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o TTRODVC T

In [2] Bilu classified the pairs of polynomials fg over g field of characteristic 0
such that #{X1 — g{¥} has an irreducible factor of degree 2. This note extends his
results to arbitrary characleristic, Also, the rather specific main result of [17 15 an
mmuediate consequence of the theorems belva:

The strategy is roughly as follows: A straightforward application of Galods theory
and Litroth s Theorom reduces to the following situation: Let v be a transeendental
over the hase hield K, and scur = Fix), Then £y has a guadratic extension L, such
that £ /& i) is Galois. The Galois group is generated by taw involutions, henee it is
dihedral. The intermediate field £ 717 is the fixed field of one of the involutions,

This reduction appears aleeady in [2], its extension fo positive characteristic
causes no problems. Let & be an algebraic closure of K. To proceed further Bilu
applied ramification theoretic arguments o the exlension Kiv1iKi11 which rely
on Riemann’s existence theorem and which dun’t work in positivee characlerisiic
without making quite restricive assumptions on the characteristic.

[nstead, we wse a different approach which avoids any use of ramification
theoretic arguments: The field L is the function field of the guadratic factor
of fIX1—g(¥), thus & L is a rationa) feld K (23 So Gali K(23/ K (113 s a subgroup
of Gal(f. /& (i1, Also, the index 15 at most 2. The group of £ -automorphisms of
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Kiz) is PGL2(K) {action via linear fractions! transformations of z}. Thus we have
to determine the cvelic and dikedral subgroups of PGLA{ K, and analyze the cases
which give paits £ ¢ such that f(X) — g(¥} has a quadratic factor over K.

The generalization of [2. Theorem 1.2] 18

Theorem 1.1, fLef f, g€ K| X] be non-constant polynomials over o fteld K, such
that F(X0 — (¥ e KX, ¥] has a factor of degree at most 2. I the characteristic
pof K s positive, ther assume that ar least one of the polyromials [, g cannot be
written as a polynomial in XP. Then theve are f, 0, P e K[ X] with f =D o f),
&= og), such that one of the following holds:

{a) deg fi.dege) < 2,

(hy p#£2 rn=deg fi=degg) 24 is a2 power of 2, and there are o, . y.a € K
such thar Hiky= 00X 4+ 8 a) pidX) = =X + ¢ 1E + 178}, a). Here
£ denotes a primitive (20)th root of unity. Furthermore, if a £ 0. then £* —
1/E2e K.

Conversely, in cases (a) and (b)Y £(X) — g(¥) indeed has a factor of degree at
maost 2. This is clear for case (a], because f71(X) —g1(Y¥) 15 such a factor, and follows
for case (b) from Lemma 2.8,

If ooe wants to deternmmine the cases such that F{X} — 2(¥) has an irreductble
Factor of degree 2, then the list beeomes longer in positive characteristic. The exact
extension of [2, Theorem 1.3] s

Theorem 1.2. Lot [, g e K[X] be uon-constant pofynomiale over g field K, such
thit FIXY — g (V) € KX, Y| has o quadratie ireducible factor (XY I the
chardcterisiic paf K is positive, ther assume that at least one of the polvromials
. g caprat be wreiffen as g polynomial in XP. Then there are |, 21,0 € K| X| with
f=®cfi, g =%cg suchthat glX, ¥) divides {I{X) — g1(Y), and one of the
follovwing heldds:

