Srabashi Basu - Ayanendranath Basu - M. C. Jones

Robust and efficient parametric estimation
for censored survival data

Abstraet We fit parametric models to survival data in the case of censoring and
{outlier) contamination. To do so, we adapt the robust density power divergence
methodology of Basu, Harris, Hjort, and Jones (Biometrika, 85, 349-359, 1998) to
the case of censored survival data. Asymptotic properties, simulation performance
and application o data are provided.

Keywords Density power divergence - Kaplan-Meier - L-estimator -
M-estimator

1 Intreduction

Survival data are commonly encountered in biomedical or industrial settings where
n individuals are followed until occurrence of a particular event of interest or n
items are put on test until failure. Analysis of survival data is ty pically complicated
by wvarious censoring mechanisms. Since the failure times in many cases are not
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observable and the censoring mechanism may or may not be known, a host of
semi-parametric procedures have been developed for survival analysis. However,
it is well known that the semi-parametric procedures are not as efficient as the max-
imum likelihood approach (or other efficient parametric methods) if the specified
parametric form is valid.

On the other hand, when the underlying model is misspecified or contaminated
the maximum likelihood or other classical parametric methods may be severely
affected and lead 1o very poor results. In the presence of censoring the nature and
amount of contamination can be very difficult todetect. Therefore, robust methods,
which automatically discount the effects of contamination and model misspecifi-
cation, can serve o provide a compromise between efficient classical pammetric
methods and the semi-parametric approach provided they are reasonably efficient
at the model. In this paper, we consider parametric estimation for right censored
data with and without contamination, and try to balance the dual aims of robusiness
and efficiency using a density-based minimum divergence procedure.

Basu et al. (1998) introduced a family of density-based divergence measures
indexed by a tuning parameter «. The population parameters of interest are esti-
mated by minimising adata-based estimate of the proposed divergence between the
density undedying the data and the assumed model density. The trade-off between
robustness and asymptotic efficiency of the parameter estimators is controlled by
o. When « = 0, the density power divergence is the Kullback—Leibler divergence
{Kullback and Leibler, 1951) and the method s maximum likelihood estimation;
when o = 1, the divergence is the mean squared error, and a robust but relatively
inefficient minimum mean squared error estimator ensues (Scott, 2001). Basu et
al. {1998) have shown that the estimators with small & = () have sirong robusiness
properies with little loss in asymptotic efficiency relative to maximum likelihood
under model conditions.

Here, we extend the estimator developed by Basu et al. to estimation of the
population parameters under a parametric approach inthe contextof right censored
data. The method has the great advantage that it does not require any nonparametric
smoothing for producing a data-based estimate of the tue density function, the
empircal distribution function alone being used to approximate the approprate
divergence in the case of independently and identically distnbuted (i.i.d.) data.
For the right censoring situation, we lake advantage of the well known
Kaplan—Meier estimator { Kaplan and Meier 1 938), approprately modified to make
it complete, and the substitution of this in place of the empircal distribution func-
tion leads to our objective funcion which is minimised to generate robust parameter
estimates.

The rest of the paper is organised as follows. In Sect. 2 we provide a brief
review of the density power divergence and related inference in the case of i.i.d.
data, and propose a modified estimator to handle nght censored data. In Sect. 3
we consider the asymptotic properties of the proposed estimator. Proof of pant of
ourtheorem is given in the Appendix. Some simulation results involving exponen-
tial and Weibull distributions are presented in Sect. 4, along with robust fitting of
Weibull models to data from Efron {1988). Throughout the rest of the paper we
will denote distributions by upper case letters and their densities by corresponding
lower case ones. The distribution generating the data will be denoted by G, having
density g, and will be called the target distribution.
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2 The density power divergence and right censored data
2.1 The density power divergence for i.i.d. data

Consider a parametric family of models {F,}, indexed by an unknown pamameter
vector 1 € & C IR*, possessing densities {f;} with respect to the dominating
measure, and let G be the class of all distributions having densities with respect
to that measure. Define the divergence d, (g, /) between g and another density
function f to be

