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Abstract

The rmodel i which competing tisks are assumed to be independent does not provide
any information for the assessment of competing failure modes, if the failure mecha-
nisms nnderlying these modes are conpled. Certain models for dependenl eompeting
risks have been proposed in the leraiure, These can be distinguished on the hasis
of the monotonicity of the econditicmal probability of a particular failure mode given
that the failure time excesds o fixed time. There is an interesting link between the
monotonicity of snch conditional probability, the dependence berween the failure time
amd 1he [ailure mode, and the crude hazard vales. 1o vhis papor, we propose Lesis for
testing the dependence between the failure time and the failure mode using the crude
hazards and using the conditional probahilities mentioned above, We establish the
equivalence between the two approaches and provide an optimal weight function. The
temts ety applicd to sitmilated datac aned to mortality follome-up data.
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1 Introduction

In the follow-up study of mortality, it is observed that the contribution of the causes of
death due to common canse which includes cardiovascular diseases. cancer and accident
and suicide decreases with age while the contribution of other canses inercases. Henee,
in such siluations i is of interest o compare Lthe probabilities of dyving due Lo a commeon
cause and due to other cause given that a person has survived upto a certain age. It is
also of interest o test whether such conditional probabilities increase or decrease with
age. Dewan of al (2001) give several examnples where the comditional probalilities are
tof interest.

In this paper, we stady ihe relationship bowween the erude hazards and Lhe con-
ditional probahilities in the case of two compeoling risks. We develop tost procedures
nsing the crude hazards and the Kolmogorv-5mirnov type tesy for testing independence
of the failure mode and the failure time. For a specific choice of loeal altermative, the
lwo Lesls are shown Lo be equally elliciend and an oplimal kernel s glven, A Lesi based
on cride hasards can then be casily extended to include more than (wo risks and also
censoring. The methods are illustrated by simulated data and also by a real «ata on
mortality follow-up conducted in Finland.

The competing risks data consist of the failure tirme, T and an indicator of faihe
mode, & which can have one of Lhe valoes {0,711,

Uefine Lhe joind distribution of (£, ) through the subsurvival luneiions
St} =P[Tzt6=i,i=0,1,
leading to the overall survival function of the failure time
5{t) = P|T = 1] = S(t) — 5106,

Let Fi(#) and F'(#) denote the corresponding subdistribntion and distribution funetions.

Thronghoul the paper, we assumne Lhal #£500) and £(0) are conlioons and 0 and S0
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denote the corresponding subdensity and dengity functions. Also. define the conditional

probahility of failure due to the first visk given that there is no faile upto time £ as
(1) Pl Pl | el

Eoguivalently, we can define @8 = Plda =0 T =4 =1 Pla=1|T =14 ltis
interesting o nole Lhal @ (8] = Pld = 1] = . % { = 0 v equivaleni 1o independence ol
4 and 4. Lo peneral dependence sel-up, the analyvsis of compeliny risks dala is carricd
out using the subsurvival functions S, (t), ¢ = 0, L. and hence if T and 4 are independent
then S5;(t) = S{#)7 ¢ = i. Thus, the hypothesis of equality of incidence functions is
eeuivilent to testing whoether Pld =1 = Pla=0] =1/2.

Lot Ag(#) and 1[."} b Lher enmmmlabive canse-specilic and coamnlalive code hasards

[or [ailure mode i, and are given by

. L N T - bl R

Llere, we consider the Lesting problems £y 0 @ (1) = ¢ againsl £f -+ &) i3 not constant,
and H. : ©{t) i5 increasing in # which is the same as in Dewan et al. (2004). Their
test [y 15 shown to be asymptotically equivalent to a test proposed here. for a special
choice of the weight funetion. Tt is interesting to note that the null hypothesis in termms
ol causc-specilic hazards s

Pt} Pio=1T=¢# d\y 5]