{a] maxf{dep fi,deggy) =2 and g(X ¥l = (X} — g (¥
(b) There are o, By, b6 € K with g1(X)= filaX + @), ard fi{X) = hivX -8
wiere h( X} is one of the following polmomials.
(i) p does not divide n, and A Xy = D (X, a) forsome a c K. Ifa # 0, then
b+ 1/ e E where ¢ s a primitive nh root of unine
(i) p=d and M(XY=X7 —akX forsomeac K,
(i) p =3 and R(Xy=(XP —aX +b)° for somea, be K.
(v] p23d and A(X)=X" - EaXﬂ?'L_' + atX for some a € K.
(vi p=2 and (X ) =X+ {1 —a)X° + aX forsome g = K.
(C) n is even, p does not divide n, and there are o, B. v, a € K such that f1(X) =
DX+ a) iKX= — B0l X + 3 0E+ 1/E), a). Feve £ denotes o primitive
(2n)th root of unity. Furthermore, ifa #0, then £° + et e K.
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(dy p = 3 and there gre guadratic polvaomiols wi XY, viX e K[X] such thar

el - -.
FiXo=hiniXnand g0 X =hielXp with I =X = 20X +a X far
S o & K

The theorems exclude the case that f and g are both polynomials in X, The
tollowing handles this case, a vepeated application reduces o the aituation of the
theorems above.

Theorem 1.3, Lot fo2 ¢ K| X| be non-constans polyaomials over o fleld K| such
that f1Xy— gi¥ye KX, Y] has ar irreducible fuctor gi X, ¥y of degree af most 2,
Suppose that FIX 1= STXT) and g(X0 = gt X ), where p = (s the characteristic
ol K. Then one of the fidlewing holds.

(a1 gl X, V) dividdes )T X1 — ol ¥F), or
(b) p=2 f(X1=flX7), gtX)= fito X" +b) for somea, b K, wnd (X, Y1 =
Xt —u¥-—bh

Remark 1.4. linder suitable conditions on the parameters and the field &, all
casas listed in Theorem 1.2 give examples such that £ (X} — g (¥} indeed has an
irreducible quadratic tactor. The cases of the Dickson polvnomials are classically
known, see Lemma 2.8 and its prool. We illustrate two examples:

{bHvy. Here p =2 and mX)= X"~ (] - @)X FaX, We have h(X) - M) =
(X+FUX =Y +1HX 4+ X+ ¥ ¥ +a) [F #° 4 Z =« has no solution in K.
then the quadratic facror is imreducible,

iy, Here p 2 3and HiX) = X" — 2uX £ Fa X, and o = 0 of course. [T s
aroatof Z7 | — 4 then sois —w. Let T he aset such U (=T} is a disjoint union
ofthe roots of 27! - a.

We compule

RO -0y =(x =¥ ] [ —¥i-n{X + ¥ -]
[

sl
=(x* -] - = lix - ¥y -1
rel’
<{IX H YT (X — Yo}
= (X - P[]0 v =2 x - ¥+ )
re
and therefore

hiXy—hivi=iX = V] Juex = ¥ =205 + 1)+ 0%
=F)

The discriminant with respect to X of the quadratic factar belonging to ¢ is 160°F,
soall the quadratic faclors are absalutely irreducible,



3, PREPARATION

Definition 2.1. Let a.b elements of a group ¢. Then «" denotes the conjugate
b lab.

Lemma 2.2, Let G be afinite difedral group, genevated by the involutions a and b,
Then a and a sultable confugate of b generate a Splow 2-subovoup of G

Proof. Set ¢ = ab For i € %, the order of {a, b‘-":} is twice the order of ab® . We
compute ab” =alc Vbt = a(ba) Bub) = (b =¥ Let 2 + | be the
largest odd divisor of [€F]. The claim follows. C

Definition 2.3, For e, b, ¢, d in a field K with ad = #e £ 0 1l [” jj denote the
image of {“ *} & GLz2(K) in PGLy(K ).