1 1
de (g, f'):flf'*”{z}—(wa) g{zjj'"{z}l+agl+"{z}} dz fore=0. (1)
When « = 0, the divergence dyl g, f) is defined as

dofg. f) = lim du(g. f) = f[g{z} log(g(2)/f (2)) + (f(2) — g(z))] dz,

whichis a version of the Kullback—Leibler divergence. The choicea = 1 generates
the mean squared error or Ly distance [{g(z) — f(z)}*dz. We eschew values of
o > lin practice in view of their diminished efficiency. Basuetal. ( 1998) show that
foralle = 0,d, (g, f)is adivergence in that it 1s nonnegative forall g, /' € G and
is equal to zero if and only if f = g almost everywhere. A simple consequence of
the latter fact is that for any given ¢ the minimum density power divergence func-
tional T, (G ) at G, defined by the requirement o, (g, frq) = min g d. (g, fi),
is Fisher consistent.

MNote that the density power divergence o, (g, f;) between the target density g
and the model density f, canbe representedas [ f;'*“(2)dz—(1 + 1/a) [ fo(z)
dGiz) + #. The quantity f is independent of the parameter 1, so does not affect
the minimisation procedure, and the first term is known, given . Using a random
sample X, ..., X, from the target distnibution G one can actually minimise

f_,ﬂ'”l[z}ldz—l[l - lfa}ff}”iﬂdffﬂm

:ff;'”{z}dz—u+1;a},a-'21;"{x.} (2)

with respect o ¢, where G, is the empirical distdbution function, 1o obtain the
minimum density power divergence estimator of the parameter vector. Notice
that this method has the greatly appealing advantage that it does notl require a
smooth nonparametric estimate of g which is necessary, or unnecessarily imposed,
in other robust density-based minimum divergence approaches (e.g. Beran, 1977,
Caoetal 1995; Heatheote, 1977); thus the bandwidth selection problem and rate of
convergence results for the kernel density estimator are not relevant. As discussed
in Basu et al. (1998, Sect. 3.4) in general the density power divergence estimator
is equivariant only to linear data transformations and not to more general ones;
however, this covers the important case in survival analysis of timescale changes.
It is possible that [ £, 7% (z)dz is infinite for some ¢, but this just means that Eq. (2)
will not be minimised at such r.
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Under differentiability of the model and appropriate regulanty conditions, the
minimum density power divergence estimators can be obtained by solving the
eslimating equation

Ll

fu,{z}frl e ()dz — ! Z w (XD X)=0

where u,(z) = dlog f,(z)/dr is the nmxinlmnln likelihood score function. Note that
the above estimating equation is unbiased when g = f,. If, for example, {F,} is a
location model, with location parameter ¢, the minimum density power divergence
estimator is the maximiser of 3, f"(X;), with corresponding estimating equa-
tion 3 0 (X)) (X)) = 0. This contrasts with the maximum likelihood estimator
whichmaximises 3, log f,(X,), withthe corresponding estimating equation being
3, u,(X;) = 0. For several parametric models such as the normal, u,(z) £*(2) is
a bounded function of z for fixed r and for all & = 0, although wu,{z) itself is not.
Thus the estimating equation of the minimum density power divergence estima-
tor downweights the score function in a probabilistic manner. Basu et al. (1998)
have shown that the estimators comresponding 1o small values of o combine strong
robustness properties together with reasonably high efficiency.

2.2 The density power divergence for right censored data

Nowlet (X;,C)).i=1,..., i, beniid. pairs of mndom variables. The variables
X; are randomly generated from the target distribution & which is modeled by the
parametric family {F,}. The sequence of variables { C; } are censoring variables, so
that one actually observes ¥, = min {(X;, ;) and the indicator function §;, where
8 = 1if X; = C;, §; = 0 otherwise. Although in most conceivable applications
the distributions & and H of X; and C;, respectively, will both be absolutely con-
tinuous with respect to Lebesgue measure, our results will also hold if they are
not but do not have any jump points in common. Throughout the rest of the paper
we will assume that the variable of interest X and the censoring variable C are
independent.

