nn —1)/2) and
represents a partitioning of the crosses in o} into blocks.

Example 1. Letn) = 3,00 = 5. Then p = 15,h = 3,k = 6 and the design «* based on the above construction is

[{HI,u,',],{u_-!.,u_{},{u‘?,:ﬁ],{tr;,u% ],{::?,.::;:L{.:;;,ug]],
[{u_-l., .::,;Ir}, {u; : .:;,:}, {Hg ,::,;'-;],{.:.r%, .:ri 1 {ﬂ;, .:;,?,L {u; : u;:]],
[{u;,u:],{u_:,u,;lr},{.:r_%,:r-i'],{.:.r_';,.:.r,;‘l],{:;;,.:;?L{:;i,t;g]],
[{u,:,ué},{u,:l},u:},{.:ri‘u%],{t%, .rrf },{ﬂi,u%L{ﬂS,u?]],

[{u,;lr, u;], {u: : u_-l.}, {.:.r;l,.:.r% ],{uf, ug X {Hg,, .:;;L {H'-: ; u'_:]].
Let, for a design d, A= Ap= --- 44— be the non-zero eigenvalues of the information matrix C,. Then,
after some algebra, we see that for i=1,. .., m— 1, 4p,=m —2—2(n — ! fori= Hi, .. ,p—Hh, dp =
m—=—2andfori=p—n+1,....p—1, dp;= 2 — 1) with d" € Z{p,n, min.— 1)/2).

We now give two results on lower bounds to efficiency in case of block designs for diallel crosses. For block
designs with ) = 1, the conservative bounds analogous to (2.3) can be improved. Following Das et al. (1998a),

for a block design d € %4p, b, k), !r'.:;r:'e{f,,a}&k_lb{zk{k — 1 —=2x)+ px{x+ 1)}, where x = [2k /p]; [z] being the
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largest integer not exceeding =. We consider p, b, & such that p = nn; and bk = plna — 1)/2. Since Cy, — Cy i85
non-negative definite and A, =n. — 2, it follows that 4, < 4, = #, — 2. On lines similar to Theorem 2.1, the

above fact leads to a sharper lower bound for Y/ il

Theorem 3.1. Given the class of designs 20ip, b k) of partial diallel crosses, with p = nny bk = plny — 1)/2 and
x =[2k/pl.

- }_—|} 1 {P_E]E

[

= +
: m=2 (= Dp—D+k"Bpx2+(p—4)x—2k)+ 1

=

(= fn.na), say) (3.1)

F;

Jor all d € 9(p b k).

From (3.1), the A-efficiency of the design d* € %(p, b, k) is at least as large as e 4(m, m) where
eLa{m, ) = ———7,

i.e. substituting the values of iy, we have
fiiny, m)
(na — 1y — D2 —2) = 217" + (g — 1)(ma — Dy — 217" +(my — D2y — 1}~
(3.2)

MNext, we consider lower bounds to D-efficiency. On lines similar to Theorem 2.2, for 1= 1 the following
theorem establishes a sharper lower bound (compared to conservative bounds) for {]'[f.:l' i

eralng,n) =

Theorem 3.2. Given the class of designs 20(p, b k) of partial diallel crosses, with p = nyina, bl = plna — 1)/2 and
x =[2k/pl.

4

= (ma—2){(ma— 1)p — D+ k™ Blpx? + (p — 4k)x — 2k) + 1}"

=1

(=vin.m) say) (3.3

Jor all d € S(p b k).
From (3.3), the D-efficiency of the design d* € %(p, b, k) is at least as large as e p(n), n2) where
{y(m,ma)} 7D

s f:,,.l_}-w_.,,

i.e. substituting the values of i, we have

epli )=

eplni,ny) = {plm, ma)my — 2 = 2ny — 1)~ Y= g — 2= D2(ny — 1yyn 1D, (3.4)

Using Mukerjee’s case 1 method of construction, in Example 1 of Mukerjee (1997) an E-optimal design o}
in the class % (15, 3, 10) has been presented. The A-efficiency lower bound of this design J7, as based on (3.2), is
0.889. For the same set of 30 crosses with p = 15, the alternative method of construction leads us to the design,
as given in our Example 1. This design belongs to the class 24135, 5,6) and its A-efficiency lower bound, based
on (3.2), is 0.870. Similarly, while considering the D-efficiency in their respective classes, it is seen that our
design has higher value of ep than that for d}, being 0918 and 0910, respectively. Thus, the design in
Example 1, has a dual advantage of reduced block size and higher value for lower bound to D-efficiency.

Furthermore, since the minimum eigenvalue of the alternative designs o* is 1o — 2 — 2(ny — )7, for large
values of na the design is nearly F-optimal, e.g., for no =7, the E<fficiency is more than 096 and for 5y = 15,
the E-efficiency is more than 0.99.

Theorem 3.3. For ny =7, within the class of designs S0(p, b k) of partial diallel erosses, with p =nmina, b= m,
k =ny(ny — 1)/2, the design d*, constructed through the alternative method, is nearly E-optimal.
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Finally, we have studied the 4- and D-efficiencies of the alternative designs 4*. Based on Theorems 3.1 and
3.2, the efficiency lower bounds ¢ 4(n), n2) and e p(#),n2) have been calculated for the designs in the practical
range ) =2, 02 5, p< 200 with n odd. Of the 252 possible designs in this range, 100%, 84.5% and 64.3% of
the designs have ¢4 greater than (.85, 0.9 and 0.95, respectively. Also, if we restrict to designs having n) <n»
then of the 174 possible designs, 100%, 97.7% and 90.2% of the designs have ¢4 greater than (.85, 0.9 and
0.95, respectively. Similarly, 100% and 75.4% of the designs have ¢ p greater than 0.9 and 0.95, respectively.
Also, restricting to designs having sy < no, 100% and 96.6% of the designs have ¢)p greater than 0.9 and 0.95,
respectively.
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