Lemma 2.4. Let X be an algebrwically closed field of choracteristic p, and p e
PGL2 (K} be an element of finite ovder 1. Then one of the following holds:

fa) p does ot divide n, and p is conjugate o [(l, ?] where ¢ is a prinitive nth roat
af arity,
{hY n = p, amd p is confugaie o [EI i]

Proof. Let § = GL,( K} be a preimage of p. Without loss of generality we may
assume that 1 is an eigenvalue of 4. The claim follows from the Jordan normal
tormaotf g,

Lemma 2.5. Lot K be an algebraically closed field of characteristic p. and
G % PGLAKY be a dihedral group of ovder 2r 2 4, which is genrerated by the
trvalution © amd the efement g oforder n, Then ane of the following holds:

(a) pdoes rot divide n. There iv o € POL{K ) such that 7 = 5'[]]] and p" = [{l, ?]
where { iy o primitive nth roof of unin.

(b) n=p =3 Thereis o € PGLIK ) such that 17 = [ ¢ Jand o7 = [} 1]

() n=p=2 Thereis o e PGLIK) vuch that 7" = [
l#£be &

Proof. By Lemma 2.4 we may assume that o has the form given there. From
p" = ¢! we obtain the shape of ©:

First assume that p does not divide r, 50 p = [t'] :r_] Let f = {? :J.} £ GLafK 1 bea
preimage of 1. From p* = p ! we obtain pr = 1p~!, hence

(b (=6
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forsome A € &, This pives Al — Da =0, (= Nb =L (h=Te=and {» —d =
{. First assume s = = 0. Then o and ¢ commute, so (7 15 abelian, hencen =2 £ p

and theretore ¢ = —1. It follows 7 = [ ,j] —”|] = g, i conlradicion,

Thus &£ 10, 80 2 =1, This yields o =d =0, a5 { # 1. We obmin 1 = | [ ||. -
Chonse 5 = & with 89 = ¢, and set § = [I'.r r] The claim follows from o' = g and
ATl
=[] |
MNow assume the second case of Lemma 2.4, that is p = n and p = |_I

o 1) Again

setting T = {* 7} we abtain

(I I) TR - ('.-r .IIJ) 1 —1‘)

1 J?(xf' u')_"‘r R R
for seme 2 € K, This gives e —e =da, b +d =2—a+ b)), c=he, and d =
A—e—ad) I e #0, then 2 = 1, a0 ¢ =0 by the first equation, ¢ contradiction,

Thus ¢ =10, 50 ¢ £ 0 We may assume @ = 1. 50 o = —1. This gives the result

i_ﬂl with § = —&/2. From 57 = p and

for p=n=2 I p£2 then set o =[“|

T HE ] ‘ - o -
il in |J we abtain the ¢lam, 01

Let = be a trunscendental over the ficld K. The group of K-automorphisms

of Kiz) is isomorphic w PGLz(K), where | 7| sends z to £ Note that

Kizy=KizVforze Kizviland only il 2 = f{’ with [ © r;-| =PGLAK),
Letr(z1 = K¢{;) be a rational function. Then the degree deg e of v 15 the maximum
of the degrees ol the numerator and denominalor ol Fiz) as a reduced fraction, Note

that degr is also the depree of the field extension K23/ K irizh

Definition 2.6, For ¢ © K ong defines the ath Dickson polvnamial £,(X, a) {of
degree #) implicitly by D007 + a2z 0 = 2" 4+ a0 Note that 00X, = X*.
Furthermore, from & Do aic el = 002" +laioiM = (ha) i'h:{ W= fhibs
"j— bl = D, ikis 4 a0, bre) one obeains B LY, o) = by, BRa), a relation
wz will use latwer.

Lemma 2.7.

(o) Let JIX} = giniX) with fe K[X) and p.h e K(X). Then f =g o h =
(ror Vvolroh) fiva rational function ». € K1X) of degree |, such that g o2 !
and Lo b ave polynomials,

(b Let foe e KX e twe poderomials such that (X)) = Lig{RIX 1) for ratfonal
Functions L, R e K{X1 of degree 1. Then there are linear pobnomials £.r €
KX with (FiX1=tigiriXn

Proof. (a) This is well known. Far the convenience of the reader, we supply a short
proof. Let & K4X1 be of degree | such that Alkico)y = oo, Selling g =y 02 °
and i = A 2 h we have [ = § ekt with iitne) = oo, Suppose that & is not
polynomial. Then there iz o € & (& denotes an algebraic closure of K with

]
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3oy = oo, Let f & K U {oc} with (8) = ). From hisc) = oo we oblain § £ oo,
Now Fi(#) = BR(B)) = gl = o yickds a contradiction, so 7 is a polynomial.
From that it follows that & is a polynomial as well.