Kaplan and Meier ( 1958) developed a nonparametric estimator for the survival
function 5{x) = 1 — G{x) as

Haa=1)

na!}"-“"-.l. {“1::4 if x = -.rll.'l:h
Sx)=10 if 8y = 1forx = ¥y,
undefined if &y = 0for x = ¥,

where (¥, 80, 1 = 1,2, .. n, are the n pairs of observations ordered over
the ¥;,. The Kaplan-Meier estimator is a step function with positive mass points
at those observations X; for which & = 1, i.e. only if X; is a failure; if §; = 1
for all i, the Kaplan-Meier estimator reduces to the ordinary empirical survi-
vor function 1 — Gy,. In the case where the largest observation is censored, the
Kaplan-Meier estimator is undefined after the largest failure point. It is conve-
nient to ardificially complete 5, by distributing the leftover mass equally among
all the censored observations greater than the largest failure. In this paper we have
followed this convention.
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The Kaplan—-Meier estimator is the nonparmmetic maximum likelihood esti-
mator of the underlying survival function. It is_a strongly consistent estimator of
the target survival function § = | — G, sothat §, (v) — 5(x) almost surely under
appropnate conditions (see Pelerson, 1977; Miller, 1981), the most important one
of which is formally stated in assumption A6 in Sect. 3 (implicitly, we assume this
to be true for the rest of the paper). When these conditions are satisfied, the method
described in the previous paragraph of artificially completing the Kaplan—-Meier
estimator has no role in its asymplotic properties; the adjustment is simply a tool
to make the method work in small samples.

MNow, the reason why the minimum density power divergence method is able to
avoid the use of a smooth nonparametric density estimate is that in expression (1)
for the divergence the target distribution appears only in a linear functional (except
in the part which is independent of the unknow n parameter and which therefore has
no role in the optimisation ). Thus, in the rght censoring context described above,
we can replace Gy, in Eq. (2) by G, (x) = | — 8,(x) which provides a consistent
estimator of the true distribution function in this context, and which is the Kaplan—
Meier estimator of the distribution function . Therefore, for the right censoring
situation we generate the sample version of the density power divergence between
the model density f; and the target density g, minus the ierm 8 independent of r,
as

1 - -
D,,{f:l — ffrl +u{3}dz S (1 + E) f .-f: {Z:‘df:,,{z]l. EE}
The corresponding estimating equation for the unknown parameter is then given by

Un(t) = fujiz:'f;' 4 (2)dz —fu;{z:ldﬂ“,.{z) =0, (4)
3 Consistency and asymptotic normality

Here we establish the consistency and asymptotic nomality of the minimum den-
sity power divergence estimator in the right censored situation when the data are
eenerated from the target distribution G . In the following theorem, 8 represents the
best fitling parameter, whereas ¢+ denotes a generic element of &. The best fitlting
parameter is the minimiser of D(r) = [ £ 7(z)dz — (1 + 1/e) | f2(z)dG(z)
with respect to ¢ which will be assumed to exist and be unigque. Let @;be the mini-
miser of D, (1) given by Eq. (3) One can represent D, (1) as [ V,(z)dG ,(z), where

1 .
V,(x) = f fFez)dz — (1 4 E) £ (x).

We assume that & and the censorng distribution H have no common points of
discontinuity.

The minimum density power divergence estimator which is obtained as the
solution of f Yriz, G i(z) = 0, where Wix 1) = (i {x 1), ..., dix, mT =
(dVix)fan, ..., dVix) i, )", is also a particular form of M-estimator for cen-
sored data; for the latter, see e.g., Reid (1981) and Wang (1999), The difficulty in
developing the asymptotic properties of M-estimators for censored data in general
has been the absence of a law of large numbers and central limit theorem results
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for general functionals | $dG, of the Kaplan—Meier estimator. However, during
the last decade or so the works of W. Smite and J.L. Wang (Stute and Wang, 1993;
Stute, 1995; Wang, 1995, 1999) have laid down just such a theoretical framework
and obtained strong consistency and asymptotic normality results.