Doft) P6—0T =1 dig ) T @

anc is cquivalent Lo Lesting o (£ = aglf) = a{t), where a;(1) = &4;(0)/dl, i = 0,1 arce
the crude hazards. The alternative hypothesis that &, () is increasing in ¢ is equivalent
oo (8) = aglth,

In section 2. we propose a test based on orude hazards and a weighted Kolmogoroy-
amirnoey twpe of test for testing the above hypotheses. We also prove the equivalence

belwoeen Lhe oplimal Lests oblained u Lhese two classes of Cests, Lo seclion 3, simoaladed
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data and mortality follow-up data are nsed to illustrate the proposed tests. We also
compare the optiinal weight function and the weight funetion suggested by Hamington
amd Fleming in case of bivarlale exponential disiribuiion, which can be used in the

coencral sllation.

2 Test of significance

Lew (45, 4;3, 7 — L2, .., n be the compeling risks data obiained rom n independent

and identical copies of the system. Define the counting processes

Ny = N[ 48 =i = 0,1,
J=1

Ny = No(h) = MY =S 11 = 1)
Jrl

Note Lhal N6 counls the wumber of filures due Lo compeling sk @ by Lime § and
V() is the number of units at risk just prior to time ¢, The natural estimates of the

subsurvival functions are given by their empirical counterparts

i Nit=} - 1 PR

By o l_;} , Salt) = = = B0,
i Yz} M

Salk) — = Pr—r

anel vy = 0 — 1.

where ry =38 4,

!

2.1 Test based on crude hazards

Let Fj‘”—’l' he the filtration generated by (N, ¥, V). Consider the enlarged filtration

G, = FMY v a{ Ni{oe)). Tt can be shown that, for ¢ = 0,1,

P Nifoa) - Nils )
Pid=:1T7 = s)




i a {6, F-martingale with predictable variation process

i
. Naloe) =N (=)
i A = L 2 L B

a

1
(2) = [ (Nifoc) — N, (s—))dA(3).
il

It 3% interesting to note that the conditional probahility of interest, P8 = 2|7 = 1),
appears in Lhe compensalor.

We can aplit the group of n individuals into a group of &) (o) individuals, chose
which will fail from cause 1 and a group of 7 — 2N (o). those who will fail from cause
0. 50, we have two independent counting processes

P Noc) — Ni(s—)

J ﬁ"“-\’:.ﬁ P =T = 1)

e

¥
( dA () + M) = [ Vi(s1ddi(s) + Ai(e),
b

whoere £ = 0.1 and Y1) = Ni{oe) — N{I-).

Testing Lhe proportiooal hazards hypouhesis 18 equivalenl Lo Gesting whelher {he
intengities of the two counting processes N are identical. This testing problem is the
sarne a8 that discussed by Andersen et all [1993) on pages 345-348.

For a weight function 7O, () sueh that it is non-zero whenever the risk sets corre-
spouding Lo the lwo groups are noo-cinply, consider

ro (AN () rj_."\'fr#{-‘?j)
L"TL == j‘;_nlx-‘jf:l( \’_
/

(4] ¥ols)

_ ] Ko (5) (d_-'k:ﬂ (%) B f.ﬁ:ijfgl:}j})
0

Yiiz) Yul2)

(4) + f Ko(s) (d}il[s} — d.-j“[.ﬁ))
0

where F,(£) 15 a0 { G, }-predictable weight process which st be chosen i some efficient

way il second equality Tollows dae 1o {3), The assumption on e weighl lunclion is



natural since the estimates of the crude hazards need to be compared in the environ-
ment, when there are subjects acting in both environments. Note that the second term
i& zoro under Cthe null hypothesis, A Lest based on VW, can be used Lo lesl L againsl
Iy and H, since large values of V) (either negadive or positive) suppori ff; while large

negative values support H..