(b} IF L is a polynomial, then R has no poles, so is a polynomial as well.

Suppose now that £ is not a polynomial. Then there is o € & with Loy = o0,
Let £ be an algebraic closure of £, Choose 8 € K with g(#) = e. [f we can find
p € K with R(p) = 8, then we get the contradiction f(3) = oc. The value set of £
on K is K minus the element R(ac) € K. Thus we are done except Tor the caze thal
the equation g{X) = = has only the single solution § = Rioc) € K. In this case,
however, giXt=a + 4K - 8" with e K. From L '(f(R '(X1)) = g(X} we
analogously cither get that L and & are polynomials, or f{X) =o'} 4'(X - 87"
witha', &, ' = K. The claim follows. ©

Lemma 2.8, Lef K be a field of characteristic p, and n e ™ even and rot divisibie
By g (s in pavticular p £ 2) Let & be o primitive (2npth root of wnity ard a € K,
Then

Dy(X.a) = Dy(¥.a)
= J] (x*-{ = 169X - ¥ 4 (£ - 158" 0a).

lesbsin -1 add

Prool. This is essentally [2, Proposilion 3.1]. The fuctorizations of Dy, (X, a) —
£3, 0¥, o) arg known, s¢e [3, Propesition 1.7]. The claim then follows from thal and
Do (X, 6) = DY bh = Dot X, @) = D, (Y, 017 = (D (X, a) + DY BN(D, (X, )
— D, (¥, b, 3

The following proposition classifics polynomials £ over K with a certain
Cialois theoretic property. To facilitate the notation in the statement and tts proof,
we introduce a notatwon: If £ s a held extension of K, and f. e K[X] are
polvnomials, then we write f ~g & 1if and enly if there are linear polynomials
L. Re E[X] with f{X) = LiR(R(XY). Clearly, ~p Is an equivalence relation on
KX In determining the possibilitzes of £ in Proposition 2, 10, we first determing
certain polynomials # € K|X] with f ~g h, and from thal we conclude the
possibilities for . The follewing Lemma illustrates this latter step.

Lemma 2.9, Let K be an algebraic closure of the field K of characteristic p. Sup-
pose that -5 XP —2XW W2 L X for £ e K[X]. Then f ~p XP —2aX'P 112 4
a*X forsomenc K,

Proof. There are «, 3. 3.8 € K with JiEy=whiyX + 8+ 8 = K[X]. where
X =Xxr—2xr-12 4 ¥

The cocfiicients of X and X'"H1972 of £(X) arewp? = K and —2gp W02 = g
so PN e Kand ay e K.

Suppose that g = 3. Then the coetficient of X% 1%~ is {up to a factor from K)
w128 e K| so w8 = K and therefore 87y & K. Thus, upom replacing X by
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A =47y, we may assume 4 = 0. Then 4 ¢ K, so g =0 without loss of gencrality,
Now dividing by oy ® and setting a = 1/p' 142 yields the claim,

in the case p = 3 we get from above v £ K and then e = & Thus we may asseme
o =y = |. Looking at the coefhicient of X, which is —448 4+ 1, shows § € £, 50
A& = = 0 without loss of generality. Thus f{X)= X’ —2X"+X. O