Below, we present a theorem on the asymplotic properties of our minimum
divergence estimator; the theorem has two parts, (1) consistency, (2) asymplotic
nommality. It turns out that, since we do not assume the components of o (x, 1) tobe
bounded, it is easiest to adapt Lehmann’s { 1983) Theorem 6.4. 1{i) on consistency
to the censored data case; this is done in the Appendix. Had we assumed bound-
edness, as would often be the case, then the consistency result of part (1) of our
theorem would follow from Wang (1999, Theorem 3(1)). Part (2) of our theorem
follows directly from Theorem 5 of Wang ( 19949). For any given o, we first make
the following assumptions:

Al:The distributions £, have common support, so that the set A = {z| f,(z) =0}
is independent of ¢. The true distribution & is also supported on A, on which
g =0

A2: There is an open subset w of the parameter space & containing the best
fitting parameter & such that f_f" THz)dz = oo and, foralmost all z € A and
all i € w, fi(z)is three times differentiable with respect tor and the third partial
derivatives are continuous with respect to r.

A3: The integrals | f' 7#(z)dz and [ f“(z)dG(z), when finite, can be differ-
entiated three times, and the derivatives can be taken under the integral sign.

Eg{3Vi(X)/dnlp} <ocforallk=1,...,s.
Ad: The s = & matrix J{G, 1) is defined by
. FV(X
JlG, 1) = Eg ¢ v Eid=1. .8
oty iy
All elements of J{G, &) are finite and the matrix is positive definite.
AS:Forallk, f.m = 1. ... .5, there exist functions My, (x) such that
P Vix
L I{. :I = M.U.ur{-r}
ity d ity i,
forall t € w, where Eq[Myu (X)) =my, = ccforall k. [.m =1, sk

A6: For a distribution L, let 7 = sup{x: L{x) = 1} denote the uprp-er bound of
the support of L. Then, 1; = ty, where equality may hold except when H is
continuous at 7, and Gltg) — Glrg—) = (.

A7: The conditions of Lemma | and Theorem 5 of Wang (1999) hold. These
are essentially conditions on the first two moments of ¥ ix, 1), k = 1, ..., 5,
when ¢ = # and on the continuity of their dervatives with respect 1o elements
ofratr=4.

Theorem 3.1 Under the above conditions, with probability tending to | asn — og,
there exist solutions 8, af the density power divergence estimating Eg. () such thai:

() 6‘,, iy ((JH‘li‘le'Hf_fﬂr estimating 8 ;

(2) n' ”{6‘,, — &) iy multivariate normal with ﬁecmr,.l mean zero and covariance
matrix J(G, ) "'C(yr, 8, G, H)J(G, ™', where C(-, -, -, -) is as defined in
equation (2.15) of Wang {1999) with our G and H replacing F and G in the
netation of that paper.
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To keep the description simple, we have limited the statement of the theorem to
the existence of one sequence of consistent roots 1o the estimating equation. How-

f‘ﬁ'_.-{z, f}dl‘.—;{Z} = ﬂ,

for | = j = s, then any sequence of solutions to the estimating equation converges
to the best fitting parameter & [Wang, 1999; Theorem 3(ii1)]. Expressions (3.2) of
Wang give the basic form of the influence functions for our estimators.

ever, if there exists a compact set K < IR such that "“J:.
1€

4 Numerical studies
4.1 Simulation results: exponential distributions

Consider the lifetime distribution to be the one parameter exponential with density
filx) = de ™, x = 0, referred to as exp(A). Hence, the first term in Eq. (2) is

o
f [ () dz =
]

The second term in Eq. (2) may be written as

1 oy roir l o y g a—heEy;
(1+E)f.ﬂ.{:}'dfh.{:}—(1+w)l glﬂ.{h}'ﬂ .

Here, the v;s are the set of failure times plus all the censored values greater than
the largest failure time and g, (v;) is the mass attributed to y; by the completed
Kaplan—Meier estimator (recall that if ¥, 15 not a failure, then the residual mass
is assigned equally to all censored observations larger than ¥, ). To obtain the
minimum divergence estimator of A, we therefore minimise

}-I'.I
14+

As 1 4+ o o
1o }Lu E : vl v e—.u.r_l_.
| + o o 8n ()
i

dilg, f) =

with respect o A for fixed c. This leads to the estimating equation for A,

a — (14 a) Z (1 —)-._1.'_,]!g,,{_].-_f]le_"*”-".- =,

4

which can be solved numerically, using, for example, the Newton—Raphson
procedure.