Theorem 2.1 Assume that n 'Yt converges uniforimly in probability to a deter-
ministic function () for i = 0,1, Further assume that w= K, () converges to k(1)
wrifeorendy fnprobabediy weth 8200 bownded on |07 Under the nnll fagpothesis, ialrs U
conperges in distribution (o N{, 07) where

1 1 5
el
o

1

7t = [ ﬂi‘-'[ﬂfm

Praofi The vesull follows [rorm (2), (3} and (4), and

T o, dA dAlD),
'\:'.'_-'._I"jk";l,' _I."![.-;: — f ,_—Ij{z f:l[{ 3 )
e U T Y

The consistent astimator of the variance 1y

22 _ ey 1 : N
& [D ILMU}(E{”Y-{” = /E][”K“})d_\,u]
® — [ KA (0%} N0,
S0

Clomsider the sequence of loeal alternatives {P™(F)} for the ernde hagzards of the form
(6] a () = a(t)(1 + 5,56, i =0,

where 0 — [fh, ) € R* is a local parameler and ¢, — O(n ¥2). Under these local

alternatives, the agvmptotic mean and the variance are

(7 = =) f " R{Oalt)(0)dL,
]
o = {6(l— )} f "12(Halh) S HR)dt.
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The noncentrality parameter is then given by
(th — B )21 — r,‘a){f' ﬂr:{tjw.[fjfr-(t]df)"z[f Foaths hen
0 11

It can e easily seen that the kernel which maximizes this noncentrality parameter
is &(f) proportional to w(#15(%) and hence this choiee of kernel gives the most efficient
Lesl {zee Andersen el e, 1993 [or details). The maximum value of the noncentrality

parainctor is

(&—mfmmﬂﬂfﬁmﬁﬁmmﬁ
0

The abwove derivalion is applicable 1o a more general sequence of local allernatives

(8) a™ (1) = ({1 — &), i = 0,1,

L

where ~(8) = (8} — (L),
An alternative weight function which can be used here is the weight function intro-
duced by Harrington and Fleming (1982) and is given by [1— F,(£)]*, where p iy a fixed

constant between 0 and 1 aned #,(#) 15 an estimate of the overall incidenee funetion.

2.2 Kolmogorv-Smirnov type test
The hypolhesis & (4} 7~ £ b8 equivalend wo €060 <2 ©(f5), whoenever £ <2 Lo, Thal 15

..'-‘-Jr {Mjff‘]l{h] < f‘_.l'|{.",2:|l.";f';{|':q;l

St S(t) = Si{ta)Sih).

This gi\r’lﬁﬂ ! IKJ.I, 14 ng.l — ..[:-JI| |[|'I2l:|5|:|r| ] —..[:-JI| U|]'HHQ] — S| [.ﬂngﬂ [f, | ] -5 {|'I| };qu{n'l,r_::l I ﬂ.. |'f-| < |'f-fg
with strict inequality for some (#,.£,). Let ¥, (t1,t.) be obtained by replacing the
functions by their empirvical counter parts

w“,[!l"_,fgj = ﬁlTL{tE}-’Qn':fiJ Fios ‘gln“l}f:?u[tﬂj
= Flloc)(F ) — E (00 + Ea (001 = EL (1)) — EL (i) (1 — (6.
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A Nolmogorov-Smirmov type of test to test Hy against Hy can be defined as N, =

—

A, e, Wi ) | and large values of the test statistic support. Hy. One sided test

can be used Lo Lest 2y apainst Hy, ey, = resup e 00 (e w)) and larpe positive

e
values suppori ffy. Similarly, a hypothesis that € (4] is deercasing can be tested and
large negative values support the hypothesis.

The following theorem s proved in the Appendiz T by the functional delta method.

Theorem 2.2 Az n tends to o, (T, (u, v) — Wlu, v1) converges to a zero-mean
Clanssian randowm feld 7w, v) with covarience structure
con{Alu, ). Zlug,ve)) = 0ifuy S S S oruy g < Uy Ty
(9] = &1l — )1 — Flrnar(r), va))
(L — F{min{ue, wy) ) [ F(mein(v, v) — Flmaz{ug,u))
otherwise
var(Z{w, 1)) = o1 — )1 — Flel = Flu))(Fiz) — F{u)
(10] = d(l—e)(l -1 —s){i—s)
wihere Flu) — 5 and Fle) — L and heree <D 5 <0< [
The above theorem can be used Lo Lest the hypolhesis of inlerest but this point

is not elaborated here sinee our interest in the disiribution of Z{w, ©) is for defining a

class of tests in the next section.