Proposition 210, fer K be o fwld of characteristic p, ard (X € K[X] be
a pelvaomicd of degree v 2 3 which @ not g pobmomial in X7 Let x be a
franscerdentad, and ser t = fix). Suppose that the normal closuee of K (0 E (1)
has the form Ky, v) where Fiv,owl =0 with F e K[X,¥] dreeducible of totaf
degree 2. Furthermore. stippose that the Goaleis group of Kl 1/ K0 i diledrad
e arder 2n. Then one of the following holds:

(a) p doey not divide 7, and [~y D00Xa) for some a e KO8 a 20, then & +
f0 S K where £ iv o primitive Rk root of writy,

(Bl n=p 3 and [y X0 - aX forsomea e K.

fe) m=2p =6 und [ ~p (XF —aX + 87 fir some a, b e K.

fdl w=p oand | ~p XV —Zak"r:_l +a X for some a c K.

el n=4 p=2and | ~p X'+ 01 —ad X2+ aX firsomea c K,

fn the cases (B (d) (L ard da) for odd ko the folfowing holds: I K is
an Infermediote frefd of K QK with |[K{x, v) 0 K| =2, then K] iy
canfusaie e Kix)
I case (u) suppose that FIXY = O,0X a) and K{w) s not confugare i Kix)
Furthermuore, swgipose thai t = pQwd for a pedvaomiad gt X0 € K1X| Ther 00X =
it ~ 180X ~coad fvhoe e Koand & o primitive {20380 root of unithe

Proof. Let £ be the alschraic closure of & in K (r. vy, Then Kiri < Kiv) o
Kis visocither & =K or Kix, vi=Klx.

We start looking at the lamer ¢ase, Here K {Jr]l_.-"ﬁ:’ i7) 1y & Galels extension with
group € which is a subgroup of & = GaliK (x)/K i) of order n. Nole that

is either evelic or dihedral. Let o = €, 50 &7 = L—_”, with . b, e of © K, From

et ey F AR et c e N Ly L At =l ; A e
IS =7y = ) f t = [{x) we obtatn that bt i% a polynomigl, so
7 =qx 4 b

Suppose that p does not divide 7, Then we may assumc that the coetlicient of
XVl £ vanishes. From f{ay -85 = £ we obtain & =0, Thus ¢ is isomaorphic
1o g suhproup of K*.in parbicular C s eyelic and generated by o with ™ = £x with
&oo prinutive sth root of unity. From fiv) = {(&r) we see that, up o a constant
factor, f X )= X" This is case (a) with e =1).

From now on i1 15 more convenient to work over an algebraic closure £ of K.
As Kin n Ko v Kirn (see, eg., [# Proposition L11{c)]) we obtain that
Gali K ix1i K =0,

Now suppose that p divides # = |C]. but p 2 3, First agsume that © is evelic,
Breom Lemimg 2.4 we el = o Let p be a generator of O Lemma 2.4 shows the
following: There is .+ = K1x) with Kiry=Kixy, suchthat v =x' + |.So 1 -
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x'P — 1" is fixed under €. We obtain 1 £ K (1), because K (1) i3 the fixed field of €.
From p = [K(x') : K{")] we obtain K (') = K (7). So there are rational funetions
f.. R e K(X) of degree 1 with x' = R{x} and t = L{#'3. Then fixi=t= LY =
L' = xy = L{r(x)" — R, 50 f =L o(XP — X) o R By Lemma 2.7 we may
assume that £ and R are polynomials over K. Then f{X)=a(X" — aX) -~ # with
e, fi.a © K. From that we pet case (b).

Mext assume that C is dihedral of order 5, As p = 3, we get that p divides n/2,
We apply Lemma 2.5 now. This yiclds # = 2p, and there is x* with K {x} = K{x)
quch that & (¢) is the fixed field of the automorphisms x' v+ —x" and x° — x' + 1.
Obviously 1" = (x" — )7 i3 fixed under these automorphisms, and as [K (')
K{t')1=2p, we obtain E(n = K(r'). The claim follows similarly as above.