A modest numerical study is pedormed o compare the performance of the
maximum likelihood estimator (MLE) and the minimum divergence estimator
(MDE) developed in this paper in the exponential model with or without con-
tamination for various values of . A sample is generated from exp(3) and 0, 5,
10, 15 or 20% of the observations are contaminated by exp(1.3) successively. We
have used an exponential censoring scheme with the censoring rate determined
s0 as 1o keep the expected proportions of censoring under the true distribution at
10 or 20%: when the true distribution is exp(3), to keep the expected proportion
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of censoring at 10%, the censoring distabution is taken 1o be exp(5/9); when the
expected proportion of censoring is 20%, the censoring distribution is exp(5/4).
The values of o are chosen to be 0.001, 0.01, 0.1, 0.2, 0.25, 0.5, 0.75 and 1.0.
For given levels of contamination and censoring, the MLE and MDE for each
value of « are calculated for a randomly generated exponential sample of size
50 and the whole procedure is repeated 300 times. The mean squared emors be-
tween the MLE and the true parameter, MSE(MLE), and between the MDE and
the true parameter, MSE(MDE), are computed. Empircal efficiency is defined to
be the mtio of MSE(MLE:MSE(MDE) so that efficiency greater than 1 implies
the density-based estimator is performing betier than the MLE. The results of the
simulation study are given in Table 1.

The general observations from the empirical efficiencies in Table | are as
follows. Under pure data (no contamination) the MDEs are generally less effi-
cient than the MLE, as one would expect. In this case the efficiencies are generally
decreasing functions of «. As the contamination proportion increases, however,
the MLE pgets progressively worse. Even for moderate contaminations at 5-10%
levels, the estimators for relatively small values of o (say between 0.1 and (0.25)
are superior 1o the MLE. For the largest contamination proportion considered here
(20%%) all estimators corresponding o0 o = 0.1 outperform the MLE, some of
them substantially. However, the gains from using the robust estimates are reduced
somewhat when the censoring proportion increases.

An interesting suggestion made by a referee was to repeat the above exercise
with ‘short-tailed contamination” in the form of an exp(13) distribution. This we
did although detailed results have not been added to the paper. Basically, this exer-
cise emphasises that the MDE, in line with most other robust estimators, is driven
by downweighting regions of low density. As the contamination here is in a high
density area, the MDE does not, in general, gain over the MLE. It retains good per-
formance for small o« but can deteriorate badly for large values of «, particularly
for high amounts of contamination.

Table 1 Empirical efficiencies of MDE in exponential case

Censoring it Contamination
MNone 55 105 15% 20%

10% 0.001 049738 049378 0.9083 0.8921 08944
0.01 049777 049544 09278 0.90491 0.9100
0.1 0.9708 10845 11215 11095 10967
0.2 0.8976 10808 1.2356 1.3266 1.3240
0.25 0.8500 10439 1.2446 1.4062 1.4227
0.5 06314 08189 10799 1.4659 1.6300
0.75 05118 0.6844 0.9261 1.3508 1.5822
1.0 0.4477 0.6096 0.8401 1.2635 1.5120

20% 0.001 049342 0.9406 049194 0.9085 09115
0.01 049413 0.9502 0.9303 09183 0.9199
0.1 049722 1.0230 1.0348 1.0307 1.0206
0.2 0.9335 10214 10993 1.1539 1.1493
0.25 0.8945 0.9895 10990 1.2003 1.2103
0.5 0.6748 0.7649 0.9291 1.2128 1.3453
0.75 0.5459 0.6356 0.7951 1.11958 1.3121

L0 04757 03632 LY T 7\
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4.2 Simulation results: Weibull distributions

Now consider the lifetime distribution to be the two parameter Weibull with density
ziven by

b o B—1 T
Sap(x) = (—) (i) ﬁ_“’“‘*, a,b=0, x=10,

i i

denoted Weibull {a, #); @ and b are scale and shape parameters, respectively. For
the Weibull density, the first term in Eq. (2) may be wrillen as

” o0
-’_’ f7ur|—;1|':—||+u).:'|:17
i ) )