2.3 A class of weighted Kolmogorov-Smirnov type of tests
For some weight lunclion & (u, ), we cousider

B = // KD, 03 (8 (e)Salu) — 8 (e )8y (v ) )dedn

LR

(L) - f f K {u, v) T, v) dudy.

o



A weighted Kolmogorov-Smitnov type test statistic for testing Hy against A, and

Ha s defined as

/f (WNETRY {uln ‘\;_.Tu.s}— o {trjﬁam[ ) eduey

RS PR s o]

(12) = f / K (. e, (i, thefuely,
where we assime thal

Vi f{Kﬂ{u.._ v) — K{wv) )T (e v)dudy 5 0 as n — oo,
TR

The asymptotic distribution can be obtained by using the covariance structure (9] and

{10] of the Kolmogorov-Smitnov tvpe test.

Theorem 2.3 Asn tends to oo, a{A, — A} converges in distribution to a Caussion

rervedorn wariable wath wmean zevo aned variareos:

ot = /f f[ Filw, o) Ko o een(Z{uv), Z{o, o) idudvdu'dy’.

e gl

The U-statisiie, Ly in Dewan e el (2004) can be obtained from (12} by selecting
Ko, v} such that the limit Kz, v)dudy = dF(u)dFyiv).

Tor check the efficiency of this test and also to compare it with a simple test hased

on Lhe erude hasards, V,. we consider Lhe same local allernatives {P™{0)} as iu (6).

We deline

i
AlF) = f 2)ds, T(t) — 4 ﬂfc.-,fw
il
S{t) = cxp{—=A{4)). V= mp{—.-l{.t:ll (1)
Then the corresponding cunulalive hasards are glven by

(13) AP = AW + e (08, i=0.1
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and the sequence of subsurvival functions are

L—;]I_r'-]l Ii"l] i (.jﬁ_‘f:'[:ﬁjli;"“:l'i"ﬂ'__ L{J‘.‘éﬁ:“j s |:1 s q_j:h;_;“jb_-{”fnﬁ'q: anj{” oy {;[ﬁ:”j i f:.'”r:,.ﬂ}[.fjl.

To oblain the asymplotic mean ol /WA, ¢ under the local allernatives, consider

i f/ R () (S™ ()85 () — S ()87 () yeluele =

W

N “K (o, 1 )5 (0 05 (e RS S PP O S N PR LS R PALALLY Pse oy
. HWiw) H, L) D

L

Az notends Lo o, the above cxpression gocs Lo Lhe limil

T [ Y ff K, v)S(w)S{w)(log V(%) — Tog V{ubi(th — Oy)dude

LR

(141) = @il &)y F1) [ / I A, )5S G0 AG U (e Al Ue) ) efanefi:.

L
To obtain the noncentrality parameter of the limiting test, we must square g and divide

b

| 7 |F= 1'»-"ﬂr( [ [ R, )7 {u, ﬂ.-‘}d-urﬂt:) =

A

jf [ K (ary 1)K (', 1) Cov (£, v), 200’ ") Yl di dud

vyl o
where || - |7 18 the norm in the corresponding reproducing kernel ilberl space,
A kernel K{u,v) is efficient under the sequence of local alternatives (6) or equiva-
lently (15) when it maximizes

(5] | K |5 // K w)STe) S (Al ) (n) — AQa)l {a] e,

i
If we denote L{u. v} = S{ubSTe)(A(w)T{v) — Aln)T(w)) and for a generic function
7 {u, v) we define the convolution aperator

HOITRIES ey Cow (AL, o), Z0w’ o) duldy
RG) (12, ) Gl o) Cov (Z{w), Z{i', o)) dud e’

n
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rhen we can rewrite expressiom (15) as the square rooy of

(KR,
{-{{1 H}"h

1L i clear thal this is maximal when K{o,v) = (R L} u, vl

In other words, the asvmptotically efficient kernel A, ) satisfies

(16) (RE]) u,v) = // i o'y Cov (Zla,u). 206", oNde'de' = Liw. v).