MNow assume that p = 2 divides n, hpplumg Lemmata 2.4 and 2.5, we pgel
that C is the Klein 4 proup. We see that ¢ = o'(" + 1)(x" + b¥x' + b+ 1} is
fixed under the automorphisms sending 3 to x* + 1 and to x" 4+ b. So ¢ = h(x")
with FiIXy=X*+(1+b+ &EJXR [ (- sz){. Mext we show that 22 + b e K,
A suitable substitution v fioX + 8 4+ 4§ should give fiX) e K|X]. We obtain
vileX — B +4 =y(fleXr4 () —45 e K[X]. Looking at the coefficients of
X?and X yields « € K, 50 & = | without loss of generality. Looking at X* pives
¥ £ K, 50y =1 without loss, Finally the coeflicient of X yields the ¢laim, Thus
FXO =X -0l +b+PIX + (B 4+ 51X € K1X] and K = K(b), which gives
case {e). [n this case assume that w is as in the proposition. Let 1, and t,. be the
involutions of the dihedral group € of order § which fix x and v, respectively. From
Klx, vh=K(x, 1= K{w. b} we obtain that v,, 1, & €. This shows that 7, and 1.,
are conjugate in G, so K {w) is conjugate o K{x),

[t remains to study the case K = K L S0 K (x, _}-‘]_,fff (r) 1s Galels with group €5,
By the Diophanting trick we oblain a ratiomal parametrization of the quadric
Fix.¥i=0 over K f{actuallv. 2 suitable quadratic extension over which
F{X, ¥) =10 has a rational point suffices). [n terms of fields that means K4z} =
Kix, ¥} for some element 3

We apply Lemma 2.5, Up to replacing v and 7 by ¢ and ¢ as above, we pet the
following possibilities;

() p does not divide », x is fixed under the auomorphism sending z to 1/z,
and 1 1s fixed under this automorphism and the one sending : to z/¢. So we
may choose r =" — 1/, x =z 4+ |/z. But then v = D, (x, 13, There are lingar
polynomials LR e EIX] with L e D,(X, 1o B =fc K|X], 50 we get case (a)
of the proposition by [3, Lemma 1.9]. For the remaining claims concerning this
case, we may assume that f{X) = D {X, o). Againsetr = fix), and now choose z
with z +a/z=x.Thent = D,{x.u) = Dz +afz,8) =" 4 {u/z)". The normal
closure K {x W= K {x w} of K{xy/K(r) is contained in K{e: 7). The elements
' =¢x i £ oand & c F L are conjugates of x, so x5 1" € K{x, ¥). From
x4 _{E+J THx —alx) m obtain & + 1/ € Kix, v}. However, we are in the
case that K 14 algebraically closed in K(x, vh, 508 + 1/ e K.

Suppose that K {w) is not conjogate to K ix). As extending the cocfficients does
not change Galois groups, this is equivalent to K (x} not being conjugate to K )
n Kir yb= K(z). Note that x 15 fixed under the invelution £+~ a/z. The other
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involutions in Gal(K (217 K411 have the form 2 — af/z. where g is an nth rool
of unity, or 7 — —z. The latler involutiom cannot fis w, because the fixed field
would he K (271, however, 27 + {a /21" cannot be written as a polynomial in == Thus
suppose that 7+ o477 fixes w, [f #%7¢ = [, then un easy calculation shows that H' I“IJ