]

which equals

() (52" e (e (-5) )

provided that b = a /{1 4+ o) (which is assured for b > 1/2if 0 = o = 1). For
b < o /(1 + o) this term is infinite, which means that for any given «, the MDE of
b will always be greater than o/ (1 4+ o). The second term in Eq. (2) reduces 1o

l 4o phe y yatb—1) st
( o )(5) ;Halh}} (t_:) @ (¥ }I

Random samples of size n = 50 are generated from a Weibull(2, 5) distribution
and the censoring scheme is taken o be exp((.0575) for an expected censoring
proportion of 10% and exp{(.1222) for an expected censoring proportion of 20%.
Contamination is introduced through exp(1.5) and the contaminating proportion
is varied as in the case of exponential lifetime distabution; note that the contam-
ination is (largely) to the lefi of the true distribution in this case. The MLE of b
is found by solving the appropriate likelihood estimating equation utilizing the
bisection method. Once b is estimated, the MLE of a is immediately available. To
obtain the MDEs of @ and b, we do a bivanate grid search. Mean squared errors
and their mtio, the empirical efficiency, are calculated separately for the scale and
shape parameters and the results are presented in Tables 2 and 3, respectively. The
number of replications is again (K.

Forthe Weibull distribution, in general, the performance of the MDE compared
to MLE is supenor than in the case of the exponential distribution, both in magni-
tude and scope. At higher levels of contamination and larger values of o« the MDE
is between 2.5 to 8 times better than the MLE in terms of empirical efficiency. Even
at moderate levels of contamination, the superiority of the MDEs, including those
for larger values of «, are clearly apparent.
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Table 2 Empirical efficiencies of MDE for the scale parameter a in the Weibull case.

Censoring it Contamination
MNone 55 10% 15% 205

105 0.001 0.9839 049954 09890 09831 09763
0.01 0.9502 1.0412 10435 1.0291 1.0153
0.1 0.9697 1.5182 1.7027 1.6979 1.5073
02 09543 1.8063 24346 28238 24815
0.25 0.9306 1.8509 2.6907 33910 31885
0.5 0.5348 1.7944 30735 4.8071 T.0624
0.75 0.7329 16132 2.8926 47488 §.4722
1.0 0.6408 14474 2.6568 32915 6.3208

20% 0.001 049834 0.9976 0.49849 (0.9588 0484491
0.01 0.9845 10448 1.0302 094974 0.9522
0.1 0.9660 1.4707 1.6550 1.5893 1.4610
0.2 0.9395 1L.6BRT 23168 26244 23812
0.25 0.9139 1.7302 2.5336 32183 3.0225
0.5 0.8023 1.6512 2.8039 5.0254 6.2407
0.75 0.6963 14528 2.6251 5.1667 7.3060
1.0 0.6028 1.3020 23426 3.7405 5.6013

Table 3 Empirical efficiencies of MDE for the shape parameter b in the Weibull case

Censoring it Contamination
Naone 55 105 15 205

10% 0.001 10646 109649 10864 1.0709 1.0517
0.01 1.0601 1.1573 1.1282 1.0959 1.0633
0.1 10438 20538 1.8054 1. 4986 1.2292
0.2 0.9570 28471 30339 24424 16174
0.25 090498 30811 36374 3.0703 19448
0.5 0.6915 289491 48740 5.62497 42573
0.75 0.5397 24816 47189 6.0842 5.6305
1.0 0.4657 21752 43537 549878 6.1775

20% 0.001 1.0534 1.2029 1.1737 11270 1.1041
0.01 1.0552 1.2730 1.2174 11481 1.1163
0.1 1.0022 22353 1.9601 1.4758 1.2933
0.2 0.9235 294974 32399 22520 1.7134
0.25 0.87495 31039 38048 28244 2.0623
0.5 0.6900 28162 48515 54431 44253
0.75 0.5573 24046 44592 6.1037 57111
1.0 0.4663 21928 42664 6.3243 6.1143

4.3 Data example

MNext we apply this procedure to a real example taken from Efrom (19588). Data are
available from a study comparing radiation therapy alone (arm A) and radiation
therapy and chemotherapy (arm B) for the treatment of head and neck cancer. There
were 51 patients assigned 1o arm A of the study of which 9 were lost to follow-up
and, therefore, censored; alternatively, 45 patients were assigned o arm B of the
study of which 14 were lost to follow-up. Note that censoring levels are fairly high
in these data sets, approximately 20 and 30%, respectively. Efron (1988) makes
various analyses of these data, which show radiation and chemotherapy B to be
more effective in terms of survival times. Our focus here is on the appropriateness



Eobust estimation for survival data 351

or otherwise of certain parametric models for these data, basing our analysis on a
standard model for such data, the Weibull distribution.