! <
It is shown in Appendix TT that an optimal weight function which maximizes the

nonecentrality paramoeter is of the form
(17) R w, v) — klu)d u{t i (u}r‘rM

whore &, is the derivative of the delia funetion in the sense of distributions for a smooth

function f.
[ J, (o) fluhde = — f'{u)

where f'{1] s the derivative of f{u) with respect 1o w. Note that (17) satisfies (16). This
kernel can be approximeded by a seoguence of smooth kernels, and for such sequenees
Lhe welghled Woltmogorov-5mirnoy Lesl (12} approxituales Lhe asvioplolically ellicicnd

test {2) based on crude hazards,

3 Tllustrations

3.1 Simulation study
Congider a bivariate exponential distribution with the density function
Fla ) — Adeezpl—Aix — Auy)[l + aiZexpl—Ax) — 1){2eap{—Auy) — 1]

11



and the survival function
Sz ) — expl—dr — Xyl + a1 — exp{—A-2)301 — exp(—Aay})]
The survival function of T — min{ X. Y") iz
S — S, 1) —exp(—Mt — A + el — exp(—Mt) ] —exp(—Aut)).

It is clear that, for o = 0, Sit) = 5(t,t) = exp{—Xf — Ast} and that corresponds to
the independence of X and V.
W hix A and Ag snch that A £ A aned vary o Consider the erade hasards

f;{;'_l | U)'I
(it

(1 + o1 — exp(=Mat))( —exnpr.—xxzm) (1 - _+;:‘."‘_1‘..‘£ft]{f.‘i;_:i‘.x_.,3\,)

1lofl e DRIAIHE  ggn 2ot ome el
A =Dy Uy A ETE

and aq(t) = agit. @) = a{t, As, Ay, @) deflined analogously by interchanging the role of

ap(f) =ap(f.o) =t AL A, 0) =

Ay anid Ay When oo =0, alt. Ay, A0, 01 = alt, Ay, A D) = A+ Ay and e s comtinons in
ity aT@imnents.
The sequence of local allernavives oblained by expanding the eende bazarnds aif, A, s, ox,)

and @il As, Ay, ) aronnd the point o — 0 s

l:_'i'i'! I3

a0 = 0+ Aa)(L e (0) 69(0) = (0 + o)1+ ctgrnld))

where o, = ¢n 2 and ¢ is a conslant such Lthat =1 < ¢, <0 1 and

. a . .
Tk = mmi, Az Ao i) o
= f-'_':‘)‘1+’5'2]t — Lﬁ—)‘_* _ Az et

. 2)'ll & }'-2 )'q —+ 2/1‘52
£l

“ralt = s I(f' )L-;. )l. 4 2

2] G CRACTRA)
{;—';:"H':’-zﬂ 2 _2'}[2 —dat )I'- —Apt
: s + A Ax+2M 7
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Tet

- Ao et AL ol
A+ 2A; 2+ A

The oplimal kernel lor wesling o) (1) = ay(l) 8 proportional to S70{1).

3(8) = 1. (t) — 7l

We consider the optimal weight function S{0)~(!) and also the weight [unction
[L—=FL(t)]” with p — 1. The level of significance used throughout is 0.05. The parameters
nsed for the simwlation are Ay = 1. Ay = 3 and @ = 0 for the null hypothesis. A
saple ol stz 300 was generated with 1000 repetitions. Figure 1 gives the empirical
distribution of the west suatistic under the null hypothesis and also when o takes values
—(1.22, =044, —(01.67 and —0.8% along with the true standard normal digizibuiion, The
empirical distribution corresponding to o — 0 15 quite close to the true distribution
and as o goes away from 0, the distributions look like shifted nommal and the curves
move away from the troe distribotion as expected.