?'““J are mniugate in Gall & {zh; & (£1Y, contrary to K (1) and K () not being
conjugate, Thus 477 . hence B¢ = .|, because #* = |. The element u' =
o4 falf s s ixed undLr IhE imvedution ; — af /2, 50 K{w') = K{w). Furthermaore,

and

P2t lafn)Y = = et = Dot 4 (Palfn, Bu) = w0, fa),

s0 g2(X) = Dn(uX + v, foy for some u, v € K. The comndition that eiX)y has
coetlicients in & shows that - e X, sce [3, Lemma L%]. Thus, upon replacing
X by X — =, we may assume v = 0. The tranafurnmtinn tormula in Detinition 2.6

gives X1 = 00w X, far= g% 'ﬂ,,{ FX ay=-1i, { X, a) with & K. As cach
comjugate of w has degree 2 over K '} we obtain that ! r Xb¥—ui¥isplits over X in
irreducible factors of degree 2. By Lemma 2.8 one of the factors of f{X1—gi¥1=
DLiX ol = DuizY el is X7 = 6+ LEIXY + LV — (5 =178, All coetlicients
of this fuctor harc o be in K. sothere s ) € K with \ (£ 1,‘1 = b . We obtain
giX) = =Dl Xl = —DyihiE + 1/E1X a), where b = I+—“—I c K. The
claim tallows.

th) # = p = 3 From a computation above we obtain 1 = (27 — 2)7. We may
assume that x is fixed under the amtomarphism sending z to —z, s0 for instance
y=2f Let hoe KiX1 with At = ¢, That means kiz%) = (=7 — 719 = 22 —
2:_”"" 4ot henee Al X = X0 —2X !I b X, Lermma 2.9 yiclds the claim,

(&1 The case # = p — 2 does not arise, because we assumead 7 2 3.

The comjugacy of K {1y and K (v has been shown in the derivation of case (&)
ahove. In the cases (a) (o odd). fb) and (d} it helds as well, becanse & is dihedral of
order 2r with & odd. so all involunons in & are conjugate. 0

BOPROGE GF L THEGRIM S
3.1. Proof of Theorems 1.1 and 1.2

Supposc that £{X) is noda podynemial in X, sonotall exponents of ¢ are divisible
By g Let g0 X, ¥ beoan drneducible divisor of F(XY — g0F) of degree at maost 2.
Set r = vy, where x is a transcendental over K. Clearly both variahles X and ¥
appear in ¢i X, ¥1. Inan algebraic closure of K (1) choose v with gz, vi =10, Note
that g{xi =« The field &M Kiv} lHes between K(x) and Kiz), so by Limoths
Theorem, K(x) ™ Kiv) = Klu) tor some w, Wnting ¢ = doed and o = (5] for
rational functiens &, v = K (X4 we have § = o . By Lemma 2.7(a}, we may
replace o by u” with Kiwr = Kiw'y, such that ¢ is a polynomial in «, and « is a
pelynomial mos. Thus witheut loss ol generality we may assume that & and f
are polynomials. From that it Tollows that « 19 also a polvnomtal in , 50 20X =
P (X Tora polynomial g with g = &, Node that ) 15 agaim not a polynomial
in X" Asgisirreducible and ) (x)— g (0 =w —y =1 we get that g0 X, ¥ divides
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F16X) = g1{¥). Thus, in order to prove the theorems, we may assume that f = f)
and g=pq. 80 Kix) ™ K(vy= K1)

First suppose that the polynomial g(x. ¥), considered in the variable ¥, is
inseparable over K(x}, Then the characteristic of & is 2, and (up to a factor}
giX, Y= aX*+bX 4o+ ¥ hence .vz =t by te S0 H(}‘zj CKxNK(v=
K (7], therefore [K(¥): Kit)] <=2 Bot [K(x): Kl = [ K ) KO [K(v)
KO/ 1E (x, v) s K(x1] < 2, We obtain deg £, deg < 2, a situation which gives case
(a) in the theoremns,

Thus we assume that & (x, ¥1/K (2} 15 separable. By the assumption that (X}
is not a polynomial in X%, we also obtain that K () /& (1} s separable. Thus
K(x, v}/ K1) is separable. From Ki{x) 0 K(y) = K{r) we obtain that the fields
Kix), K{y), and K{x, ¥) are pairwise distinet. S0 K'{x, v} i5 a quadratic extension
of K{x)and &{¥). Thus K{x, ¥)/Kiz) is a Galois extension, whose Galois group
7 15 generated by involutions ©, and 1., where 7, and =, fix @ and v, respectively.
In particular, {7 is a dihedral gronp.