The MLEs and the MDEs of the two Weibull parameters are given for vanous
values of the tuning parameter o in Tables 4 and 5. There are very considerable
changes in both parameter estimates with « including, imporantly, a change from
b < 1 (MLE and small e MDE) to b > 1 (larger « MDE).

Figures 1 and 2 illustrate the results for Arms A and B, respectively. On each
figure is shown: a kemel density estimate formed by kernel smoothing the Kaplan—
Meier estimator (e.g. Wand and Jones, Sect. 6.2.3), using a bandwidth subjectively
chosen not to oversmooth the data; the Weibull model fittied by MLE; the Weibull
model fitted by MDE with ¢ = 1; and a further curve o be discussed below. What
is clearly shown by the kemel density estimate in each case is a main body of data
to the left, together with some much more long-lived individuals to the right. (The
precise nature of the long tail may not be very well reflected by the kernel den-
sity estimate, especially when there are several large censored observations as in
Arm B.)

The MLE Weibull fits are monotone decreasing because bl striking an
uneasy compromise between accommodating the main body and the long tail of
the data, and consequently failing to capture either. The robust Weibull fits, with
b1, provide a wholly better fit to the main body of the data at the expense of
essentially ignorng the long tail. As such, this is entirely successtul from the robust
fitting viewpoint taken by this paper (and the whole of the robusiness literature ).

Table 4 Analvsis of Efron data assuming Weibull model: Arm A

o Scale, & Shape,
MLE 0 399.24 0.91
MDE 0.001 418.18 0.98

0.01 417.72 0.98

0.1 412.72 0.99

0.2 402.51 1.00

0.25 39531 1.02

0.5 321.90 116

0.75 252.85 1.44

1.0 24947 147

Table 5 Analvsis of Efron data assuming Weibull model: Arm B

P Scale, & Shape, b

MLE 0 92545 0.76
MDE 0001 TH9.23 091
0.01 T90.07 0.91
0.1 78181 090
0.2 Th9.26 0.50
0.25 TRA.13 050
0.5 726.72 (.93
075 551.53 1.03

1.0 34307 1.31
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Fig. 1 Kerneldensity estimate (dotted line), MLE Weibull fit (dashed line ), MDE o = 1 Weibull

fit (solid line) and MLE two component mixed Weibull fit (dot-dashed ling) for Arm A of the
Efron (1988} data

Table 6 Maximum likelihood parameter estimates for Efron data assuming two component
Weibull mixture model

Arm A Arm B
I3 0.52 0.35
First Component scale, & 241.53 156.00
shape, 1.47 4.08
Second Component  scale, & 1428.11 TR0, o
shape, s 9.17 01.90

However, particularly in cases, as here, with substantial ‘contamination’, it can be
argued that the contamination is in fact of interest too and should also be modelled.
The results of fitting two component Weibull mixtures 1o the data by maximum
likelihood are, therefore, also shown on Figs. 1 and 2. (The corresponding param-
eler estimates, in an obvious notation, are given in Table 6.) In Fig. 1, the mixed
Weibull distribution confirms the robust Weibull fit as being appropriate for the
main body of data and adds a small second component to cover the tail. In Fig. 2,
the mixed Weibull distribution takes a rather different form, that of a narrow peak
to the left and a long flat tail to the dght. Further alternative parametric models
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Fig. 2 Kerneldensity estimate (dotted line), MLE Weibull fit (dashed line ), MDE o = 1 Weibull
fit (solid line) and MLE two component mixed Weibull fit (dot-dashed ling) for Arm B of the
Efron (1988} data

with heavier tails (e.g. the F'7) might be an even better full-modelling way forward
in this case.

This last part of our analysis reflects the usual tension between robust concen-
tration on the majority of the data and full modelling of all aspects of the data that
is ubiquitous in the literature.