To compare the two weight funclions and U-statistic £ proposed in Dewan e ol
(2004}, empirical distributions of the three stavisties are computed using « = —0.804.
Figure 2 shows these thres empirvical distributioms and also the standard normal dis-
tribution. It is elear that the test based on the Harrington and Flening type weight
[unction has power similar Lo the wesl based on optimal weight lunction, The non-
cenlralily parameier of Lhe U-statiside 15 gmaller than Lthal of the weal based on erude
hazards. In praclice, when one does not wanu o make assumpiions aboui the strucuure
of the alternative hypothesis, the Harrington and Fleming weight function is a good

choiee.

3.2 DMortality follow-up study

Ye analyse the mortality follow-up data from the [innish coborts which was a part
of the Seven Countries Study in which men in the age-group of 40-39 were examined

during 1938-1964 (see Keys ef al., 1966 and Karvonen of wl, 1970 for the details of the

13



study). There were two Finnish cohorts: one from Tlomantsi in the eastern Finland
and ome from Pivtya and Mellild in the south-western Finland, consisting mainly of
raral agriculiural populations. The orieinal coborn consigi of 823 men [rom Lhe casiern
Finland and 888 mon [rom the south-westorn IMinland, Here, we analvse 40-vears of
maortality follow-up data of 1560 men who died during the follow-up. The mortality
follow-up data give the date of death and underlving cause of death. A death due to
cOTMon canses. that i coronary heart diseage. stroke. cancer, accidents and snicide.
is defined as canse 1 oand a death doe Lo any olher causes s delined as caose 0, The
mnber of deaths due w canse 1 is 621 and that due 1o cause 2 1s 939, Plgure 3 shows
the empirical conditional probability funetions $- (1) and $y(t) and Figure 4 shows the
corresponding estimates of the crude hazards. Tt can be seem from the Figure 3 that
the probability of dving due to common canses given that a person hias survived npto
cerlain ape 1% 4 decreasing lanclion of ape and henee Lhe probability of dying due 1o
other causes 13 increasing with age, Alier the age of 85, there is no clear trend, In fact,
there are several ages when the rate of change in the @ function changes. Tt can be seen
that @, (¢} < @, (0). Here the hypothesis of interest is whether @ (#) is decreasing that
15 ag(t] = ay(#) for all £ The walue of the test statistic using Harrington and Fleming
lype ol weiphl lunclion 15 5.2411, We accepl the hypolhesis Lthat ©,{1] s decreasiue al
3% lovel of significance and henee it may be concluded that probability of dying due
Lo common causes given the survival upto a certain age decreases with age and hence

the chances of dying due to other canses increases.

4 Discussion

Tt is shown that the most efficient test based on crude hazards, (2) is equivalent to the
maost efficient test im0 the class of the weighted Kolmogorov-Sinirnoy type tests, (12) for

a specilic cholee of local allernatives, A simple well-known sl lor comparing hasards
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of two counting processes can be efficiently applied in the present sitnation. This allows
a straight forward extension of testing hazards for two sample to & sample, in case of
f Ladlure modes, A k— sample Lest [or comparing hasands given on pages 345-348 in
Andersen ef ol (1993} can be used in case of k— lailure modes or competing risks.

It iz demmmstrated using the simulated <data that Harringron and Fleming tvpe of
weight function performs satisfactorly when compared to the optimal weight functiom.
In general when the form of the optimal weight function is not knowm, Harrington and
Fleming type ol weighl hinelion can bo ased.