Yor deg £ = degg = 2 we obtain case (a) of the Theorems, Thus assume n =
deg f =degg = 3 lrom now on,

The possihilities for f are given in Proposition 2,10, Tn the cases (b}, {d), (e}, and
(a) for odd », we obtain that & (x) and K{y) are conjugate. vielding the case {a) of
Theorem 1.1 and case (b} of Theorem 1.2,

Let us assume case (c) of Proposition 2,10, Here & is a dihedral group of
order 4p. If T, and 7. are conjugate, then we obtain case (a) of Theorem 1.1 and
case (B of Thearem 1.2. Thus suppose that 1, and r, are not conjugate. By
Lemma 2.2 there is a comjugate r, of 7, such that 7, and 7, generate a group
of order 4, Thus K{x) and K (3" have degree 2 over K (x) M K (). So there are
fos 2o,k e K[X] with f and go of degree 2 and f =k o fo, p = f o gp. giving case
{a] of Theorem 1.1. Without loss of generality assume that fiX)=(X" 4+ aX By,
and fulX) = X7, From F(—X) = 2((—X)%) = k{X*) = f{X) we obtain b =10,
so FiX) = h{X?) with k{X) = X7 + 2ax™F + 42X, This yields case (d) of
Theorem 1.2,

Finally, assume the situation of Proposition 2,10, case (a} for even r. 1If & (x} and
K (%) are conjugate, then we obtain the case (a} of Theorem 1,1 and ease (b)) of
Theorem 1.2, If however K{x) and K (y) are not conjugate, then Proposition 2.10
yields case (¢} of Theorem 1.2, In order o obtain case (b) of Thearem 1.1 one
applies Lemma 2.2 in order to show that =, and a conjugate of T, generate a dihedral
2-proup and argues as in the previous paragraph.

3.2. Proof of Thearem 1.3

We have FOX) =X and g(X) = viX)", where the coefficients of w and » are
contained ina purely inseparable extension L of £ (This includes the case £ = L.)
[a particular, [£ ; K] is a power of p, so g (X, V) remains irreducible over L7 p = 2.

Suppose first that g = 2, or that g (X, ¥} is irreducible over L if p = 2. As each
irreducible fuctor of FIX)—g{¥V) =X P — (X2 = {ui Xy —o(¥ )" arises at least
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p hmes, we abtain that ¢(X, ¥ = (X" F"y divides fiXy — g{Y) = filX7™) —
gl ¥ 7 b and the clamm follows in this case,

It remains to look at the case that p =2 and ¢{X.Y) = (X, Yigz(X. V1152
nontrivial factorization over L. IT - and ¢ do not ditter by a tactor, then as above
g iX. ¥yl and g-1 X, ¥)° divide wf X)° —wi¥1-.s0g(X. ¥)1° divides X )® —vi¥)-,
and we canclude as above.

Thus giX,¥1=8cX — ¥ + 8¢ for some w, € £, 4 € K. Then gLy, ¥i=
BlaX=+ ¥ +b) with o b & K divides u{X=) — go(¥7), s0 0X + ¥ + b divides
FolX ) — ¥, henee gol X = fala X 4+ 0, and the claim Toliows.

Remark 3.1, The method of the paper is easily cxiended do the study of degree 2
tactors of polvnomials of the form a(X (¥} — (XY, where a b, o, d are
palynomials, For ol g{X. ¥ is a quadratic fctr, v s a canscendental, and
chosen with g, ) =0 then ax)icix) = d0x) B y). so seming @ = aloh/ola) =
div) vy and studving the field extension Kk, ¥)/K{¢) requires only minor
extensians of the arpuments given in the paper.
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