5 Some remarks on choice of o

We have only little to contribute regarding approprate choice of «. First, some
insight can be gained by looking at parameter estimates (and corresponding fit-
ted densities) for a range of values of . Second, for low levels of censoring and
contamination, small values of o, say between 0,03 and 025, tend to be appropri-
ate. Third, the optimal value of « increases with increased levels of both censor-
ing and, particulady, contamination. Values from 0.5 up to and including the L,
estimation’ choice of & = 1 {Scott, 2001}, as made in our data example, then seem
more appropriate. Fourth, despite the negative views expressed in Sect. 5 of Basu
etal. (1998), in the non-censored-survival situation, some progress has been made
on automatic data-based selection of «; see Hong and Kim (2001) and Warwick
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and Jones (2005). Unfortunately, it is not at all easy to adapt the latter approach to
the survival data scenario, which is why we have not done so here.

Acknowledgements The authors are very grateful to two anonvmous referees for suggestions
which improved the quality and correctness of this paper.

6 Appendix
6.1 Proof of part (1) of Theorem 3.1

To prove the existence, with probability tending to 1, of a sequence of solutions 1o
the estimating equation given in Eq. (4) which is consistent, we shall consider the
behaviour of the density power divergence, given by Eq. (3), as a function of 1, on
a sphere 0, with center at # and radius a. We will show that for sufficiently small
@ the probability that D,(r) = D, (8) tends w 1 for all points ¢ on the surface of
(... and hence that D, (1) has a local minimum in the intenor of Q. It will follow
that for any a = 0, with probability tending to 1 as n — oo, the density power
divergence estimating equations have a solution 8, {a) within Q.
To study the behaviour of £, (1) on (2, , we expand D, (1) around 8. Thus

[

& 1 & &
D) = D) ==} A, —8)— 53 ) Bult —60( —8)
k=1

k=1 I=l

+Eli i i i{& — 8 )t — @)t —6,)

k=1 I=1 m=1

* f };U.'rr{E}MHm{Z}dﬁu {E}
=5+ 5+ 5,
say, where
. a2

d .3
A= —Dy(f)|i=p, By= -
& ar, (E)r=a ] D)

D.’I{'F:IJI = 0 = 4}".&.!.-"{-1’}'1 = 1.

the last by assumption A5, First, note that
il -
-'q-.(: — ._H'{E}d(;u‘:z::'.
iy

s0 that it converges (using assumptions A3, A6 and Proposition | of Wang, 1999),
with probability tending to 1, o {d0(1)/dn}=s = 0 as n — oo. Similardy,
By — Jy with probability tending to 1 (using assumptions A4, A6 and Prop-
osition 1 of Wang, 1999). For any given a it follows that |A;| = & and hence
15, = sa” with probability tending to 1. Next,

28 = =3 ) Julte — 8 — 8+ D (= By + Jud(t — (1t — 6).

k=1 I=1 k=1 I=1
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1t follows from an argument similar to that for §) that the absolute value of the sec-
ond term of 285 isless that s °a” with probability iending to 1. The first term of 25: is
a negative (nonrandom) quadratic form in the variables (1, —#,). By an orthogonal
transformation this can be reduced to a diagonal form ¥, A,£7 with ¥, £ = a%
As the As are all negative, by ordering themas A, = A, = ... = 4 =< (), one
getsy A Eg = hja®. Combining the ﬁrat.mdtht second terms, there exist ¢ = 0,
ay = Osuch thatfora < ag, 5 = —ca’, with probability tending to 1. Finally, m[h
probability tending to 1, |Ir}—'H,,,{z]lMH,,,{c]ldf:,,{z]l = 2my. . and hence |53) < ba’

on @, where b = (3, E, E mm,,,}ﬁ Combining these inequalities, we see that

max(5, + 5 + 53) = —ca” + (b +5)a’, which is less than zero ifa < cf(b+3).

Thus, for sufficiently small a there exists a sequence of roots 8, = 8,(a) such
that P{HH,, — 8| = a) — 1 where || - || represents the L, norm. It remains to
show that we can determine such a sequence independently of o, Let 8 be the root
closest to &, This exists because the limit of a sequence of mots is again a root by
the continuity of D,(1) as a function of . Then clearly P{||#} — ]| = a) — L
This concludes the proof.
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