I is casy Lo cheek thal the equalivy of erude hazards in the absence of censoring
gives the equality of crude hazard in the presence of independent censoring, Hence,
in case of right-censored comepting visks data with independent censoring, the above
methods can be applicd withont any elianges. We refere to Hxample ¥V.2.1, Chapter

V, Andersen ef ol (1993} for Lhe diseussion reparding censored survival data,
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Appendix I: Proof of Theorem 2.2
115 shown 1o Breslow ef of {1971 thatl as » lends wo o, vf"n.[i:'m — Fy b= £
converges jolnlly in ([0, ac]} x D 0, 2¢)) with the Skorokhod Lopology Lo zero mean

Caussian processes (X, X)) wilth covariance surueture, for s < f,

conl X (s), X (L)) = B(s)L = Ff),
cov(X(s), X (1)} = F{s){l—F(t}),
cov( Xo(s), X)) = Fls)(1 — Fif),

con( X (0, X(s)) = Fi(s) — £ 1E=).

MWote that X is a time changed Brownian bridge that is Xiac) = 0, but X is not a
Cranssian bridge, that is the limit X {00) s random. The martingale decomposition
[or (X)X} can be willlen as

o

X X
IX = oM —dF, X, =dM i 18
£ { N F]r Y =M U — F]r
where U and A0y are Gaussian martingales with

d{M, M = (L — F)AF and di{M, M) — d(M,, My) = {1 - F)dF,.

I[ wodenoie Xy =X — X, My, =M - M, I, = F— F, we got the linear sysiem of

16



stochastic differential equations

-
Dy = diy— 2=,
Y, — dM, — %dh

whore My and M) are orthoponal Gavssian marlingales with o (M) = (1 — F)d £ The
solulion can be given expliciicly in terms of {Mp, M) and mairix expooentials. Nole
that Xyloc) — X5 {ac) = 0.

By functional delta method, it can be shown that

(I, ) — Blu, ) =

VA Fi(o0) — Fi(o0))(File) — Flu)) +

Eloehy/ml(Fle) — Fle)) — (F(u) — Flu))] +
Vi(Bial) = P}l = P(5)) — Bralivia(Fa(e) - F()

VAl {E) = R ()1 = (1)) + Fra(e)/a(Falw) — F(x)
CONVETEes Lo

i) = X(oel[(Fle) Flg) | Flaal(X(e) X)) |

{1 — £(e)) = F X (o) = X{e L — Fw)) 4+ 2 (0) X ().

WWo Gl cxpross

b o

AT ES [.j'['rr,w._ SUAGEAE [_f,r[-u__ o, L)X (1),
i b
s0 that

Cov(Z(uy, vy, Zluy, ta)) =

Cow (.,l"[ul: v, T =1} - glar vy, 7). flue, va, T (g = 1) | gl s, ,})

17



whera

(18)  flw w2} = (F(5)— F{)) + Jow @1 = F{)) — Ipa (81 = Flu)),

U 9) i (. '-'--‘;?L-} = T 1.2 [?LJ' F 1(*-’} — 7 [ {_t.”‘“ 1 'lr'”-:' + FII’%] f [1,7] fﬂ
Under Hy, [7{t) = FF{x) F(t) = aF'(t) and hence,

flwwt) — (P() = )+ Ing (1 = F) = Tows (O(1 = Flw),
gl t) = “r':’[I_u:uj{ﬂF{U]' - ir_ql;:_(ﬂf[u]l + I_n,wj {t] — I_n,ujlif})
= 'ﬂjf 'Ir-]ﬂ]ff-:”-l "L('I” I ;Uth}(l F{””J

= (F(w) — E(n) = flu.n, L))
Mvote that

e 3 g ) 1%
f Flem AR = o f Flu, v AP ) =
ul 1]

anel

[m gl v, DAF{L) = o [DM{F{-?_:} Fila) — flu,o 0dE0) = o[ Fle) — Flau).

[

It can be verified using simple caleulations that

cov( Zluwy, ), A, va)) — Oifu S Sy Cvpor s <t S <1
= M1 — &)1 — Flrees(og. )
(1 — £ {rngnelieg ., wa ) )CF (rnn (i, vo ) — £ (raa{ie . ws ).
otherwise,
vor(Zlu,v)) = S0 —d300 — Fle)(1 — Flu)){(Flv) — Flu)}

= il @)1 {1 s)if s).
where Flae) = sand Fe)=f and hence 0 € s <t < 1.

18



Henee the Theorem 2.2,

Appendix II: Optimal weight function

To find the asvmptotic noncentrality parameter uncer the sequence of local alterna-
rives § PP given in (6). we need 1o compute the asymptotic mean and variance of
the weighted Kolmogorow-Smirmov test (12) for a sequence of possibly random kemels
A (e, v} approximaling K (e, v) = ﬁ.’l{'ﬂf}fh{ ], 50 Lhal

Vi [ [ (K. w) — ﬂl‘-{"t!‘]'lt:l-n{ti_\,ljf.[r[”:'l: a. o) dhude =

Jﬁ( f f ™ (e, 1)V (g, v edanede: — f () S (1) SEY () (AT (1) — dfl.%”:'{u.}})
| Il

Tl

~ o L)

Lsing (14) aned (15), it % easy to verify that the asymptotic mean and variance of

Jﬂiﬂ I
" " e o " N
fo= [ — ol — ) / R )5 (el ae) v e,
J1)

and

"l.-"m'( [ [ Ko 0) 2 [-u.__-'r;]ld-'rrd-r.!] =

=
/ f f f o < o (u < o' () By (b () e (07) Cov (£ w), 20, 1" Vebu’ e dosele,
Mote that
i t [ B S | f o ' E‘i R 3 ! ¢
—] du{e ) {1 < v} R{w, v, o, v)dt" = ﬁfl“ <)o v, U ) ey
i
wher
B{wv.w'. vy = cov{Ziu,v), Z(v', )
= (1 — @SS (rninfu. )OS (mazlu, ) — ST (e < o)1 < )
—{1 — @) S (w8 (rrdve (e, o)) (S (onace (o, 1)) — ST (e < eld (e < &),

19



Finally,
B34 on= 1-":11'( K {u, v} Z{u, v riud.?;) = ol — &} f {5 ()aluw)du.
U /

The value of the noncenirality paramelcr is

(8, — fe)%eil — (-i*}l[[m 1’1:(-u.]5‘2(-u.]r}_{'u}';x{'rxf.ldu}z[fnc- E2 ()8 (e dee ) ebue) ™!
0 i

anel is maximised when k() = ~(2)97 " (2} and the maximum value of the noncentrality
PATATIELOT 18

(4 — &) (1 — &} f i P (a3 ) e e,

[

which is exactly the same as that for the test (2] based on crude hazards.
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n=500, alpha=(0,-0.22,-0.44,~0.67,-0.89), lambda(1)=1, lambda(2)=3

0.9

0.8

0.7

0.6

0.5}

0.4

- N{0,1)
optimal

0.3

0.1

ﬂ |

-5 -4

[Migure 1: Empirical distributions of the test statistic based on crude hazards for various

values of a n — 500, o — (0, —0.22, =044 06T, —0.89), M — 1, 2 — 3
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n=500, ﬂ'phﬂ:—ﬂ_ﬂg‘;, |EI|'T'I|:|dEII:1 }:1, |Elmbdﬂ|:2}=3

1 T T T T T —— - T

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

N(0,1)

— optimal
— — K{t)=Y(t)
— . U-stats

0.1

D |

-G -5 2 3

Figure 20 Hinpirvical distributions of test statistic based on erude hazards nsing optimal
kernel and LHarringlon-Flemming Lype kernel, and Ly Gesl o = 300, o = —0.87%, A =

i Ry=2
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empirical conditional probabiliies

— CHD

g -— - other

=1
oo
T

<

~]
I
&

" 3
R L L
g i, "H\-l '| |

=2
m
I
!
|
|
i
i
|

=1
on
T

=2
£
T

=
Lo
T

=1
ha
I

0.1

{] | | | |
40 50 B0 70 80 80

age (in years)

Fipare 3 Linpirical conditional probabilities lor two compeling causes of dealh

23



cumulative crude hazard
-
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Figure 4: XNelson-Aalen estimates of eumulative crude hazards lor two competing causes

of death
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